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Abstract 
The purpose of this study is to apply Kernel Dimensionality 
Reduction (KDR) to classify sleep stage from electrocardiogram 
(ECG) signal. KDR is supervised dimensionality reduction 
method that retains statistical relationship between input 
variables and target class. KDR was chosen to reduce 
dimensionality of features extracted from ECG signal because 
this method doesn’t need special assumptions regarding the 
conditional distribution, the marginal distribution, or both. In this 
study we extract 9 time and frequency domain heart rate 
variability (HRV) features from ECG signal of 
Polysomnographic Database from Physionet. To evaluate KDR 
performance, we perform sleep stage classification using kNN, 
Random Forest and SVM method, and then compare the 
classification performance before and after dimensionality 
reduction using KDR. Experimental result suggested KDR 
implementation on sleep stage classification using SVM could 
reduce dimensionality of feature vector into 2 without affecting 
the classification performance. KDR performance on Random 
Forest and k Nearest Neighbour classification only show slight 
advantage compared to without implementing KDR. 
Keywords: dimensionality reduction, KDR, polysomnography, 
ECG, sleep stage. 

1. Introduction 

Sleep is a behavioral state that is a n atural part of every 
individual’s life. Human spend about one-third of their 
lives asleep. Sleep is not just something to fill time when a 
person is inactive. Sleep is important for normal motor and 
cognitive function. Sleep actually appears to be required 
for survival [1]. Sleepiness problem may be associated 
with concentration difficulty, memory lapses, loss of 
energy, fatigue, lethargy, and emotional instability. The 
prevalence of problem sleepiness is high and has serious 
consequences, such as drowsy driving or workplace 

accidents and errors. Of the more than 70 known sleep 
disorders, the most common are obstructive sleep apnea, 
insomnia, narcolepsy, and restless legs syndrome. Large 
numbers of individuals suffering from these sleep disorders 
are unaware and have not been diagnosed or treated for 
their disorder [2]. 
 
The most widely used monitoring technique for assessing 
suspected sleep disorders is polysomnography (PSG) 
performed in a s leep laboratory. PSG includes the three 
measures used to assess the sleep state and to determine 
the sleep stage: electroencephalography (EEG), submental 
electromyography (EMG), and electrooculography (EOG). 
During a typical PSG, respiratory effort, airflow at the 
nose and mouth, oxyhemoglobin saturation, 
electrocardiogram (ECG), and leg movements are also 
assessed, with continuous recording throughout the night 
[3]. PSG analysis produces a summary of the patient’s 
sleep architecture.  
 
The identification of macrostructure and microstructure of 
sleep are still relying on visual scoring that requires long 
and accurate work by specialized personnel. Therefore, 
some algorithms and procedures were developed to 
perform automatic sleep scoring. Further, many efforts 
were dedicated to search of signals that can be reliably 
recorded through wearable devices. Thus, everyone can do 
sleep monitoring in their home with ease. 
 
ECG recording is one of the simple and efficient 
technologies in sleep disorders detection. Cyclic variations 
in RR intervals of ECG signals have been reported to be 
associated with sleep apnea and different sleep stages. 
Various studies have confirmed that several new methods 
could possibly recognize sleep apnea and sleep stages from 
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heart rate variability (HRV) [4]. In 2010, Yilmaz proposed 
the use of three features derived from the RR-interval, i.e. 
median, inter-quartil range (IQR), and mean absolute 
deviation (MAD) for sleep apnea and sleep stage 
classification [5]. In the same year, Bsoul proposed client-
server architecture to determine sleep efficiency based on 
the sleep stage classification using ECG signal [6]. Those 
studies have shown that the standard ECG recording can 
provide comparable results to standard PSG analysis. 
 
Latest technological advance on health monitoring device 
has enabled us to have personal diagnostic tools such as 
portable polysomnography or portable electrocardiograph 
device. Some of this device even has intelligent features so 
that it can be used as simple diagnostic tools. Such 
intelligent features would require data and algorithm 
optimization because the limitation of portable devices on 
processing data. Dimensionality reduction is one of 
technique to optimize data size. After dimensionality 
reduction the data size will reduce to smaller dimension 
without changing characteristic of data. In this study we 
use KDR method to reduce dimensionality of feature 
extracted from ECG. KDR is supervised dimensionality 
reduction method that retains statistical relationship 
between input variables and target class. KDR was chosen 
to reduce dimensionality of features extracted from ECG 
signal because this method doesn’t need special 
assumptions regarding the conditional distribution. 
 
The objective of this study is to assess the performance of 
KDR method on sleep stage classification using ECG 
signal. KDR was used to reduce dimensionality of feature 
vector. Performance assessment of KDR method was 
performed by comparing the performance of classification 
without dimensionality reduction and with dimensionality 
reduction.  W e use four time domain and five frequency 
domain HRV features in classification. 

2. Methodology 

The schematic diagram of the system, which is used in this 
study is shown in Fig. 1. There are five main stages on this 
system, preprocessing, feature extraction, dimensionality 
reduction, classification, and performance evaluation. 
Detail explanation of each stage will be covered in next 
part of this paper. 
 
 

 

Fig. 1  Schematic diagram of the system used in this study. 

2.1 Subjects  

Data used in the experiment is MIT-BIH 
Polysomnographic Database. The database contains over 
80 hours' worth of four-, six-, and seven-channel 
polysomnographic recordings from 16 subjects, each with 
an ECG signal annotated beat-by-beat, and EEG and 
respiration signals annotated with respect to sleep stages 
and apnea for every 30s epoch [7]. In this database, all 16 
subjects were male, aged 32 to 56 (mean age 43), with 
weights ranging from 89 to 152 kg (mean weight 119 kg). 
Records slp01a and slp01b are segments of one subject's 
polysomnogram, separated by a gap of about one hour; 
records slp02a and slp02b are segments of another 
subject's polysomnogram, separated by a t en-minute gap. 
The remaining 14 records are all from different subjects. 
 
The reference annotations were made by human experts on 
the basis of simultaneously recorded signals. All 
recordings include an ECG signal, an invasive blood 
pressure signal, an EEG signal, and a respiration signal. 
The six- and seven-channel recordings also include a 
respiratory effort signal derived by inductance 
plethysmography; some include an EOG signal and an 
EMG signal and the remainder includes a cardiac stroke 
volume signal and an earlobe oximeter signal. The sleep 
stage distributions over the total 10087 epochs were: 
W=2951, NREM 1=1750, NREM 2=3939, NREM 3=499, 
NREM4=222, REM=726. Epoch with MT (movement 
time) annotation was not included in this study. 
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2.2 Preprocessing 

All the features used in this study are based on QRS 
detection times. A ‘QRS detection time’ is the time of 
occurrence of the QRS complex in an ECG signal. In this 
study, QRS detection times were generated automatically 
for all recordings using Engelse and Zeelenberg algorithm 
[8]. This algorithm provides detection times that occur 
close to the onset of the QRS complex. RR-intervals 
defined as the interval from the peak of one QRS complex 
to the peak of the next. RR-interval sequences generated 
from QRS detection times could contained physiologically 
unreasonable times because signal quality limitation which 
leads to errors in the automatically generated QRS 
detections. In this study only RR intervals between 0.5 and 
1.5 were processed on the stage of feature extraction [5]. 

2.3 Feature Extraction 

The system used in this study is an epoch-based system 
that processes features based on the timing of QRS 
complexes. For each epoch with duration of 30 s econds, 
we extract HRV features. HRV measures can be divided 
into two broad categories: time domain measures and 
frequency domain measures [9]. The commonly time 
domain heart rate variability statistics are defined in Table 
1. Commonly used frequency domain measures are defined 
in Table 2 [10]. Due to short epoch duration, only short-
term time-domain and frequency domain HRV features are 
used in this study (AVNN, SDNN, rMSSD, pNN50, 
TOTPWR, VLF, LF, HF, LF/HF). 

Table 1: Commonly used time-domain measures 
Measurements Explanation 

AVNN* Average of all RR intervals 

SDNN* Standard deviation of all RR intervals 

SDANN 
Standard deviation of the averages of 
RR intervals in all 5-minute segments of 
a 24-hour recording 

SDNNIDX 
Mean of the standard deviations of RR 
intervals in all 5-minute segments of a 
24-hour recording 

rMSSD* 
Square root of the mean of the squares 
of differences between adjacent RR 
intervals 

pNN50* 

Percentage of differences between 
adjacent RR intervals that are greater 
than 50 ms; a member of the larger 
pNNx family 

* Short-term HRV statistics 
 
Traditionally frequency domain measures are calculated by 
resampling the original RR interval series and then 
applying the fast Fourier transform or autoregressive 
spectral estimation (the maximum entropy method). This 

resampling can cause attenuation in the high frequency 
components [10]. To eliminate the need for evenly 
sampled data required by Fourier or maximum entropy 
methods, we use the Lomb periodogram to calculate 
frequency domain spectra for unevenly sampled data [11]. 
Due to the low frequency resolution of a 30 seconds power 
spectral estimation, RR-interval spectrum calculated based 
on 5 epochs centered on the epoch of interest. This 
approach reduces the time-localization of the sleep stage 
information, but increased the spectral resolution [12]. 

Table 2: Commonly used frequency-domain measures 
Measurements Explanation 

TOTPWR* Total spectral power of all RR intervals 
up to 0.04 Hz 

ULF Total spectral power of all RR intervals 
up to 0.003 Hz 

VLF* Total spectral power of all RR intervals 
between 0.003 and 0.04 Hz 

LF* Total spectral power of all RR intervals 
between 0.04 and 0.15 Hz. 

HF* Total spectral power of all RR intervals 
between 0.15 and 0.4 Hz 

LF/HF* Ratio of low to high frequency power 
* Short-term HRV statistics 

 
To remove subject dependency, the RR interval series need 
to be normalized. A normalized RR interval series were 
calculated by dividing by the mean of RR interval, which 
produce RR interval with unity mean. Only time domain 
HRV features were use the normalized version of RR 
interval series. Normalization for frequency domain HRV 
features was achieved by dividing VLF, LF, and HF by the 
TOTPWR. 
 

2.4 Kernel Dimensionality Reduction 

In supervised dimensionality reduction, we assume data 
consists of  (X,Y) pairs, where X is  a n x m-dimensional 
explanatory variable and Y is an l-dimensional response. 
The variable Y may be either continuous or discrete. 
Solution to the feature selection problem will be a linear 
combination of X. We assume that there is an r-
dimensional subspace S Rm  such that the following 
equality holds for all x and y: 
 

   (1) 
 
where ∏S is the orthogonal projection of R onto S. The 
subspace S is called the effective subspace for 
regression/classification. Based on observations of (X,Y) 
pairs, we wish to recover a matrix whose columns span S. 
KDR approach the problem using semiparametric  
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statistical framework—therefore no assumptions regarding 
the conditional distribution of pY|∏sX(y|∏sx) or the 
distribution of  pX(x) of X. 
 

  
 

Fig. 2 Illustration of dimensionality reduction for 
regression/classification. 

 
The notion of effective subspace can be formulated in 
terms of conditional independence. Let Q =(B,C) be an m-
dimensional orthogonal matrix such that the column 
vectors of B span the subspace S (thus B is m x r and C is 
m x (m - r)), and define U = BTX and V = CTX. Because Q 
is an orthogonal matrix, we have pX(x)= pU,V(u,v) and 
pX,Y(x,y)= pU,V,Y(u,v,y). Eq. (1) is equivalent to  
 

  (2) 
 
Eq. (2) shows that the effective subspace S causes Y and V 
conditionally independent for given U (see Fig. 2). Mutual 
information provides another perspective of equivalence 
between conditional independence and effective subspace. 
It is well known that 
 

  (3) 
 
where I(Y,X) is the mutual information between X and Y. 
Because Eq. (1) implies I(Y,X) = I(Y,U), the effective 
subspace S is characterized as the subspace which retains 
the entire mutual information between X and Y, or 
equivalently, such that I (Y |U, V |U ) = 0. This lead to the 
conditional independence of Y and V given U. 
 
KDR use cross-covariance operators on RKHSs to 
describe conditional independence of random variables. 
Let (H,k) reproducing kernel Hilbert space of functions on 
a set Ω with positive definite kernel k : Ω x Ω →R and an 
inner product < .,. >H. The most significant characteristic 
of a RHKS is the reproducing property: 
 

 (4) 
 
Fukumizu et al. uses the Gaussian kernel k(x1, x2) = exp(−
∥ x1 − x2 ∥ 2/2σ2) [13]. They also show that for 
probability-determining kernel spaces, the effective 
subspace S can be characterized in terms of the solution to 
the following minimization problem: 
 

  (5) 
 
Centralized Gram matrix is then used for estimation of the 
operator: 
 

 

  (6) 
 
where 1n=(1,...,1)T, (GY)ij =k1(Yi,Yj) is the Gram matrix of 
the samples of Y, and (GU)ij = k2(Ui,Uj) is given by the 
projection Ui = BTXi. With a regularization constant ε > 0, 
the empirical conditional covariance matrix Σ Y Y |U is then 
defined by 
 

 
        
     (7) 

 
The size of Σ Y Y | U in the ordered set of positive definite 
matrices can be evaluated by its determinant. Using the 
Schur decomposition, 
 

  (8) 
 
we have 
 

  (9) 
 
where Σ[YU][YU] is defined by 
 

 

              (10) 
 
The objective function then symmetrize by dividing by the 
constant det ΣYY, which give 
 

 (11) 
 
This minimization problem referred with respect to the 
choice of subspace S or matrix B as Kernel Dimensionality 
Reduction (KDR). 
 
To determine the effective dimensions, in this study the 
original feature vector dimension was reduced to 2, 3, and 
4 dimension using KDR. The results of classification using 
new reduced feature vector then compared with the result 
of classification using original feature vector. 
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2.5 Classification 

We applied three classification methods, which were kNN 
as the baseline method, random forest and SVM. The last 
two methods were selected because they have different 
performance on imbalanced dataset. As we know, sleep 
stage data has characteristics of imbalanced dataset due to 
imbalanced distribution of each sleep stage. Table 3 shows 
sleep stage distribution for each record. From table 3, we 
can see that most of records dominated by sleep stage 
NREM 2. 

 
To train the classifier, 66 % of the epochs were randomly 
selected and the remaining epochs presented to the testing 
phase. The training data was chosen in such a way that the 
distribution of sleep stages on each record retained. Cross 
validation with 10 fold was then applied to assess how the 
predictive model will generalize to an independent data set. 
We performed 10 repetitions in the testing phase to ensure 
that the results of classification describe the actual 
condition. 

Table 3: Sleep distribution for each record 

Records 
Sleep Stage Distribution (%) 

Wake NREM 
1 

NREM 
2 

NREM 
3 

NREM 
4 

REM 

slp01a 2.9 0.4 43.9 19.7 27.6 5.4 
slp01b 50.6 7.6 34.7 - - 7.1 
slp02a 12.6 5.2 58.0 1.4 0.6 22.1 
slp02b 39.6 5.3 44.2 - - 10.9 
slp03 18.1 15.2 44.8 11.3 - 10.7 
slp04 22.2 8.2 61.7 4.6 - 3.2 
slp14 45.1 26.2 17.7 4.2 1.7 5.1 
slp16 45.4 15.6 26.2 3.2 0.3 9.4 
slp32 61.3 4.2 25.0 6.8 2.7 - 
slp37 10.8 3.0 84.6 - - 1.6 
slp41 29.0 29.6 28.1 1.7 - 11.6 
slp45 0.9 0.9 62.3 8.9 12.6 14.4 
slp48 27.9 31.8 35.9 0.3 - 4.1 
slp59 30.7 23.0 21.1 11.0 6.6 7.7 
slp60 40.7 47.8 7.1 - - 4.5 
slp61 17.3 12.3 45.4 14.3 - 10.7 
slp66 39.4 32.8 26.6 1.1 - - 
slp67x 46.7 26.0 26.7 0.7 - - 
Overall 30.07 16.39 38.56 5.37 1.32 6.07 

 
Classification carried out on each epoch to determine the 
sleep stage of those epochs. Two set of classification 
output was used to differentiate six sleep stages (Wake, 
NREM 1, NREM 2, NREM 3, NREM 4, and REM) and 
four sleep stages (Wake, Light Sleep, Deep Sleep, and 
REM). Light Sleep stage is the combination of NREM 1 
and NREM 2 sleep stage, whereas Deep Sleep stage is the 

combination of NREM 3 and NREM 4 sleep stage. To find 
out the subject dependency factor, the classification was 
performed using two scenarios, which are subject specific 
and subject independent classification. On subject specific 
classification, data used for training and testing phase 
obtained from the same record, whereas on subject 
independent classification, data obtained from the 
combination of all records. 

2.6 Performance Evaluation 

We apply two classification performance measurements, 
which are accuracy and Cohen’s Kappa coefficient. 
Accuracy is used as a s tatistical measure of how well a 
classification test correctly identifies or excludes a 
condition. Cohen's kappa coefficient is a statistical 
measure of inter-rater agreement or inter-annotator 
agreement[13] for qualitative (categorical) items. It is 
generally thought to be a more robust measure than simple 
percent agreement calculation since κ takes into account 
the agreement occurring by chance. 
 
Cohen's kappa measures the agreement between two raters 
who each classify N items into C mutually exclusive 
categories. The equation for κ is: 
 

    (12) 
 
where Pr(a) is the relative observed agreement among 
raters, and Pr(e) is the hypothetical probability of chance 
agreement, using the observed data to calculate the 
probabilities of each observer randomly saying each 
category. If the raters are in complete agreement then κ = 1. 
If there is no agreement among the raters then 1> κ ≥ 0. 
Table 4 shows kappa coefficient interpretation [13]. 

Table 4: Kappa coefficient interpretation 
Kappa Agreement 

< 0 Less than chance agreement 
0.0 – 0.20 Slight agreement 

0.21 – 0.40 Fair agreement 
0.41 – 0.60 Moderate agreement 
0.61 – 0.80 Substantial agreement 
0.81 – 1.00 Almost perfect agreement 

3. Results and Discussion 

3.1 Cross Validation 

Table 5 shows 10 fold cross validation result. In this study 
we considered overall classification accuracy. Cross 
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validation results suggest that classification on subject 
specific data gives better classification accuracy than 
subject independent data. This results indicate that 
classification performance depend on subjects. Overall 
accuracy of classification using 4 output classes (Wake, 
Light Sleep, Deep Sleep, and REM) is better than 6 output 
class (Wake, NREM1, NREM2, NREM3, NREM4, REM). 

Table 5: Cross validation result with k=10 

Dimensio
n 
Reduction 

Effective 
Dimensio
n 

Subject 
Outpu
t 
Class 

Accuracy 
(Stdev) 

kNN Random 
Forest SVM 

None 9 

Independent 
6 40.1 

(4.26) 
46.55 
(4.39) 

44.13 
(3.35) 

4 53.42 
(4.14) 

60.5  
(4) 

57.07 
(2.22) 

Specific 
6 57.9 

(6.06) 
64.35 
(5.22) 

57.32 
(3.91) 

4 68.17 
(5.86) 

74.33 
(4.86) 

66.37 
(4.43) 

KDR 

2 

Independent 
6 37.34 

(4.18) 
39.52 
(4.11) 

46.11 
(3.61) 

4 51.66 
(3.91) 

55.16 
(4.33) 

61.21 
(3.35) 

Specific 
6 59.24 

(6.64) 
60.96 
(6.38) 

64.26 
(5.27) 

4 68.4 
(6.27) 

70.1 
(6.19) 

72.83 
(5.1) 

3 

Independent 
6 39.59 

(4.78) 
42.41 
(4.47) 

44.22 
(3.78) 

4 53.88 
(4.63) 

56.92 
(4.23) 

59.14 
(3.13) 

Specific 
6 60.34 

(5.79) 
60.86 
(5.88) 

59.55 
(4.42) 

4 70.93 
(5.64) 

71.75 
(5.58) 

69.79 
(5.34) 

4 

Independent 
6 40.72 

(4.77) 
44.06 
(4.32) 

44.4  
(3.8) 

4 53.79 
(4.28) 

58.76 
(3.98) 

59.06 
(2.94) 

Specific 
6 59.57 

(6.4) 
61.06 
(5.97) 

56.25 
(3.49) 

4 69.75 
(5.6) 

71.1 
(5.95) 

66.48 
(4.14) 

3.2 Split/Train Test 

Table 6 and Table 7 show overall classification accuracy 
and kappa statistics of split train/test respectively. Overall 
classification accuracy of split train/test shows consistent 
result compared to cross validation result. Almost on all 
experimental setup, Kappa statistics of split train/test on 
subject specific data shows fair to moderate agreement 
(0.21 – 0.48) except on SVM classification using effective 
dimension = 4 and output class = 6 which gives value of 
Kappa statistics = 0.14. KDR implementation on SVM 
classification shows significant Kappa statistics gain, 

whereas on other classification method show only slight 
gain. 
 
According to Table 6, we cannot determine which method 
gives the best overall classification accuracy because some 
of values from one method are overlapped with the other 
methods. To determine the best overall classification 
accuracy we employ head to head comparison between 
each method. We count correct classification result from 
each experiment then apply normalization so that the value 
in range 0 to 100. This value is then used as a basis for 
classification performance comparation. 

Table 6: Classification accuracy of split train/test 

Dimensio
n 
Reduction 

Effective 
Dimensio
n 

Subject 
Outpu
t 
Class 

Accuracy  
(Stdev) 

kNN Random 
Forest SVM 

None 9 

Independent 
6 39.53 

(2.22) 
45.54 
(2.34) 

42.96 
(1.39) 

4 52.59 
(2.06) 

60.31 
(1.99) 

56.85 
(0.76) 

Specific 
6 57.84 

(2.74) 
64.08 
(3.13) 

57.35 
(1.92) 

4 68.31 
(2.57) 

73.43 
(2.56) 

66.3 
(1.65) 

KDR 

2 

Independent 
6 37.37 

(1.92) 
39.05  

(2) 
45.19 
(1.94) 

4 51.96 
(2.11) 

54.6 
(2.31) 

60.53 
(1.52) 

Specific 
6 58.95 

(2.93) 
60.28 
(2.98) 

63.05 
(2.56) 

4 68.05 
(2.83) 

69.65 
(2.95) 

71.81 
(2.33) 

3 

Independent 
6 39.18 

(2.15) 
41.97 
(2.2) 

43.8 
(1.52) 

4 53.01 
(2.03) 

56.72 
(2.5) 

58.56 
(1.46) 

Specific 
6 59.59 

(3.03) 
59.85 
(3.23) 

58.1 
(2.19) 

4 69.87 
(2.67) 

71.18 
(2.64) 

68.14 
(2.12) 

4 

Independent 
6 39.88 

(2.24) 
43.36 
(2.04) 

44.26 
(1.66) 

4 53.12 
(2.02) 

57.74 
(2.19) 

58.35 
(1.25) 

Specific 
6 58.58 

(2.97) 
60.47 
(3.26) 

55.07 
(1.46) 

4 69.22 
(2.63) 

70.37 
(2.75) 

65.4 
(1.87) 

 

 

Table 7: Kappa statistics of split train/test 
Dimensio
n 

Effective 
Dimensio Subject Outpu

t 
Kappa  
(Stdev) 
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Reduction n Class 
kNN Random 

Forest SVM 

None 9 

Independent 
6 0.16 

(0.03) 
0.21 

(0.04) 
0.09 

(0.02) 

4 0.19 
(0.03) 

0.26 
(0.04) 

0.05 
(0.02) 

Specific 
6 0.33 

(0.04) 
0.41 

(0.05) 
0.21 

(0.03) 

4 0.4  
(0.05) 

0.48 
(0.05) 

0.22 
(0.03) 

KDR 

2 

Independent 
6 0.13 

(0.03) 
0.14 

(0.03) 
0.17 

(0.03) 

4 0.18 
(0.03) 0.2 (0.04) 

0.21 
(0.03) 

Specific 
6 0.36 

(0.04) 
0.37 

(0.05) 
0.36 

(0.05) 

4 0.4  
(0.05) 

0.43 
(0.05) 

0.42 
(0.05) 

3 

Independent 
6 0.16 

(0.03) 
0.17 

(0.03) 
0.12 

(0.02) 

4 0.2  
(0.03) 

0.23 
(0.04) 

0.14 
(0.03) 

Specific 
6 0.37 

(0.05) 
0.36 

(0.05) 
0.22 

(0.04) 

4 0.43 
(0.05) 

0.45 
(0.05) 

0.29 
(0.05) 

4 

Independent 
6 0.17 

(0.03) 
0.19 

(0.03) 
0.12 

(0.03) 

4 0.2  
(0.03) 

0.24 
(0.04) 

0.13 
(0.03) 

Specific 
6 0.35 

(0.05) 
0.36 

(0.05) 
0.14 

(0.03) 

4 0.42 
(0.05) 

0.43 
(0.05) 

0.21 
(0.04) 

3.3 Head To Head Comparisons 

Table 8 shows head to head comparison result between 
kNN versus Random Forest, kNN versus SVM, and 
Random Forest versus SVM. Table 7 suggested that 
Random Forest and SVM outperform kNN on all 
experiment setup. Classification using Random forest 
shows better result than SVM on classification without 
dimension reduction. On the contrary, SVM gives better 
result than Random Forest after dimension reduction using 
KDR with effective dimension 2 and 3. From table 8 we 
can see that Random Forest optimal on original data 
without dimension reduction, whereas SVM achieved best 
result on reduced dimension data with effective dimension 
= 2. 

 

 

 
Table 8: Head to head comparison between kNN,  

Random Forest and SVM 

Dim 
Reductio
n 

Effectiv
e  
Dim 

Subject Outpu
t  
Class 

kNN vs 
RF 

kNN vs 
SVM 

RF vs 
SVM 

None 9 Inde- 
pendent 

6 1 99 16 84 73 27 

4 0 100 5 95 87 13 

Specifi
c 

6 7 93 52 48 88 12 

4 6 94 62 38 88 12 

 Average 3 97 34 66 84 16 

KDR 2 Inde- 
pendent 

6 25 75 0 100 1 99 

4 19 81 0 100 0 100 

Specifi
c 

6 28 72 14 86 22 78 

4 28 72 13 87 22 78 

Average 25 75 7 93 11 89 

3 Inde- 
pendent 

6 12 88 1 99 21 79 

4 9 91 2 98 24 76 

Specifi
c 

6 38 62 59 41 58 42 

4 32 68 56 44 71 29 

 Average 23 77 30 70 44 56 

4 Inde- 
pendent 

6 6 94 2 98 29 71 

4 8 92 0 100 42 58 

Specifi
c 

6 25 75 69 31 80 20 

4 31 69 68 32 81 19 

Average 18 82 35 65 58 42 

3.4 KDR Performance 

Fig. 2 to Fig. 5 shows chart of KDR performance on 
subject independent and subject specific data. KDR 
implementation on kNN and Random Forest classification 
didn’t show overall accuracy gain because classification 
performance was decreased after KDR implemented, 
conversely KDR implementation on SVM classification 
shows overall accuracy gain. The best overall classification 
accuracy when KDR implemented was achieved by SVM 
method with effective dimension = 2. This result suggested 
that KDR implementation on sleep stage classification 
using SVM have successfully increased overall 
classification accuracy. 
 
 

 

 

 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 121



 

Fig. 2  KDR performance on subject independent data  
with output class = 6. 

 

Fig. 3  KDR performance on subject independent data  
with output class = 4. 

 

Fig. 4  KDR performance on subject specific data with output class = 6. 

 

 
 

 

Fig. 5  KDR performance on subject specific data with output class = 4. 

4. Conclusions 

We have presented KDR implementation on sleep stage 
classification using ECG signal. From the experimental 
result, we have shown that KDR have successfully reduce 
feature vector dimension of data while maintain overall 
classification accuracy. This indicates KDR maintain 
relation between input and output variables while reducing 
dimension. The most optimal result of KDR 
implementation achieved by SVM classification with 
effective dimension = 2. These results demonstrate 
considerable potential in applying KDR in sleep stage 
classification using ECG signal.  

 
In this study we also have shown that the head to head 
comparison could be used as comparation method for 
special case i.e. small classification performance 
differences between two methods. In the future research, 
we will apply KDR in other problems such as sleep apnea 
detection. Next research will also study the influence of 
EDR (ECG derived respiratory) signal on sleep stage 
classification or sleep apnea detection. 
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