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Abstract 

Question processing is a fundamental step in a question 
answering (QA) application, and its quality impacts the 
performance of QA application. The major challenging issue in 
processing question is how to extract semantic of natural 
language questions (NLQs). A human language is ambiguous. 
Ambiguity may occur at two levels; lexical and syntactic. In this 
paper, we propose a new approach for resolving lexical 
ambiguity problem by integrating context knowledge and 
concepts knowledge of a domain, into shallow natural language 
processing (SNLP) techniques. Concepts knowledge is modeled 
using ontology, while context knowledge is obtained from 
WordNet, and it is determined based on neighborhood words in a 
question. The approach will be applied to a university QA system. 
Keywords: Question Answering (QA), Word Sense 
Disambiguation (WSD), Shallow Natural Language Processing 
(SNLP), WordNet, Context Knowledge, Ontology. 

1. Introduction 

The QA area has attracted computational linguistics 
community in the last two decades. The aim of QA is to 
automatically return an exact answer to a NLQ instead of a 
list of documents. QA is composed of three types of 
processes: question processing, documents processing, and 
answer processing. A NLQ is the primary source through 
which a search process is directed for answers. Therefore, 
a careful and accurate analysis to the question is required. 
Thus, question processing is the most fundamental step in 
a QA application, and its quality impacts the performance 
of the QA application.  
 
QA field is moving from only depending on retrieving and 
matching to understanding and reasoning natural language 
techniques [1]. Retrieving and matching techniques depend 
on a l exical match between words in users' question and 
words in documents. In consequence, many unrelated 
objects will be matched, and related objects will be missed.  
These techniques yet have no practical solutions to some 
question types, such as questions that need to be justified 
[2]. Natural language understanding (NLU) techniques 

may enable users to pose questions in natural language, 
and obtain the required information precisely. Natural 
language understanding is sometimes referred to as an AI-
complete problem because natural language understanding 
requires extensive knowledge about the language and the 
ability to manipulate it [3]. The most challenging issue in 
natural language understanding is language is not free from 
the ambiguity problem. 
 
In general, ambiguity is a pervasive phenomenon in human 
language [4]. In particular, ambiguity is a critical challenge 
in extracting semantic of a NLQ posed to a QA system 
[12]. The ambiguity problem in a natural language can be 
classified into four types; lexical ambiguity, structural 
ambiguity, semantic ambiguity, and pragmatic ambiguity 
[5]. Not all ambiguities can be easily identified and some 
of them require a deep linguistic analysis. In QA, 
ambiguity would cause confusion in interpretation of the 
question, and then affects negatively the accuracy of the 
overall QA performance. In this paper, we focus on lexical 
ambiguity resolution for QA. Lexical ambiguity occurs 
when a word has more than one meaning [3]. For example, 
given a question" How can student deposit money into a 
bank?", human knows that the bank here refers to a 
financial institution. Whereas, given a question "Who is 
seating on the bank of the river?", the bank here refers to 
the sloping land beside the river. But unfortunately, it is  
very difficult for computers to do the same job. Having 
more than one meaning for an individual word would lead 
to matching irrelevant answers and that will decrease the 
accuracy of retrieving the answers [2].  
 
This paper, proposes a n ew approach to overcome the 
lexical ambiguity in the NLQ. All human languages have 
words that have different meanings in different contexts. 
To resolve the problem, we must consider the context in 
which each word and question are posed. Such a process of 
deciding which of their several meanings is intended in a 
given context is known as Word Sense Disambiguation 
(WSD). The proposed new approach integrates context 
knowledge, and concepts knowledge of interesting domain, 
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into shallow natural language processing (SNLP). 
Concepts knowledge is modeled using ontology, while 
context knowledge has been obtained from WordNet. 
Context knowledge is determined based on neighborhood 
words in a question. 

2. Research Background 

The most relevant research areas of the proposed approach 
are QA, natural language processing (NLP), word sense 
disambiguation (WSD), and ontology. An overview of 
each area and its related work is presented in the following 
subsections. 

2.1 Question Answering (QA) 

Question Answering (QA) is a task that combines 
techniques of information retrieval (IR), template matching, 
information extraction (IE), and NLP. QA aims to return 
an exact answer to a natural language question instead of a 
list of documents. QA system is made up of three modules: 
processing question processing, documents processing, and 
answer processing, see Fig 1. In a QA system, answers are 
normally stored in either structured databases, semi-
structured databases or unstructured databases. NLQs are 
classified into 2 f orms [15]; factoid or complex. Factoid 
questions require simple facts can be found in short text 
strings, for example, "Where is Microsoft Company 
located?". Complex questions require first to identify its 
context, for example, "How can student deposit money into 
a bank?".  Complex questions cannot be answered using 
the same techniques that apply to factoid questions. QA 
systems have been evaluated and tracked in several 
academic workshops such as TREC [42], CLEF [43], and 
NTCIR [44]. Most of the research work conducted in QA 
focuses on answering factoid questions [16], [30], and [31]. 
Answering factoid questions is a simple process that 
including classification and matching the words in 
questions with same words in retrieved texts. Whereas, 
complex questions is a co mplex process that involves 
detecting relations among words based on the contextual 
knowledge [32], [33], and [38]. The need for effective 
techniques can handle complex questions made QA 
community to move towards many other new fields (e.g. 
NLP, knowledge representation (KR), and linguistic). QA 
systems are classified into two types; closed and open 
domain. Closed domain systems deal with questions under 
particular domain [45]. Open domain systems deal with 
questions about every thing [46]. 
 
 

Question 
Procesing

Document 
Processing Answer 

processing

Question

Retrieving 

 

Fig. 1  A basic architecture of a QA system. 

2.2 Natural Language Processing (NLP) 

NLP is a computerized approach concerns with the 
interaction between computers and human language. The 
major purpose of NLP is to achieve a human-like language 
processing that enable computers to understand and a 
generate language used by humans. Research in NLP has 
been going since the early 1950s. Machine translation 
(MT) was the first computer-based application related to 
natural language. Much research work in NLP have been 
introduced lately [10], [51], [11], [13], and [14]. However, 
the goal of NLP is still far from being success [12]. Natural 
language understanding (NLU) is considered as a subset of 
NLP. NLU is a system that computes the syntactic and 
semantic representation of a s entence [17]. Enabling 
computers to understand the human language is the dream 
of AI community, therefore several research work 
attempted to provide those machines with the ability of 
understanding human natural language [39], [47], and [40].  
 
In NLU there are two important components: syntactic and 
semantic analysis [18]. Syntactic analysis is a p rocess of 
assigning a syntactic structure or a p arse tree, to a g iven 
natural language sentence. Semantic analysis is a process 
of translating a s yntactic structure of a s entence into a 
semantic representation that is precise and unambiguous 
representation of the meaning expressed by the sentence. A 
semantic representation allows a s ystem to perform an 
appropriate task in its application domain. Current NLP 
researches in QA field follow two approaches in 
processing natural questions. Firstly, shallow NLP (SNLP) 
which concerned with a partial parsing, and do not highly 
consider the linguistic analyses like in [1], [19], and [41]. 
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The SNLP is performed by several techniques like 
chunking, keywords matching, pattern matching, and 
classifying questions and answer types. According to the 
reference [48], SNLP is processed through several steps: 
tokenization, part-of-speech tagging (POS), chunking, and 
shallow paring. Secondly, deep NLP (DNLP) which focus 
on semantic and contextual processes in the case of 
analyzing a natural language sentence such as [20], [21], 
and [22]. DNLP may involve full syntactic parsing, 
relation detection, and logical inference. The major 
distinction between the two methods is varying in a degree 
of considering the semantic issue, and dealing with 
knowledge of a language, and ways the knowledge is 
acquired and represented [23]. Although, SNLP approach 
is considered faster than DNLP, it is not successful to the 
desired extent. In the same time, a mature and deep 
syntactic and semantic analysis has no yet performed in 
QA field [24]. Both SNLP and DNLP employ different 
methods for computation. They comprise statistical 
methods [25] and [47], rule-based methods [18], and 
combination of these [51] and [53]. 

2.3 Word Sense Disambiguation (WSD) 

Word sense disambiguation WSD process is required in 
application such as a QA application [55]. WSD is a 
process to identify the meaning of a word in a given 
natural language context. Lexical ambiguity is decided 
using a dictionary.  T he most known dictionary used for 
this task is WordNet, which is described later in this paper. 
WSD has been recognized as an AI-hard problem [36]. 
Such a problem in QA would have a significant impact on 
the accuracy of retrieving answers. WSD concerns with 
defining the relationships among "word" and "meaning" 
and "context" [26]. Context is the only means to identify 
the meaning of an ambiguous word. Therefore, contextual 
information is required to determine the intended meaning 
from a set of meanings. The context is determined by two 
ways [48]: Firstly, relational information which refers to 
ambiguous word relations, including distance from the 
target, syntactic relations, selectional  p references, 
orthographic properties, phrasal collocation, semantic 
categories. Secondly, bag of words which refer to words in 
the neighborhood in the question without considering their 
relationships to the ambiguous word. 
 
Research in WSD has a l ong history. Much of research 
work in WSD have been conducted [27], [28], and [29]. 
Reference [3] classified methods applied to these research 
work into three main approaches: supervised WSD which 
use machine-learning techniques to learn a classifier from 
labeled training sets. Unsupervised WSD which rely on 
unlabeled corpora, and do not exploit any manually sense-
tagged corpus to provide a s ense choice for a w ord in 

context. Knowledge-based approach, this type of 
approaches depends on external knowledge sources that 
provide necessary information to associate senses with 
words. Knowledge sources can vary from corpora of texts, 
either unlabeled or annotated with word senses, to machine 
readable dictionaries, thesauri, glossaries, ontologies, etc. 
Knowledge-based approach has been applied in several 
works such as [34], [35], [36], [37].  

2.4 Ontology 

Ontology is originally a philosophical term. Ontology is 
defined as a conceptualization of a domain into a human 
understandable, machine-readable format consisting of 
concepts, attributes, relationships, and axioms [56]. A 
concept represents a set of entities within a domain. 
Relations describe the interactions among concepts. 
Relations can be categorized into two main categories: 
taxonomies that organize concepts into "is-a" and "is-a-
member-of" hierarchy, and associative relationships [6]. 
The associative relationships represent, for example, the 
functions and processes a co ncept has or is involved in. 
Domain ontology also specifies how knowledge is related 
to linguistic structures such as grammars and lexicons. 
Therefore, it can be used by NLP to improve 
expressiveness and accuracy and to resolve the ambiguity 
of natural language questions [6]. Since, ontology plays an 
important role in improving efficiency and accuracy of a 
question answering system. Many researchers employed it 
in the QA area [6], [50], and [57]. In this research we use 
ontology to model concepts knowledge of interest domain, 
in order to resolve lexica ambiguity in NLQ. To the best of 
our knowledge no a Q A system considered concepts 
knowledge in resolving lexical ambiguity in NLQ. 

3. Proposed Approach 

The proposed approach solves lexical ambiguity in QA by 
considering two pieces of knowledge: context knowledge, 
and concepts knowledge.  The combination of these 
knowledge is used to decide the most possible meaning of 
the word.   The Fig 2 illustrates the framework of proposed 
approach. There are five components, each component 
described as follows. 
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Fig. 2 The framework of a proposed approach. 

3.1 Natural Language Question (NLQ) 

A natural language question can be posed in different 
ways, e.g. imperative questions and wh-questions. In this 
paper, we consider Wh- questions. The proposed question 
processor categorizes the received questions into two 
structures. Firstly, factoid questions, e.g. "Who is the chair 
of the department?". Secondly, complex questions, e.g. 
"How can student contact an advisor in his major?". Each 
word in the question will be assigned with its category 
based on POS process. Then, the question will be 
classified based on its expected answer type. For example, 
in the question "Who is the chair of the department?", the 
type of expected answer is PERSON. All unambiguous 
words which are categorized as Verb or Noun in 
neighborhood will be used to determine the context of the 
question. 
 

3.2 WordNet 

WordNet is a large lexical database of English, developed 
by Princeton University. The database categorized words 
into nouns, verbs, adjectives and adverb; each expressing a 
distinct concept. Nouns, verbs, adjectives and adverbs are 
grouped into sets of synsets. Synsets are interlinked by 
means of conceptual-semantic and lexical relations. 
WordNet is also freely and publicly available on the 
Internet for download. WordNet's structure makes it a 
useful tool for computational linguistics and NLP. In this 
work, WordNet version 3.0 is used to decide if a l exical 
entry is ambiguous or not, and to provide the context 
knowledge with the set of possible senses of an ambiguous 
word.  
 

3.3 Context Knowledge 

Context knowledge contains a s et of lexical with their 
semantic relations. The set of lexical with its semantics are 
extracted from the WordNet database manually. All 
semantics in this work are extracted from the WordNet and 
combined with a context label. For instance, the word bank 
may have 5 possible meanings as shown in Table I. The 
proposed processor uses the neighborhood words to 
determine the context of the question. Unfortunately, as we 
notice from the Table 1 the same context label can be 
assigned to deferent senses. Thus, to determine the correct 
possible meaning, knowledge about lexical meanings and 
its context are mapped to concepts ontology, which will be 
described in the next subsection.  

Table 1: Context knowledge of the word bank 
 

Sense 

 

Gloss 

 

Context 

#1 Sloping land Money, Deposit 
#2 Financial institute River. Lake 
#3 container Money 
#4 the funds held by 

gambling house 
Money & Play 

#5 a flight maneuver Transport 
#6 a supply or stock held 

in reserve 
Money 

 

3.4 Concepts Knowledge 

Concepts knowledge is ontology consists of a set of 
concepts which are within the domain, and the 
relationships between the concepts. The ontology also 
specifies how knowledge is related to linguistic structures 
such as grammars and lexicons. Fig 3 illustrates a part of 
ontology of a university domain.  The ontology is 
represented as a graph that consists of nodes (concepts) 
and edges (relationships). We define the concepts ontology 
as . Where N is a set of nodes which can be 

represented as , where m is a 
finite integer. R is a set of relations among 
entities , where n is a finite integer. 
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Fig. 3 An example of concepts-domain ontology. 

3.5 SNLP  

The techniques of SNLP that are involved in this work 
include syntactic processing and semantic processing. 
Syntactic processing is conducted by implementing a 
chunker. The purpose of syntactic processing is to 
recognize syntactic constituents in a sentence. The chunker 
does not try to analyze a complete question, but only tries 
to build “chunks” of words from the sentence. The system 
of chunkers is relatively simple, and efficient. 

4. Implementation 

The steps of the development ased on the given framework 
is illustrated in Fig 4. There are 6 steps. All steps are 
equally important. However, Word-sense disambiguation 
is the core of our NLQ processor in a Q A system. We 
describe here the all 6 steps: 
 
Step 1: This NLQ processor performs the step of part-of-
speech tagging (POS). The proposed rule-based tagger 
reads the question and assigns a class to each word in this 
question, such as noun, verb, adjective, etc. For this task, 
we provide the tagger with the necessary linguistic 
knowledge. For example, given a question “How can 
student deposit money into the bank?”, can be tagged as 
follows: 
 
[How/Wh-Q] [can/Aux] [student/Noun] [deposit/Verb] 
[money/Noun] [into/ IN] [the/Det] [bank/Noun] 

 
Fig. 4  Steps of the development. 

Step 2: In this step the question will be identified as 
constituents (e.g. Noun Phrase (NP), Verb Phrase (VP), 
and Prepositional Phrase (PP)). For this task, we built a 
rule-based chunker, which receives a s equence of tagged 
words, and then divides the question in syntactically 
correlated segments. For example, given a question “How 
can student deposit money into the bank?”, can be divided 
as follows: 
 
[student/NP] [deposit/VP] [money/NP] [into the bank/PP]  
 
The word “How” will be used to classify the type of 
expected answer, as described in the following step. 
Question chunking is an intermediate step towards 
extracting semantic representation of the question which is 
not the scope of this paper. This work is concerned only 
with lexical semantic disambiguation. However, the 
expected output of the proposed processor is unambiguous 
chunks. 
 
Step 3: The task here is to classify the question by its 
expected answer type. This task will be helpful whether in 
disambiguation process or in retrieving answers eventually. 
Knowing the expected type of answer will be helpful more 
in the questions of factoid type, where some constraints 
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will be imposed on the potential answers. These constraints 
can be utilized to judge the most correct answer. For 
example, given a question “who is the chair of the 
department?”, this question is expected to be classified 
into an answer type of PERSON, which is the only 
candidate answers that are PERSON type need to be 
considered. 
 
Step 4: In this step each word which is assigned as Verb or 
Noun will be retrieved as headwords. Noun category will 
be considered as a node (concept) in the ontology, and 
Verb category as a relation between two nodes. For 
example, the question “How can student deposit money 
into the bank?” will define student, money, and bank  
words as nodes. Whereas, the word deposit will be defined 
as a relation. This information will be useful in the WSD 
process in the following steps. 
 
Step 5: The output of step 4 will be examined by the 
context knowledge to detect the ambiguity of lexical. 
Ambiguous words (e.g. bank) are the main focus of NLQ 
processor. Unambiguous words will be used to determine 
the context of the question. For example, the word money 
is considered unambiguous word, so that the processor 
looks up the context knowledge to find bank’s senses 
labeled with money context. According to Table 1, there 
are four senses (#2, #3, #4, and #6) only labeled with 
money context will be considered. The output of this step 
will serve as an input to the next step.  
 
Step 6: In this step the senses (#2, #3, #4, and #6) will be 
examined by the concepts ontology to disambiguate words. 
The task here is mapping the concepts based on its 
relations that extracted from the posed question. To discuss 
the use of ontology to solve lexical ambiguity let us refer 
to the Fig 3 in section 3.4. As explained, the word bank in 
the question “How can student deposit money into the 
bank” is ambiguous, and as a result, unrelated answers may 
be retrieved. In this work, we use the knowledge about 
concepts of the selected domain. To apply the concept 
knowledge to the disambiguation process, extracted 
headwords are mapped to the ontology. When an 
ambiguous word is detected in a q uestion, the extracted 
relation and its synonymy will be used in the process of 
mapping. For example, deposit is identified as a relation 
between the node bank and the node student. This simple 
graph is then mapped to the ontology. By doing so, the 
processor is capable to decide that the sense #2 is the right 
sense for the word bank in this context. 
 
The output of these processing steps will be unambiguous 
chunks, which will be helpful in resolving syntactic 
structure in our future work. 

5. Conclusions and Future Work 

In this paper, a novel approach for resolving lexical 
ambiguity in natural language questions posed to QA 
system is proposed. The proposed approach is obtained by 
combining two pieces of knowledge; context knowledge 
and ontology of concepts knowledge of interesting domain, 
into shallow natural language processing (SNLP). The 
proposed approach is expected to have the ability to 
overcome the lexical ambiguity problem. The significant 
contribution of this research work is a new technique for 
resolving lexical ambiguity in natural language questions 
posed to a QA system. In the future, we are looking at 
resolving the syntactic ambiguity in natural language 
questions. 
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