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Abstract 

In this paper, we present a new method for content based images 
retrieval (CBIR). We propose characterizing images by using 
global information extracted from the Fast and Adaptive 
Bidimensional Empirical Mode Decomposition (FAEMD), 
which decomposes image into a set of functions named 
Bidimensional Intrinsic Mode Functions (BIMF) and a residue. 
On the first two BIMFs, which contains a high frequency part of 
the image, eventually curves and edges, Curvelet transform (CT) 
was applied; wheras on the remaining part of the image Gabor 
wavelets (GW) were applied. Image feature based on Curvelet 
transform and Gabor wavelet, are then calculated. Our approach 
was tested on Brodatz database. Experimental results show that 
the proposed system outperforms previous rotation-invariant 
systems significantly, and it is found to be superior to Curvelet 
Transform and Gabor wavelets. 
Keywords: Content Based Image Retrieval, FABEMD, Curvelet 
Transform,  Gabor Wavelets. 

1. Introduction 

Content based image retrieval (CBIR) systems have been 
one of the most active areas of research in computer 
science. It remains an active area of research today due to 
its applications in various fields like commerce, 
government, academia, and hospitals. Therefore, many 
image retrieval systems such as QBIC, MARS, Virage, 
FIDS, Photobook, WebSEEk, etc. have been built. The 
CBIR systems can be classified broadly into two 
categories: Low level feature based system and High level 
or Semantic feature based system. Low level features are 
general features and computed from pixel values. 
However, high level features are abstract attributes 
involving a significant amount of reasoning. Our work 
falls into the first category. 
Feature extraction is one of the most important tasks for 
efficient and accurate image retrieval purpose. Shape, 
texture and color are three main groups of features that are 
being used in CBIR systems. Shape is represented by 
circularity, eccentricity, Fourier descriptor [1], moment 
invariants [2], histogram of values after applying Sobel 
edge filter [3], edge layout vector [4], shape context 
descriptor [5] , etc. A variety of techniques have been used 

for measuring texture such as co-occurrence matrix [6], 
Gabor filter [7] and fractals [8]. 
Texture is an important property of digital images. A 
successful CBIR system must be able to deal with textured 
images in practical application. Several models have been 
proposed to analyze textures, such as grey-level co-
occurrence matrices, Markov random field model [9], and 
simultaneous auto-regressive model [10], and World 
decomposition model [11].  Most of spatial domain texture 
analysis models have a fundamental weakness that the 
image is analyzed at a single scale. This aspect can be 
improved with a joint spatial frequency multi-channel 
representation methodology, usually a joint spatial 
frequency multi-channel. 
Representation methodology is used to deal with scale 
changes involved in textured image. However, this leads 
often to a relative efficiency according to the complexity 
and wealth information which contains the considered 
image database. Alternative methods of texture analysis 
for image retrieval include the use of Gabor filters [7], 
Wavelet [12] and DCT [13].  However, most of them are 
not able to accurately capture the edge information which 
is the most important texture feature in an image.  
The wavelets (DWT), have had a huge success in the field 
of image processing, and have been used for many 
problems such as compression, image restoration, image 
retrieval, etc. However, it is now clear that the wavelets 
are not optimal for the analysis of anisotropic objects in 
the image (lines, contours ...), but still effective in the 
detection of isotropic structures at different scales. 
Then, Wavelet transform cannot represent objects 
containing randomly oriented edges and curves as it is not 
good at representing line singularities. Gabor filters are 
found to perform better than wavelet transform in 
representing textures and retrieving images due to its 
multiple orientation approach [7]. However, due to the loss 
of spectral information in Gabor filters, they cannot 
effectively represent images. This affects the CBIR 
performance. Consequently, a more robust mechanism is 
necessary to improve CBIR performance. To achieve a 
complete coverage of the spectral domain and to capture 
more orientation information, Curvelet transform has been 
developed. It captures edge information or texture 
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information more accurately than Wavelet and Gabor 
filters [14, 15].  
In this paper we propose a realistic improvement which is 
performed under a convenient decomposition of the image. 
Our approach is based on the Fast and Adaptive 
Bidimensional Empirical Mode Decomposition 
(FABEMD) [16], which decomposes image into a set of 
functions named Bidimensional Intrinsic Mode Functions 
(BIMF) and a residue. on the first two BIMFs, which 
contains a high frequency part of the image, eventually 
curves and edges, Curvelet transform was applied; 
whereas on the remaining part of the image Gabor filters 
were applied;  then the low order statistic from the 
transformed images was counted.  A quantitative 
comparison showed a significant improvement in the 
presence of decomposition and an appropriate weighted 
similarity measure allows to converge toward a better 
results. 
 
The structure of this paper is as follows. Section 2 
describes the way in which the efficient matching of 
features between a query image and an images database is 
achieved. Section 3 describes an experiment study. Section 
4 concludes the paper. 

2. Proposed Approach 

Textured Images Databases Systems are radically 
different from conventional information systems. Many new  
issues need to be addressed. The system should be able of 
providing access to the content of images. Our approach to 
build a CBIR system approach is conceptually described by 
the framework depicted in figure 1. The core of the system 
is a new retrieval system based on the information derived 
from an image decomposition procedure. The database will 
be structured in an identical fashion, in such a way to allow 
us to access the information in a same format which can be 
easily compared.  

In the context of textured databases, this study presents 
a new approach where we first proceed  to a decomposition 
of the query image into two components using the Fast and 
Adaptive Bidimensional Empirical Mode Decomposition 
(FABEMD). The features extraction is not applied directly 
on the query image but after doing a decomposition scheme. 
Sections 2.1 explain the decomposition model of image, 
while the section 2.2 defines feature extraction of vector 
descriptor.  

 
 

 

Fig. 1: Extraction of image signature 

2.1 Fast and adaptive Bidimensional Empirical 

Mode Decomposition (FABEMD). 

The EMD method is an adaptive decomposition which 
was first introduced by Huang and al [17]. This method is 
appropriate for non linear, non stationary signal analysis. 
The concept of EMD is to decompose the signal into a set of 
zero mean functions called Intrinsic Mode Functions (IMF) 
and a residue. As the increasing of decomposition level, the 
IMF decreases.  Huang et al. defined IMF as function that 
satisfies two conditions: a) the numbers of extrema and 
zero-crossings are either equal or differ by at most one; b) 
the mean value of the envelopes defined by the local 
maxima and minima is zero at every point. 

Given a signal S(t), the sifting process of EMD can be 
summarized as follows :  

1) Identify all local extrema of  S(t). 
2) Interpolate all local maxima to get upper-envelope   

e୫ୟ୶ሺtሻ  and all local minima to get lower-
envelope  e୫୧୬ሺtሻ.  

3) Compute the local mean :  ݉ሺݐሻ ൌ

   ௘೘ೌೣሺ௧ሻା ௘೘೔೙ሺ௧ሻ

ଶ
 

4) Compute dሺtሻ ൌ  Sሺtሻ െ  mሺtሻ.  dሺtሻ is the 
candidate to be an IMF.  

5) If  dሺtሻ  satisfies the definition of IMF, subtract it 

from the signal rሺtሻ ൌ  Sሺtሻ െ  dሺtሻ and go to 

step 6.  If dሺtሻ does not satisfy the definition of 

IMF, go to step 1 and use dሺtሻ  instead of Sሺtሻ. 
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Steps 1-5 are repeated until dሺtሻ satisfies the 

definition of IMF. 

6) If  ݎሺݐሻ residue is a monotone function, the 
decomposition process is complete.  

If residue  rሺtሻ  is not a monotone function, go to step 1 
and use  rሺtሻ  instead of  Sሺtሻ. 

The process of getting each IMF (steps 1-4) is called 
sifting process. When the decomposition is complete,  the 
original signal s(t) can be represented like this:  

ܵሺݐሻ ൌ  ∑ ௄ܨܯܫ
ே
௞ୀଵ ൅                         ሻ                                         ሺ1ሻݐሺݎ

Following Nunes and al. [18], Bidimensional 
Empirical Mode Decomposition (BEMD) is defined as 
follows: 

- Identify the extrema (maxima and minima) of the 
image I. 

- Generate the 2D ‘envelope’ by connecting 
maxima points (respectively, minima points) with 
2D interploation methods. 

- Averaging the two envelopes to compute the local 
mean m. 

- Since BIMF should have zero local mean, subtract 
out the mean from the image: ݄ ൌ ܫ െ ݉. 

- repeat until h is BIMF. 
However,  Extraction of each IMF requires several 

iterations.  Because the surface interpolation method itself 
fits a surface in an iterative  optimization approach, it makes 
the BEMD process complex and  excessively time 
consuming. Effects of incorrect interpolation due  to the 
lack of extrema points at the boundary region and very few  
arbitrarily distributed extrema points at some stages of the 
process  impose severe restriction on the application of 
BEMD. Although a  few modifications have been suggested 
in the literature to improve  the process [18-19], BEMD still 
suffers from the above mentioned  problems to some extent.   

In 2008, Bhuiyan and al. [16] introduced a new 
approach to make BEMD fast and adaptive (FABEMD).  
FABEMD enables the decomposition of images with any 
dimensions in a very short period of time. 

FABEMD differs from the original BEMD algorithm, 
basically in the process of estimating the upper and lower 
envelopes (FABEMD replaces the interpolation step by a 
direct envelope estimation method) and in limiting the 
number of iterations per BIMF to one. To summarize, the 
upper and lower envelope formation in FABEMD requires 
three steps: window size determination, getting the MAX 
(MIN) filter output and averaging smoothing, all these 
operations can be done very fast using efficient 
programming routines. 

In [16] a comparative study between BEMD and 
FABEMD is presented in detail, and showed that FABEMD 

ensures a more accurate estimation of the BIMFs than 
BEMD. In figure 2, we give an example of  FABEMD 
decomposition for a image.  

 

Fig. 2. Decomposition obtained by FABEMD. 

In [21], the author uses the FABEMD for generating 
CBIR images signatures. In his experience, he decomposes 
the image into six BIMFs and then applying the generalized 
Gaussian on each one. However, the decomposition of 
image into six BIMFs is not always possible because some 
images can be decomposed only to a number less than six 
BIMFs. Moreover, by applying the same procedure 
(generalized Gaussian), the author has not considered the 
fact that BIMFs are different.  

In our approach, we decompose the image by 
FABEMD into two components: the first component 
contains the sum of the two first BIMFs, and the second 
component contains the remaining part of the image.  

Since the first BIMFs contains the highest local 
frequencies of oscillation or the highest local spatial scales 
the first component contains the edges and the curves of 
image.  We apply, therefore, the Curvelet transform, which 
is optimal for the analysis of anisotropic 
objects in image (e.g., curves, edges). On the second 
component, we apply the Gabor wavelets which still 
effective for the detection of isotropic structures at 
different scales. 

In our approach, we also reduce   the computational 
time by decomposing the image only into two components. 
We give in table 1, the computing time to decompose an 
image with different size, using FABEMD.  
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Table 1. Compute time to decompose an image by  FABEMD. 

Image size 128*128 512*512 

FABEMD on  6 
FABIMF 

2.23 s 49 s 

FABEMD on 2 
FABIMF 

0.68  s 14  s 

 

2.2 Feature extraction 

2.2.1 Description of Curvelet Transform 

Initially, the concept and implementation of Curvelet 
transform comes from Ridgelet transform, which is a 
specified kind of wavelets with the directions along edges 
and perpendicular to edges. Therefore, let’s start from the 
definition of ridgelet transform. Given an image function 
f(x,y) the continuous ridgelet transform is given as :  
Ը୤ሺa, b, θሻ

ൌ  ඵ ψሺx, yሻfሺx, yሻdxdy                                                                       ሺ2ሻ 

 
where a>0 is the scale, b א R  is the translation and 

θ א ሾ0,2πሻ  is the orientation. The ridgelet is defined as :  
 

ψୟ,ୠ,஘ሺx, yሻ

ൌ  aି
ଵ
ଶ ψ ቆ

xconsሺθሻ ൅ ysinሺθሻ െ  b
a

ቇ                                             ሺ3ሻ 

Figure 3 shows a typical ridgelet [15]. It is oriented at 
an angle θ, and is constant along lines: xconsሺθሻ ൅
ysinሺθሻ ൌ const.  It can be seen that a ridgelet is linear in 
edge direction and is much sharper than a conventional 
sinusoid wavelet.  

 
 

 

Fig. 3 : A ridgelet Waveform 
 

This similarity means that like Gabor, a ridgelet can be 
tuned at different scales and orientation to create Curvelets. 
But different from Gabor filters which only cover part of the 
spectrum in the frequency domain [7], Curvelets have a 

complete cover of the spectrum in frequency domain. That 
means, there is no loss of information in Curvelet transform 
in terms of capturing the frequency information from 
images. 

 
Figure 4 shows the Curvelet tiling and cover of the 

spectrum of a 512x512 images with 5 scales [22]. The 
shaded wedge shows the frequency response of a Curvelet 
at orientation 4 and scale 4. It can be seen, the spectrum 
cover by Curvelets is complete. In contrast, there are many 
holes in the frequency plan of Gabor filters Figure 5. 

 

 

Fig. 4: the tiling of frequency plan by Curvelets 

 

Fig. 5 : The tiling of half frequency pan by Gabor filters 
 

2.2.2 Gabor wavelets 

Wavelet theory is a unified and effective mathematical 
framework for multichannel image analysis [23]. In 
particular, Gabor functions have been extensively studied 
for texture discrimination, texture segmentation and image 
retrieval, etc. and have been shown to be very efficient. In 
[7], it has shown that image retrieval using Gabor features 
outperforms that using pyramid structured wavelet 
transform (PWT) features, Tree-structured Wavelet 
Transform (TWT) features and multiresolution 
simultaneous autoregressive model (MR-SAR) features. 
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Basically, Gabor filters are a group of wavelets, with 
each wavelet capturing energy at a specific frequency and a 
specific direction. Expanding a signal using this basis 
provides a localized frequency description, therefore 
capturing local features/energy of the signal. Texture 
features can then be extracted from this group of energy 
distributions. The scale (frequency) and orientation tunable 
property of Gabor filter makes it especially useful for 
texture analysis. Gabor Elementary Functions are Gaussians 
modulated by complex sinusoids. In two dimensions they 
are represented by 

gሺx, yሻ ൌ ൬ ଵ
ଶ஠஢౮஢౯  

൰ e
ቈషభ

మ ቆ
୶మ

஢౮
మ    ା  

୷మ

஢౯
మ   ቇ  ାଶ஠୨W୶቉

                ሺ4ሻ 

The Fourier transform of g(x; y) is  
Hሺu, vሻ

ൌ e
ቈషభ

మ ቆ
ሺ୳ି୵ሻమ

஢౫మ    ା  
୴మ

஢౬మ   ቇ  ቉
                                                      ሺ5ሻ 

where  σ୳ ൌ  
ଵ

ଶ஠஢౮
    and    σ୴ ൌ

ଵ

ଶ஠஢౯
     

    
A class of self-similar functions, referred to as the Gabor 
wavelets, is now considered. Let g(x; y) be the mother 
wavelet. Then a self-similar filter dictionary can be obtained 
by appropriate dilations and translations of g(x,y) through 
the generation function 
g୫୬ሺx, yሻ

ൌ aି୫  gሺxᇱ , yᇱሻ                                                                  ሺ6ሻ 

where a > 1, m; n =integer.  
xᇱ ൌ aି୫ ሺxcos θ ൅   ysin θሻ 

yᇱ ൌ aି୫ ሺycos θ  െ   xsin θሻ 

where  θ ൌ  
୬஠

୩
 and K is the total number of orientations.  

The scale factor aି୫ in equation (6) ensures that the 
energy is independent of m 
E୫୬  ൌ  ඵ|g୫୬|ଶ dxdx                                                       ሺ7ሻ 

The non-orthogonality of Gabor wavelets implies that 
there is redundant information in the filtered images, and the 
following strategy is used to reduce this redundancy.  

The design strategy is to ensure that the half peak 
magnitude cross-sections of the filter reponses in the 
frequency spectrum touch each other. This results in the 
following formulas for computing the filter parameters σ୳  
and   σ୴ 

a ൌ  ቀ
U౞

UL
ቁ

భ
Sషభ                                                                     ሺ8ሻ                                                          

σ୳  ൌ  
ሺa െ 1ሻU୦

ሺa ൅ 1ሻඥ2ln ሺ2ሻ
                                                      ሺ9ሻ 

σ୴  ൌ tan ቀ
π

2k
ቁ ቈU୦ െ 2 lnሺ2ሻ ቆ

σ୳
ଶ

U୦
ቇ቉ ሾ2ln2

െ ሺ
ሺ2ln ሺ2ሻሻଶ σ୳

U୦
ଶ ሻሿ                             ሺ10ሻ 

 

where                                                                          

 W ൌ  U୦, θ ൌ  
஠

୩
, m ൌ 0,1, … , S െ 1. 

 

Here m is scale. In order to eliminate sensitivity of the 
filter response to absolute intensity values, the real (even) 
components of the 2-D Gabor filters are biased by adding a 
constant to make them zero mean. Filtering the image I(x; 
y) with (x, y) results in 
 

W୫୬ ൌ  න Iሺx, yሻgכ
୫୬

ሺx െ x1, y

െ y1ሻdx1dy1                                      ሺ11ሻ  

 

where * indicates the complex conjugate. 

2.2.3 Curvelet feature extraction   

The digital Curvelet transform is taken on a 2-D 
Cartesian grid f[m,n], 0 ൑ m ൏ ,ܯ 0 ൑ ݊ ൏ ܰ, 

CTDሺa, b, θሻ ൌ  ෍ fሾm, nሿψୟ,ୠ,஘
D

଴ஸ୫ழெ
଴ஸ୬ழே

ሾm, nሿ                     ሺ12 

Equation (12) is implemented in frequency domain and 
can be expressed as, 

CTDሺa, b, θሻ ൌ IFFTሺFFT ቀfሺሾm, nሿሻ

ൈ FFT൫ψୟ,ୠ,஘
D ሾm, nሿ൯ቁ                         ሺ13ሻ 

After obtaining the coefficients in  CTDሺa, b, θሻ,  the 
mean and standard deviation are calculated from each set of 
Curvelet coefficients. Therefore, if p Curvelets are used for 
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the transform, 2p texture features are obtained. A 2p 
dimension texture feature vector is used to represent each 
image in the database for image retrieval. This feature 
extraction is applied to each of the images in the database. 
At the end, each image in the database is represented and 
indexed using its Curvelet feature vector. 
 

2.3 Numerical image characterization: Signatures 

The way the feature vectors are computed, based on 
the wavelets Gabor and Curvelet transform is described in 
this section II.2 (See Figure. 1). Here, some statistical 
measures are used to generate the feature vectors. More 
precisely, the mean  and the standard deviation  of 
the energy distribution of the multiresolution transform 
coefficients are used to capture the image information and, 
thus, to form the feature vector f: 

µ୫୬ ൌ  ඵ|W୫୬|dxdy                                                ሺ14ሻ 

 

σ୫୬ ൌ  ඨඵ|ሺW୫୬ െ µ୫୬ሻଶ|dxdy                      ሺ15ሻ       
For the Gabor Wavelet Transform, the values of  

|W୫୬|  denote the energy distribution of the transform 
coefficients after convolving an image I with the Gabor 
wavelet . By considering a total number of S=4 scales 
and K = 6 orientations, the resulting feature vector is 
computed as follows: 

f ൌ ሾµଵଵ, σଵଵ, … , µKS, σKSሿ                               ሺ16ሻ 

For the Curvelet transform, let a Curvelet feature 
vector of a texture image be denoted by fc and the standard 
deviation and mean of the Curvelet subband at scale a and 
orientation  θ  are denoted  σୟ஘ and  µୟ஘ respectively.  

Images are decomposed using 4 levels Curvelet 
transform. Based on the subband division, with 4 levels 
analysis, 50 (=1+16+32+1) subbands of Curvelet 
coefficients are computed. However, Curvelet at angle 
 θ  produces the same coefficients as Curvelet at angle 
θ ൅ π  . Therefore, half of the subbands at scale 2 and 3 are 
discarded due to this symmetry. As the result, 26 
(=1+8+16+1) subbands are preserved, and a 52 dimension 
feature vector is generated for each image in the database.  
Then the Curvelet feature vector  fc can be expressed as [24]   

 fc ൌ
ൣµଵଵ, . . , µଵJ, … , µIଵ, … , µIJ, σଵଵ, . . , σଵJ, … , σIଵ, … , σIJ  ൧      ሺ17ሻ                                                                                            
Where, I is the finest scale and J is the total number of 
subbands taken at scale a. This feature vector is then used to 
index the image in the feature database. 

2.4 Measure for similarity retrieval 

The texture similarity measurement of a query image Q 
and a target image T in the database is defined by: The 
effective feature distance obtained from the weighted sum 
of each feature distance component. It is given by:  
 

DሺQ, Tሻ ൌ ඩ ෍ ሺQ୧ െ T୧ሻଶ

ଶ୮ାଶ୫୬

୧ୀଵ

                                 ሺ18ሻ 

Where 

 Q୧ ൌ ሾα1 כ fc୯, α2 כ f ୯ሿ and T ൌ ሾα1 כ fc୲, α2 כ f ୲ሿ  

 
Where Q୧ is the feature vector of query image 

extracted from  the BIMF1 + BIMF2 component using 
Curvelet Transform and Gabor Wavelet, T୧ is the feature 
vector of target image extracted from the residue after IMF1 
+ IMF2  component using Curvelet Transform and Gabor 
wavelets. 

α1 is the weight of the first component, and α2   is the 
weight of the second component.  

3. Experiment results and retrieval 
performance 

In order to evaluate the performance of the proposed 
scheme, we used the same texture database, which was used 
by Do and Vetterli[25]. These images are classified into 13 
texture classes as shown in Figure 6,  each texture of size 
512×512. From these images non-rotated image database is 
created by dividing each 0° version of the original textures 
into 16 disjoint regions with the same pixel size 128×128. 
We construct also rotated image database by taking four 
non-overlapping 128×128   subimages each from the 
original images at  0°, 30°, 60° and 120°. Both database sets 
contain 208 images each. The non-rotated set serves as the 
ideal case, where all images in the  same class have the 
same orientation, for the rotated set. A comprehensive 
study, using several approach, is conducted on different 
databases. Table 2 shows the comparison of performances 
in percentage of retrieving relevant image for the non-
rotated and the rotated set. In the first experiment, non-
rotated database is used. The result of proposed method is 
compared with standard DWT (with normalized Euclidean 
distance as similarity measure) and the vector wavelet 
domain HMM (WD_HMM) as reported in [25] and the 
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rotation invariant texture features using rotated complex 
wavelet as reported in [26].  

 In the second series of experiments, we have tested the 
rotation invariant property of proposed method. In this 
experiment we used rotated database set. Results have been 
compared with the isotropic rotationally invariant features 
extracted from DWT developed by Porter [27] and rotation 
invariant property obtained with the vector steerable 
WD_HMM as reported in [25] and the rotation invariant 
texture features using rotated complex wavelet as reported 
in [26]. Experimental results from Table 2 and table 3 show 
that on both the databases the proposed method outperforms 
the other existing methods.  

In order to evaluate the quality of the images retrieval 
approach, they should be compared with both Curvelet      
transform [24] and Gabor wavelets [7] applied directly on 
the original image. The performance of each retrieval 
method is estimated by comparing the fused images in terms 
of precision and recall. Performance of our system is studied 
by using each image in the database as the query image and 
top 30 similar images are retrieved by Euclidean distance 
based exhaustive search. Figure 7 shows the comparison 
between the retrieval performance of our method and 
Curvelet features and Gabor wavelet. 

In our experience, the weight are α1 ൌ 0.8,  α2 ൌ 0.2. 

 

Table 2 : Retrieval accuracy(Rotated database set) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

  Table3: Retrieval accuracy (Non-rotated database set) 

 
Texture 
Name 

Non-rotated database set 

DWT SWD_ 
HMM 

DTC 
WT+ 
DTR 
CWF 

Proposed 
Method 

Bark 100.0 68.86 81.25 91.25 

Brick 56.25 89.62 81.25 89.17 

Bubbles 100.0 65.09 100.0 100 

Grass 68.75 100.0 81.25 99.17 

Leather 93.75 97.16 100.0 100 

Pigskin 93.75 82.20 93.75 95.83 

Raffia 75.00 68.86 100.0 100 

Sand 87.50 88.67 100.0 98.33 

Straw 43.75 87.73 87.50 81.67 

Water 100.0 83.96 93.75 100 

Weave 100.0 97.16 100.0 100 

Wood 100.0 93.39 100.0 77.92 

Wool 100.0 99.00 93.75 90.83 

AVG 83.17% 86.41% 93.71% 94.16% 

 

 

 
 

Fig. 6: The Brodatz texture data set from the USC-SIPI Images 
Database [28]. 

 

Texture 
Name 

Rotated database set 

DWT SWD_ 
HMM 

DTC 
WT+ 
DTRC 

WF 

Proposed  
Method 

Bark 93.75 88.67 100.0 92.91 

Brick 56.25 75.47 81.25 88.43 

Bubbles 75.00 65.00 87.50 99.37 

Grass 100.0 100.0 100.0 98.54 

Leather 75.00 100.0 87.50 99.06 

Pigskin 75.00 87.73 93.75 88.75 

Raffia 87.50 76.88 100.0 100 

Sand 100.0 85.84 100.0 96.97 

Straw 62.50 98.00 68.75 85.52 

Water 100.0 84.90 100.0 99.89 

Weave 100.0 99.00 100.0 100 

Wood 56.25 89.62 68.75 96.25 

Wool 87.50 80.00 93.75 82.81 

AVG 82.21% 86.77% 90. 86% 94.50% 
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Fig.7: Average retrieval result of 832 queries (α1 ൌ 0.8, α2 ൌ
0.2) 

4. Conclusions 

In this paper we used the FABEMD, to obtain 
characteristic signatures of images, in the context of CBIR. 
It consists to split image into two components. On the first 
component, we apply the Curvelet transform while on the 
second component; we apply the Gabor filters and then 
compute the low order statistic from the transformed 
images. The extracted image features were then used to 
measure the similarity between images. To check the 
retrieval performance, texture database of 832 textures was 
created from Brodatz album. Our approach was evaluated 
and the result indicates that the proposed decomposition 
lead a strong potential towards the improvement of the 
performance. 
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