
Towards the Formal Specification and Verification of
Multi-agent Based Systems

Boucherit Ammar and Khebaba Abdallah

Computer Science Department, Ferhat Abbas University
Setif, Algeria

Abstract
This article is directed primarily at the problem of developing a
more reliable multi-agent based systems, because the paradigm of
multi-agent systems, which offers an original way of modeling, is
considered as an appropriate method that faces the problem of
modeling, and it is present in the most of sectors:
telecommunications, finance, Internet, energy, health, embedded
systems ... etc. Therefore, it is crucial to have rigorous, automatic
and effective design and checking methods to ensure their
development.
The main objective of this paper is to present and discuss a new
approach for the formal specification and verification of agent
based modeling system. In addition, our approach is based on
rewriting logic, includes a well-known and effective verification
technique, model checking, and allows independent of the used
formalism to verify a large set of interesting properties deemed
relevant on multi-agent based system.
Keywords: Specification, Verification, Rewriting Logic, Agent-
Based Modeling, Model-Checking.

1. Introduction

Firstly, the paradigm of multi-agent systems [1, 2], which
offers an original way of modeling, is considered as an
appropriate method for computer systems. Therefore,
multi-agent based modeling method is present in the most
of sectors: telecommunications, finance, Internet, energy,
health, embedded systems ... etc. In other words, agent-
based Modeling is one of the techniques that can be used
to model any kind of systems. What distinguishes this
approach from others is that it facilitates a m ore direct
correspondence between the entities in the target system
and the parts of the model that represent them (i.e. the
agents) [3]. For example, in a production factory, the
behavior of a co mplex machine that has own internal
situations, its own rhythm, different reactions in different
situations, can be effectively modeled by an agent that can
be integrated with the model production chain.

Secondly, even if multi-agent based modeling approach
has the potential and the capability to model different
systems [4]; these potentialities should not hide the

difficulties associated with them in the design. These
difficulties may discredit the field of agent based modeling
as a whole and affects their relevance, and their scientific
credibility. Moreover, at this time there is no evidence of a
well-established engineering approach for building
multi-agent based applications.

Thirdly, it becomes crucial to have rigorous methods of
formal specification and verification to ensure the safe
development of agent based systems, which may be critical
systems, and not risk erroneous attribution to this type of
system, some properties such as security, integrity and
robustness. In other words, the need for rational
methodologies and tools of assistance to the design of
these systems remains major. This assistance should not be
limited to the run phase, but it must cover all the process of
their development. The use of the formal methods can
provide a help very useful for the analysis and the
specification of the multi-agents system thanks to the rigor
of their methodologies. Moreover, they allow an easier
passage to the implementation and facilitate the difficult
phases of checking and tests.

The main objective of this work is to contribute first to the
establishment of a unifying framework for all the
specification models of MAS. The second contribution is
to prove some interesting properties for MAS who can be
of two types: intrinsic with the systems for example, the
communication and co-operation or related to the
formalism used for specification.

In order to present our approach, we start by introducing
the useful theoretical concepts and difficulties related to
multi-agents systems. Then, we specify the studied
multi-agents system in the general context of the rewriting
logic through its practical environment MAUDE. Finally, a
large set of interesting properties of multi-agents systems
will be verifyied by using MAUDE's LTL model-checker
and Search tool. In fact, this approach is the extension of
our previous work [5, 6], in which we have not used the
Search tool that enlarge the set of properties can be
verified in the studied system.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 200

2. Preliminaries

In this section, we present the scientific context and
formalisms to be used in our approach for the formal
specification and verification of multi-agent based systems.

2.1 Agent and Multi-Agent Systems

The increasing complexity of the industrial systems and the
delocalization of the processing call more and more upon
the use of new techniques where the processing can be
decentralized. Therefore, this situation imposes the need
for using entities able to solve problems, and also equipped
with capacities of communication and social reasoning,
i.e., they are able to reason the ones on the others. These
entities are known with the name of Agent. Where an agent
is an encapsulated computer system that is situated in some
environment and that is capable of flexible, autonomous
action in that environment in order to meet its design
objectives [7], and the set of these agents, with these
various capacities constitute a Multi-Agents System (MAS).

Various definitions have been proposed for the term
multi-agent system and according to [1], "Multi-agent
systems are a n ew paradigm for understanding and
building distributed systems, where it is assumed that the
computational components are autonomous: able to control
their own behavior in the furtherance of their own goals".

The most important reason to use agent paradigm when
designing a system, is that agent has the potential to
enhance the transparency, reliability and rigor of the
modeling process, and because some domains require the
competence of a set of agents in order to solve problems,
which are difficult or impossible for an individual agent.
In other words, the agent-based approach is more akin to
reality than other modeling approaches, and in many cases,
agent-based modeling is a natural method for describing
and simulating a system composed of real-world entities in
very realistic ways [53]. The main characteristic of an
agent is its autonomy, which provides the capacity of
action within the environment in order to achieve its goals.
This characteristic gives the agent the aptitude to model
complex and real time systems in a distributed way, using a
behavior generation approach where different control
locations are available. In addition, agent based model has
the ability to design heterogeneous and complex system,
where agent can represent any type of unit, from which the
system can be formed.

Finally, the potentiality of multi-agent system as an
original way of modeling should not hide the difficulties
associated with them in design and verification. We can
summarise the inherent difficulties in three points:

1. The lack of mature of well-established engineering
approaches for building MAS-based applications.

2. The agent-based modeling has generated lots of
excitement and the absence of proof for general
properties of a model leads to problems that may
affect multi-agent systems [8].

3. It would be practically impossible to develop
universal MAS Library; design generic and secure
models especially for safety critical systems.

Therefore, it is important to ask about the validation, and
search for rigorous, automated and efficient methods of
design and verification for agent-based systems. The
disposition of such methods will help the designer to
develop, validate and ensure the reliability of multi-agent
based system before its implementation.

2.2 Rewriting Logic and MAUDE System

Rewriting logic is a computational logic proposed by
Meseguer [9] as a n atural model of computation and an
expressive semantic framework for concurrency,
parallelism, communication and interaction, which builds
upon equational logic by extending it with rewrite rules to
adapt it to changes [10], and specification of concurrent
systems. Rewriting logic can be used for specifying a wide
range of systems and languages in various application
fields. It also has good properties as a m etalogical
framework for representing logics.
In rewriting logic each concurrent system from simple to
more complex models can be specified easily by the use of,
a rewrite theory T = (Σ, E, L, R). Its static structure is
described by the signature (Σ, E), whereas its dynamic
structure is described by the rewriting rules R.
In other words, a rewrite logic theory consists of a set of
uninterpreted operations constrained equationally, together
with a set of rewrite rules meant to define the concurrent
evolution of the defined system. The distinction between
equations and rewrite rules is only semantic.

A rewrite theory is a 4-tuple T = (Σ, E, L, R), with:

• (Σ,E): an equational theory with function symbols Σ
and Σ-equations E;

• L set of labels; and

• R: a set of labeled rewrite rules of the general form :
t → t' if C, where t and t' are algebric terms describes
a particular structure for the states of a system. The
rewrite rules describe which elementary local
transitions are possible in the distributed state by
concurrent local transformations if a condition C is
verified [11].

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 201

For any term t in the rewrite theory T, we write [t] for its
equivalence class, and we say that [t] → [t'] is provable in
T when it is obtained by a finite application of the
following rules:

Deduction Rules of the Rewriting Logic

Several languages based on rewriting logic were created,
the most known are: CAFEOBJ (Japan), ELAN (France)
and MAUDE (SRI, United States). MAUDE [12] is a
high-level language and a high-performance system
supporting executable specification and declarative
programming. MAUDE is based on rewriting logic where
several dynamic and concurrent applications can now be
considered. The rewrite theory can describe the system as a
configuration of objects declaratively with a high degree of
abstraction. MAUDE has been used for specification,
prototyping and testing of a wide range of applications,
because it h as a collection of formal tools supporting
different forms of verification such as:
♦ The MAUDE Termination Tool : can be used to

prove termination of functional Modules;
♦ The MAUDE Church-Rosser Checker : can be used

to check the Church-Rosser property of
unconditional functional modules;

♦ An inductive Theorem Prover : to verify properties
(theorems), which are defined in functional
modules;

♦ The MAUDE Coherence Checker : can be used to
check the coherence (or ground coherence) of
unconditional system modules; and

♦ The MAUDE Sufficient Completeness Checker:
can be used to check that defined functions have
been fully defined in terms of constructors.

To clarify the theoretical notions of the rewriting logic and
its expressivity, we give the following example:

Example:
Our example consists to express in rewriting logic, the
system modeling a vending machine, which is used to buy
cakes and apples; the cake costs a d ollar and the apple
three quarters. Due to an unfortunate design, the machine
only accepts dollars, and it returns a quarter when the user
buys an apple; to alleviate in part this problem, the user
machine can change four quarters into a dollar.
We can represent graphically such a machine as a
Petri net as follows.

Fig. 1 Vending-Machine Petri net

The static aspect of this system is defined by the vended
products (a, c) and the accepted type of money ($, q).
The machine can perform the following actions:

1- to sell a cake (vend-c),
2- to sell an apple (vend-a) or
3- to change four quarters into one $ (changes).

Therefore, the state of the machine can be defined by a
pair (Z, T) where Z represents the available money in the
machine and T defines the product(s) has been sold by this
machine. This state can be evolved by executing the
possible action. By using MAUDE language syntax, we
can write the corresponding module to our example easily:

mod Vending-Machine is
sorts product money stats .
ops apple cake I : -> product .
op __ : product product -> product [assoc comm id: I] .
ops $ q 0 : -> money .
op __ : money money -> money [assoc comm id: 0] .
op <_,_> : money product -> stats .
op __ : stats stats -> stats [assoc comm] .
var M : money .
var X : product .
rl [vend-c] : < M $, X > => < M, cake X > .
rl [vend-a] : < M $, X > => < M q, apple X > .
rl [change] : < M q q q q, X > => < M $, X > .
endm

1. Reflexivity: for each term [t] ∈ TΣ,E(X),

 [t] → [t']

2. Congruence: for each operator f ∈ Σn , n ∈ N

[t1] → [t'1] … [tn] → [t'n]

[f(t1, …, tn)] → [f(t'1, …, t'n)]

3. Replacement: for each rewriting rules:

 r : [t(x)] → [t'(x)] if

 [u1(x)] → [v1(x)] ∧ ... ∧ [uk(x)]→[vk(x)] in R,

 with x abbreviating x1, ... , xn
[w1] → [w'1] ... [wn] → [w'n]

[u1(xw /)] → [v1(xw /)] ... [uk(xw /)] → [vk(xw /)]

[t(xw /)] → [t'(xw /')]

 with xw / indicate the substitutions of xi by wi 1≤ i ≤ n.
 4. Transitivity :

[t1] → [t2] [t2] → [t3]
[t1] → [t3]

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 202

2.3 Model-Checking and MAUDE's LTL Module

Formal methods are rigorous techniques based on
mathematical notation that can be used to specify and
verify software models. A model is defined as a formal
representation of the real world [13]. Its purpose is to
provide a p icture or an abstract representation of a r eal
phenomenon. Model checking is a formal verification
technique [14] [15] [16], that determines whether given
properties ϕ of a system are satisfied by a model M. We
write this as a judgment M = ϕ and say a model checker
verifies or refutes such judgments, based on a partial or
exhaustive exploration of the state space of the model. The
main objective of this technique is to ensure that none of
all these states is inconsistent with the desired behavior.

The software tool validating a model and solving the
model-checking problem is called model checker.
A model-checker typically as presented in the following
figure (Fig. 2) supports two different levels of
specification:

1) System specification level, in which the concurrent
system to be analyzed is formalized; and

2) Property specification level, in which the properties
to be model checked -for example, temporal logic
formulae- are specified

The model-checker takes these two specifications as
inputs, and outputs either a claim that the property is true
or a co unter example reporting the inconsistency. A
counterexample is an execution trace of the state machine
showing how the predicate is false.

Fig.2 Model-Checking Technique

The MAUDE's LTL model-checker is a v ery powerful
model-checker. It was designed with the goal to combine a
very expressive and general system specification language
(Maude) with an advanced on-the-fly explicit-state LTL
model-checking engine. Indeed, to verify such a property,
the MAUDE's LTL model-checker takes as inputs the
following modules:

1. Rewrite theory specified by a Maude system module
M-SYSTEM, which describes the behavior of the
system;

2. PROP-M module, which contains the set of
predicates expressed in standard LTL propositional

logic as the defined syntax in the module
SATISFACTION; and

3. The initial state, from which the model checker starts
checking, is specified in module M-CHECK.

Next, we have to load the module M-CHECK, in order to
check the property formula expressed in linear temporal
logic (LTL) with the MAUDE's LTL model-checker.
The main modules used by the Maude's LTL model-
checker are presented in the following figure (Fig. 3).

Fig.3 Principal Modules of Maude's LTL Model-Checker

The MAUDE's LTL model-checker modules have well
defined roles as follow:
• MODEL-CHECKER: This is the main module in the

verification process.
• LTL: This functional module formalizes the syntactic

and semantic definitions of linear temporal logic.
• LTL SIMPLIFIER: It tries to further simplify the

negative normal form of the formula ¬ϕ : in the hope
of generating a smaller Büchi automaton B¬ϕ.

• SAT-SOLVAR: It can be used to check both
satisfiability of an LTL formula and LTL tautologies.

• SATISFACTION: A very simple module defines the
standard LTL propositional logic used to express the
set of predicates.

3. Multi-Agent Based Systems Formalization

Formalization is the process to transform a less-formal
system or model into a more-formal one. In this section,
we need to present as possible all related points to this area
of research in order to take a good idea about its different
varieties, and to reveal clearly where the lack is situated.

3.1 Multi-Agent Systems Formalisms

Various formalisms were used to formally describe
distributed systems based on agents. These attempts made
it possible to associate a f ormal semantics the modeled

Protecting
Including

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 203

systems and to have a clear expression of their properties,
as well as a co herent and transparent vision of what the
made system do or does not do. Nevertheless, the
complexity of the multi-agents systems and their dynamics
make their formal checking too difficult.
As what we have noted above, we can find in the literature
several attempts for the formal specification of multi-agent
systems, which tend to describe an agent in mathematical
terms, and those based on Petri nets, finite state automata,
X-machine such as :[17, 18, 19, 20, 21, 22, 23, 24], … etc.
In our opinion, the formalisms used for the formalization
of multi-agents system can be classified into five principal
families:

 • Petri Net: is one of the powerful formalisms for the
description and analysis of concurrent processes, which
arise in systems with many components (distributed
systems). Since execution of Petri net is non-
deterministic when multiple transitions are enabled at the
same time. Petri net are well suited for modeling the
concurrent behavior of distributed systems. In the context
of the development of multi-agent systems, we can find the
Petri net formalism and all its extensions [25] [26] [27],
which are generally used to describe the internal and
external behavior of agent and multi-agent system. Unlike
other formalism such as UML, Petri net have an exact
mathematical definition of their execution semantics, with
a well-developed mathematical theory for process analysis.

 • Logics: In this family of formalism, we can easily find
three big kinds. "Temporal logic" is a s pecial area in
the study of logic. It concentrates on studying,
representing, and reasoning about system activities (states)
with the use of a time line. The "specification logic" is a
temporal logic augmented with a knowledge operator. It is
used to specify computation. While these logics tend to
give an abstract, timed and structural specification of the
multi-agent system, "Logic of BDI" divides the mental
state of an agent into Beliefs, Desires, and Intentions.

 • UML and Languages: The main used language in this
family is UML, which unify the design principles of a
collection of object-oriented methodologies into a single,
standard, language that can be easily applied across the
board for all object-oriented systems. Some extension of
UML such as AML and AUML, which are designed to
capture the aspects of multi-agent systems. We can find in
the literature other languages such as CASL, which allows
the specifier to view agent as entity of mental states, and
enables to define from them its behavior [28, 34].

 • Formal Approaches: The fourth family is reserved for
the formal approaches for agent verification and modeling.
The purpose of these approaches is to provide a powerful
tool for academics and practitioners to design, analyze, test
and validate the multi-agent system especially for the case

of non-tolerant system. While some of these approaches
consider the MAS as a whole, the others focus on agents
and their interactions as a central topic. Generally, all the
approaches that we have explored give firstly the formal
description of roles, relations and interactions to achieve
certain coordination in the multi-agent system, in order to
ensure some conditions and properties.

 • Other Approaches: Other attempts and approaches
were used for agent-oriented analysis and design. We note
the Gaia methodology as an example, which is both
general, in that it is applicable to a wide range of multi-
agent systems, and comprehensive, in that it d eals with
both the macro-level (societal) and the micro-level (agent)
aspects of systems. GAIA is founded on the view of a
multi-agent system as a computational organization
consisting of various interacting roles.

The following figure (Fig.4) presents non-exhaustive list
for the attempts were found in the literature for the
formalization of multi-agent systems and the used
formalisms.

Fig 4. Most Used Formalisms for the Formalization of MAS

In the next subsections, we will present the works that we
are seeing significant in the field of specification of
multi-agent systems.

3.2 Formal Specification

The process of development of the information processing
systems includes a whole of phases such as specification,
design, validation and tests. We generally start from an
abstract description of the system, using the natural
language and the passage to the design phase is intuitive.
Nevertheless, when the reliability of the system is too
important, it becomes necessary to start from a formal
specification, which describes the system behavior by
means of a formal language. Many works exist in literature
using different formalisms such as Petri nets, Logics,

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 204

Languages, UML. In general, we can distinguish two major
kinds of approaches: [31, 32, 37, 47]:

 Behavioral Approach

The first approach consists in specifying a system by
giving a description whose semantics is founded on
transition system (operational semantics). This approach
makes it possible to describe the behavior of a system like
the composition of elementary behaviors. Petri nets,
graphs of states, algebras of process and the languages
such as ESTELLE, LOTOS or SDL [47, 49].

 Logical Approach

The second approach is generally based on the use of a
language making it possible to express the whole of the
system properties. In this case, the used language is of
declarative type and the system specification will be
expressed by a whole of properties using logic formulas.
Temporal logics are examples of languages used by this
approach for the expression of properties [50, 51, 52].

3.3 Formal Verification

According to the formalism used to represent the system
specification, we distinguish two verification approaches:
the behavioral and the logic verification. In the first
approach, labeled transition systems is the most widely
used formalism for the specification, and the verification
process of a s ystem property reduces to compare two
labeled transition systems S and P. While the second
approach, which is generally based on temporal logic to
express all the system properties, the decision about the
satisfaction of a property formula will be based on model-
checking algorithms [5, 46, 48]. The advantage of formal
techniques is that they allow drawing more conclusions
from specifications in an automated way. In addition, they
allow proving complex properties of the system and the
domain, or the execution and animation of specifications to
provide a semi-automatic correction method of incorrect
specifications.

3.4 Synthesis

First, in our opinion, the two specification approaches are
complementary, and their combination can be very
interesting:

a) The main purpose of the specification is to provide a
complete description of the system. This specification
must sometimes be described in two different point of
views to cover the static (structural) and dynamic
(behavior) of the system. Static view provides an
overview of the system that is structural while the
dynamic view shows the behaviors, interactions and
evolution of the system.

b) It is possible to establish (make) another
classification with other criterions, for example: a
classification based on aspects or kind of properties
to be checked (functional and non-functional) of the
system. In addition, it is possible that two formalisms
that do n ot belong to the same approach in the
mentioned classification can be found together in
other approaches if we change the classification
criterions.

c) The same formalism can be used to model the two
aspects of the same system, taking the example of
UML static diagrams and dynamic diagrams.
Therefore, the same formalism may belong to two
different approaches.

Then, formal verification approaches are too important,
especially for systems, which are situated in safety critical
environments. Thus, it make possible to prove desirable
features as well as the absence of unwanted properties for
the modeled systems. In addition, the combined analysis of
static and dynamic aspects of the studied systems is also
necessary for detecting their hot spots.

Finally, the need for rational methodologies and tools of
assistance to ensure the design of multi-agent systems
remains major because of their different use in practice.
This assistance should not be limited to the run phase, but
it must cover all the process of their development. The use
of the formal methods can provide a help very useful for
the specification and the analysis of the multi-agents
system thanks to their mathematical rigor.

4. Formal Specification and Verification
Approach for Multi-Agent Based Systems

Sometimes we need to test our system to understand how it
works, especially when it depends to human life or critical
environment system. In such cases, we turn away from the
real world to the virtual world of modeling, and experience
in a risk-free environment with the proposed model of the
system, to find the real solution.

Fig 5. Agent Based Modeling Approach

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 205

In this section, we propose a general view of our approach
for the formal development of agent based systems.

4.1 Global Description

We illustrate by the following figure Fig.6 the steps of the
proposed approach.

Fig.6. Global Description of the Formal Development Approach

In our approach, which is based on the use of formal and
automatic techniques, we start after analyzing system from
an agent based model. Then, we transform this model into
a specification written in rewriting logic, and we write the
specification of the expected properties of the system.
Finally, we use the MAUDE's LTL Model-Checker to
determine whether the system model satisfies the
properties in all its possible executions.

Generally, the steps of specification and verification are
essential in designing systems, to avoid any type of error
and validate systems before their implementations.
Therefore, in the case of agent based modeling may be
used in safety-critical cases, the proposed method must be
funded on formal specification and verification and it must
cover all the process of development, in order to prove the
safety of models intended to represent the relevant
functions of the studied system.

4.2 Steps of the Proposed Approach

Our approach consists of three phases:

 Modeling
The goal of this phase is to create the first complete
version of model for each important property in the
system. For that, if the system is truly dynamic or
complex, which means that its status changes over time, as
it can not be represented by analytical calculations using

formulas. The only way left to explore the behavior of the
system is to use the agent based modeling.
The first thing to do in this phase is to transform the real
system into multi-agent system. Once the relevant agents
are identified, the real system can be modeled with
different points of view (static or dynamic). Then,
according to the property or aspect to be verified, the
multi-agent system must be formalized using for each
property one of the most relevant formalisms such as
UML, Petri nets, labeled transition systems … etc.
In addition, it is judicious to consider several models of the
same system, in order to profit from the advantages of each
one of them and to check a significant number of its
properties [54, 55]. This step can be repeated several times
until all the interesting actions in the system are well
represented. At the end of this phase, a m odel of high
quality for each property to be checked is created.

 Specification
The following figure Fig.7, present the detailed modeling
and specification phases.

Fig.7 Detailed Modeling and specification phases

In this phase, we have two specification levels:

1. System Specification: The main objective of this
specification level is to transcribe (or to give the full
description of) the created models in the previous
phase, and to express all its expected features in
rewriting logic. In other words, the model in this case
is transcribed into a set of rewriting rules specifying
how to achieve the future state of the system from the
current state. Following the nature of the studied
system and property to be checked, this combination
of rules can be either differential equations, state
diagrams (state charts), process diagrams, etc.
This stage ends with a description of each model in

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 206

rewriting logic, which is logic of change and a
unifying semantic framework.

2. Properties Specification: If the aim of system
specification level, is to give a m ore or less abstract
description of the system. A system can be formally
defined by its properties. In this step, we refer to the
created model and its specification to prepare a
module that defines the set of predicates expressed in
standard LTL propositional logic. These predicates
will be considered by the MAUDE's model-checker
tool as the set of verified properties in the system.
Then, the set of properties to be checked must be also
expressed by using linear temporal logic.

 Verification
Finally, the verification step is necessary to show that the
system satisfies the desired property and that it exhibits a
stable behavior, and/or certify that the probable
malfunctions of the system causes only moderate damages.
Two verification techniques as illustrated in the figure
Fig.8, are applied to perform this step:

- Model-Checking : In this technique, we try to check the
intrinsic properties of a model by expressing it u sing
linear temporal logic. The verification process is
achieved with Maude's LTL model- checker tool.

- Empirical Test : This time, we use the MAUDE's
Search technique. Its use is based on situations and
empirical cases offered by experts in the field; in order
to ensure the absence of critical situations in the model.
The use of this technique is intended to accomplish the
lack of the first technique, which permit to ensure only
the properties expressed in linear temporal logic.

Fig 8. Description of the Verification Steps

4.3 Discussion and Motivation

Firstly, multi-agent systems paradigm offers an original
way of modeling, and it is considered as an appropriate
method that faces the problem of modeling of complex and
critical systems [56]. Nevertheless, there is still some
controversy about its use, because there is not enough
established methodological practice for incorporating
modeling results into true scientific discourse. (Sec 2.1).

Secondly, we transform all the proposed models for the
system of study into MAUDE specification by using
rewrite theory. Intuitively, the signature (Σ, E) of the
rewrite theory T = (Σ, E, L, R) describes the static
structure of system, and rewrite rules describe the possible
local transitions in the state of the distributed system by
concurrent local transformations (dynamic structure). In
addition, rewriting logic is known as a flexible logic and as
a unifying semantic framework in which other logics and a
very wide range of concurrency models and programming
languages can be represented, such us : P etri Net [57],
Labeled Transition Systems [11], E-LOTOS [58], CCS
[59, 60], PLAN [61], Pi-Calculus [62] … etc.

Thirdly, only formal specification is insufficient to ensure
the run-time stability, reliability and safety of a multi agent
system if it is not followed by verification step. Such
approach for the formal development of multi agent
systems must include or support formal verification tool.
The MAUDE's LTL tool is a very powerful model checker
based on one of the most commonly used approach "on-
the-fly". The big advantage of the on-the-fly approach to
model checking is that, depending on the formula, only a
fragment of the overall state space might need to be
generated and analyzed in order to produce the correct
result (cf. [63][64][65]). Contrary to the classical methods,
their effectiveness has been demonstrated, and they were
used to analyze real systems of significant size. (cf. [66]
[67]). Moreover, Maude has a large collection of formal
tools (see. Sec 2.2) supporting different forms of
verification.

5. Conclusion and Future Work

Agent-based modeling is a very powerful modeling
technique that has seen a number of applications in the last
two decades, including applications to real-world
problems. Therefore, it is becoming increasingly important
to make them accessible to formal verification, especially
for systems, which are situated in safety critical
environments. Thus, it is possible to prove desirable
features as well as the absence of unwanted properties for
the modeled systems.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 207

In this paper, we have explained our approach based on
rewriting logic for the formal specification and verification
of multi agent based systems, including well-known formal
verification technique (model checking) and the technique
of empirical test. Our approach allows to verify a l arge
number of properties of a critical system regardless of the
formalism used for the specification.

The first advantage of this method is that it is applicable
regardless of the type of formalism chosen. In addition, it
has the advantage that it permits to verify several types of
properties: properties that are expressed and those are not
expressible in linear temporal logic. Then, the integration
of verification into the design process can detect an error
once it occurs and avoids redoing all the verification
process by reusing intermediate results.

Our approach still suffers from the problem that it requires
a mastery and competence in the use of the formalism of
rewriting logic. Because the direct description of a model
or the mapping from model to rewriting logic is not always
easy.

Finally, in order to palliate this problem in our approach,
we intend to continue our research on the development of a
framework for the automatic generation of the
specification in rewriting logic; at least from the most used
formalisms.

6. ACKNOWLEDGMENTS

Our thanks are addressed to all member of LIRE
Laboratory for their precious remarks, helps and their
contribution to preparing this work.

References
[1] M. Wooldridge. An Introduction to Multi-Agent Systems -

Second Edition, Published May 2009 by John Wiley &
Sons. ISBN-10: 0470519460.

[2] M. Wooldridge and N. R. Jennings. Intelligent Agents:
Theory and Practice. The Knowledge Engineering Review,
10(2), 1995.

[3] B. Edmonds. The Use of Models - making MABS actually
work. In Moss S and Davidsson P (Eds.) Multi-Agent-
Based Simulation, Lecture Notes in Artificial Intelligence
1979: 15-32. Berlin: Springer-Verlag. 2001.

[4] A. Ligtenberg, R.J.A. Lammeren, A.K. Bregt and J. M.
Beulens, Validation of an agent-based model for spatial
planning: A role-playing approach . Computers,
Environment and Urban Systems, Volume 34, Issue 5,
August 2010

[5] F. Belala, A. Boucherit. Contribution to the Formal
Checking of Multi-Agents Systems. Proceedings of the
IEEE International Conference on C omputer Systems and
Applications, ISBN: 1-4244-0211-5, 2006, pp. 9-16.

[6] F. Belala, A. Boucherit. Towards a V ideoconference
Interface Formalisation, The 4th International Arab
Conference on computer science and Information
Technology, CSIT06, 2006.

[7] N. R. Jennings. On Agent Based Software Engineering.
Artificial Intelligence. Vol. 117, 2000, p. 277-296.

[8] C. Lobry, H. Elmoznino. Combinatorial Properties of Some
Cellular Automata Related to the Mosaic Cycle Concept,
Acta Biotheoretica, Volume 48, Issue 3 - 4, Dec 2000,
pp 219 - 242.

[9] J. Meseguer, Conditional rewriting logic as a unified
model of concurrency. Theoretical Computer Science,
pp 73-155,1992

[10] J. Meseguer, Conditional rewriting logic as a unified
model of concurrency, technical report SRI CSL 91,
1991

[11] J. Meseguer, Conditional rewriting logic as a unified model
of concurrency. Theoretical Computer Science, 1992,
pp 73–155.

[12] M. Clavel. Strategies and User Interfaces in Maude at Work.
WRS 2003, 3rd International Workshop on R eduction
Strategies in Rewriting and Programming - Final
Proceedings. Volume 86, Issue 4, December 2003,
pp 570-592.

[13] A. Pavé, Modélisation en biologie et en écologie, 560 p.
ALEAS Ed, Lyon, 1994

[14] M. Vardi and P. Wolper, An automata-theoretic approach to
automatic program verification. In Proceedings of the 1st
IEEE Symp. Logic in Computer Science (LICS'86),
Cambridge, MA, USA, pp 332-344, June (1986)

[15] O. Lichtenstein and A. Pnueli, Checking that finite state
concurrent programs satisfy their linear specification. In
Proceedings of the 12th ACM Symp. Principles of
Programming Languages (POPL'85), New Orleans, LA,
USA, pp 97-107 (1985)

[16] E. M. Clarke, E. A. Emerson and A. P. Sistla, Automatic
verification of finite-state concurrent systems using
temporal logic specifications. In ACM Transactions on
Programming Languages and Systems, volume 8, pp 244-
263, April 1986

[17] P. R. Cohen and H. J. Levesque. Intention is choice with
commitment. Artificial Intelligence, AI, 42(2-3):213-261,
March 1990.

[18] Woolridge M. Temporal belief logics for modeling artificial
intelligence systems. Foundations of distributed artificial
intelligence. Wiley-Interscience, 1996.

[19] A. Haddadi. Communication and Cooperation in Agent
Systems. Lecture Notes in Artificial Intelligence, 1996.

[20] M. Benerecetti, F. Giunchiglia, and L. Serafini. Model
checking multiagent systems. Journal of Logic and
Computation, 8(3):401 423, June 1998.

[21] Wooldridge. M. Reasoning about Rational Agents.
Intelligent Robots and Autonomous Agents. The MIT Press,
Cambridge, Massachusetts, 2000.

[22] A. Lomuscio and M. Sergot. On multi-agent systems
specification via deontic logic. In J.-J Meyer editor,
Proceedings of ATAL 2001. Springer Verlag, July 2001.

[23] A. Lomuscio and M. Sergot. The bit transmission problem
revisited. Technical Report 4/2002, department of
computing, Imperial College, London SW7 2BZ, UK, 2002.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 208

[24] W. van der Hoek and M. Wooldridge. Towards a logic of
rational agency. Logic Journal of the IGPL, 11(2):133-157,
March 2003.

[25] H. Xu and S. M. Shatz, “An Agent-Based Petri Net Model
with Application to Seller/Buyer Design in Electronic
Commerce,” Proceedings of the IEEE 5th International
Symposium on Autonomous Decentralized Systems
(ISADS), Dallas, Texas, March 2001, pp. 11-18.

[26] D. Moldt and F. Wienberg, Multi-agent systems based on
coloured Petri nets, in Application and Theory of Petri Nets
1997, eds. P. Azema and G. Balbo (Springer, Berlin, 1997)
pp. 82-101.

[27] Aihua Ren, Hui Jiao, Yunfeng Sun: Modeling Mobile Agent
with Object-Oriented Petri Net. ACTA AERONAUTICA
ET ASTRONAUTICA SINICA. Vol.24 No.1 (Sum No.182)
(2003), pp. 57-61.

[28] D.S. Dillon, T.S. Dillon, and E. Chang, “Using UML 2.1 to
model. Multi- Agent Systems”, Proceedings of the 6th IFIP
Workshop on. Software Technologies for Future Embedded
and Ubiquitous Systems,. Italy, 2008.

[29] R. Cervenka, I. Trencanský, M. Calisti: Modeling Social
Aspects of Multi-Agent Systems: The AML Approach.
AOSE 2005. pp. 28-39.

[30] I. Trencansky and R. Cervenka, Agent Modeling Language
(AML): A comprehensive approach to modeling MAS,
Informatica 29(4) 2005 391-400.

[31] B. Bauer, J. P. Muller, J. Odell. Agent UML: A Formalism
for Specifying Multiagent Interaction. Agent-Oriented
Software Engineering, Paolo Ciancarini and Michael
Wooldridge eds., Springer, Berlin, pp. 91-103, 2001.

[32] L. Kahloul, K. Barkaoui, Z. Sahnoun, Using AUML to
derive formal modeling agents interactions, aiccsa, pp.109-
vii, ACS/IEEE 2005 International Conference on Computer
Systems and Applications (AICCSA'05), 2005.

[33] Finin, T., Labrou, Y.: KQML as an agent communication
language. In J.M. Bradshaw (ed.), Software Agents, MIT
Press, Cambridge, MA, (1997), 291-316.

[34] S. Shapiro, Y. Lespérance, an d H.J. Levesque. The
cognitive agents specification language and verification
environment for multiagent systems, in Proc. AAMAS,
2002, pp.19-26.

[35] H. Lin and C. Yang, C. Spécification de systèmes multi-
agent dans le langage Gamma. Proceedings of the IEEE
19th Annual Canadian Conference on E lectrical and
Computer Engineering (CCECE05). Ottawa, Ontario,
Canada. Du 7 a u 10 mai 2006. Numéro de publication du
CNRC : NRC 48476.

[36] M. Martelli, V. Mascardi, Floriano Zini. Specification and
Simulation of Multi-Agent Systems in CaseLP. APPIA-
GULP-PRODE'1999. pp.13-28.

[37] H. Zhu, SLABS: A Formal Specification Language for
Agent-Based Systems, International Journal of Software
Engineering and Knowledge Engineering, Vol. 11. No. 5,
pp. 529-558.

[38] M. Wooldridge. Temporal belief logics for modeling
artificial intelligence systems. Foundations of distributed
artificial intelligence. Wiley-Interscience, 1996.

[39] M. Fisher, 1996. An introduction to executable temporal
logics. Knowledge Engineering Review, 11(1). pp. 43–56.

[40] D. Kinny, M. Georgeff, and A. Rao, “A Methodology and
Modeling Technique for Systems of BDI Agents,” Tech.
Rep. 58, Australian Artificial Intelligence Institute,
Melbourne, Australia, Jan. 1996.

[41] M. Wooldridge, “A logic for BDI planning agents” In
Pierre-Yves Schobbens, editor, Working Notes of 2nd
ModelAge Workshop: Formal Models of Agents, Sesimbra,
Portugal 1996.

[42] A. Lomuscio, M. J. Sergot: On Multi-agent Systems
Specification via Deontic Logic. ATAL 2001. International
workshop No8, Seattle WA , ETATS-UNIS , vol. 2333,
pp. 86-99, 2002.

[43] F. Mokhati, M. Badri, L. Badri: A Formal Framework
Supporting the Specification of the Interactions between
Agents. Informatica (Slovenia) 31(3). pp. 337-350. 2007.

[44] B. Chen, S. Sadaoui. A Generic Formal Framework for
Multi-agent Interaction Protocols. Technical Report TR
2004-05 ISBN 0-7731-0483-6 Department of Computer
Science, University of Regina, Regina SK, Canada, 2004.

[45] M. Wooldridge, N. Jennings and D. Kinny, The GAIA
Methodology for agent-oriented analysis and design,
Autonomous Agents and Multi-Agent Systems 3(3) (2000)
285-312.

[46] A. Mohammed, U. Furbach. Multi-agent Systems: Modeling
and verification Using Hybrid Automata. In Lars Braubach,
Jean-Pierre Briot, and John Thangarajah, editors, Revised
and Invited Papers of the post-proceedings of 7th
International Workshop on P rogramming Multi-Agent
Systems (ProMAS2009), LNAI 5919, pages 49-66,
Springer.

[47] Projet SPECTRE : Spécification et programmation des
systèmes communicants et temps réel. Rapport d’activité
INRIA 1996.

[48] A. Benzakour. Vérification formelle des systèmes parallèles,
Mémoire présenté à l a Faculté des études supérieures de
l'université Laval pour l'obtention du grade de Maître ès
Sciences. 1997.

[49] Duboz R., D. Versmisse, G. Quesnel, A. Muzzy, E. Ramat.
Specification of Dynamic Structure Discret event
Multiagent Systems 2006 Agent-Directed Simulation (ADS
2006). Huntsville, AL, USA, April 2-6 2005.

[50] H. Lin, Designing Multi-Agent Systems from Logic
Specifications: A Case Study, in Vijay Sugumaran (ed.),
Distributed Artificial Intelligence, Agent Technology, and
Collaborative Applications, IGI Global, 2008, pp. 1-27.

[51] V. Mascardi. M. Martelli and L. Sterling. Logic-Based
Specification Languages for Intelligent Software Agents.
Theory and Practice of Logic Programming Journal (TPLP).
Volume 4 Issue 4, July 2004. publisher Cambridge
University Press, pp. 429-494.

[52] A. Lomuscio, M. J. Sergot: On Multi-agent Systems
Specification via Deontic Logic. ATAL 2001. International
workshop No8, Seattle WA , ETATS-UNIS 2002 , vol.
2333, pp. 86-99.

[53] Bonabeau, E. Agent-based modeling: methods and
techniques for simulating human systems. In Proc. National
Academy of Sciences 99(3): 7280-7287. 2001.

[54] P. Bommel. Définition d’un cadre méthodologique pour la
conception de modèles multi-agents adaptée à la gestion des
ressources renouvelables. Thèse de doctorat en informatique

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 209

de l’université de Montpellier II-Sciences et Techniques du
Languedoc. 2009.

[55] Ramat, E. Introduction à la modélisation et à la simulation
à événements discrets. In : Modélisation et simulation multi-
agents pour les Sciences de l'Homme et de la Société,
Amblard F. and Phan D. (eds.), Londres, Hermes-Sciences
& Lavoisier, ISBN : 2-7462-1310-9. 2006.

[56] D. T. Ndumu, H. S. Nwana, Research and development
challenges for agent-based systems. IEE Proc. of Software
Engineering, 144(1), 1997.

[57] M.O. Stehr, J. Meseguer, and Peter C, Olveczky. Rewriting
Logic as a Unifying Framework for Petri Nets. In Unifying
Petri Nets. Lecture Notes in Computer Science (Advances in
Petri Nets), 2001.

[58] A. Verdejo and N. Marti Oliet. Executing E-LOTOS
processes in MAUDE. In H. Ehrig, M. Grosse-Rhode, and
F. Orejas, editors, INT 2000, Integration of Specification
Techniques with Applications in Engineering, Extended
Abstracts, pp 49-53. Technical report 2000/04, Technische
Universitat Berlin, March 2000.

[59] A. Verdejo and N. Marti Oliet, Implementing CCS in
MAUDE. In T. Bolognesi and D. Latella, editors, Formal
Methods For Distributed System Development.
FORTE/PSTV 2000 I FIP TC6 WG6.1 Joint International
Conference on Formal Description Techniques for
Distributed Systems and Communications Protocols
(FORTE XIII) and Protocol Specification, Testing and
Verification (PSTV XX), Pisa, Italy, Kluwer Academic
Publishers, pp 351-366, October 2000.

[60] V. Lopez, J. Alberto, N. Marti Oliet, Executing and
verifying CCS in MAUDE. Technical report, pp 1-47, 99-00

[61] M.O. Stehr and C. Talcott, PLAN in MAUDE: Specifying
an active network programming language. In F. Gadducci
and U. Montanari, editors, Proc. 4th. Intl. Workshop on
Rewriting Logic and its Applications. ENTCS, Elsevier,
2002

[62] P. Thati, S. Koushik, N. Marti Oliet, An Executable
Specification of Asynchronous Pi-Calculus Semantics and
May Testing in MAUDE 2.0. In 4th International Workshop
on Rewriting Logic and its Applications (WRLA'02).

[63] J.-C. Fernandez, C.Jard, T.Jron, C.Viho, Using on-the-fly
verification techniques for the generation of test suites, in
Proceedings of Conference on Computer-Aided Verification
(CAV ’96), LNCS 1102, pp. 348-359, Springer, 1996.

[64] G. Bhat, R. Cleaveland, O. Grumberg, Efficient on-the-fly
Model checking for CTL*, in Prooceedongs of Symposium
on Logics in Computer Science, pp.388-397, IEEE, 1995.

[65] Stirling C, Walker D. Local model checking in the modal μ-
calculus. Theoretical Computer Science, In: Dıaz,. J.,
Orejas, F. (eds.) Proceedings of the International Joint
Conference on Theory and Practice of Software
Development (TAPSOFT 1989), Barcelona, Spain, vol. 354,
pp. 369–383. Springer, Berlin 1989.

[66] Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian
Lund. Formal modeling and analysis of an audio/video
protocol : An industrial case study using UPPAAL. In Proc.
18th IEEE Real-Time Systems Symposium (RTSS'97),
IEEE Computer Society Press, pp 2–13, 1997.

[67] Stavros Tripakis and Sergio Yovine. Verification of the fast
reservation protocol with delayed transmission using the

tool KRONOS. In Proc. 4th IEEE Real-Time Technology
and Applications Symposium (RTAS'98), IEEE Computer
Society Press, pp 165–170, 1998.

Ammar Boucherit is an assistant teaching of computer science at
the Department of Mathematics and C omputer Science of the
University center of El-Oued in Algeria. He holds the Magister
(master's degree) in software engineering from University of Oum
El-Bouaghi. His research focuses on t hree areas: formal design
and verification of computer systems, software architecture and
agent based modeling (ABM).

Abdallah Khababa is currently an as sistant professor at the
university of Ferhat abbas Setif, Algeria. He holds a Ph.D. in
computer science from the University of Ferhat abbas Setif.
His main areas of interest include cognitive science and artificial
intelligence, knowledge representation with ontologies and human-
machine interface and its usability.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 210

