
Prevention Of Cross-Site Scripting Attacks (XSS) On
Web Applications In The Client Side

S.SHALINI1, S.USHA2

1Department of Computer and Communication, Sri Sairam Engineering College,

Chennai- 44, Tamilnadu, India.

2Department of Information Technology, Sri Sairam Engineering College,

Chennai- 44, Tamilnadu, India.

Abstract Cross Site Scripting (XSS) Attacks are
currently the most popular security problems in modern
web applications. These Attacks make use of
vulnerabilities in the code of web-applications, resulting
in serious consequences, such as theft of cookies,
passwords and other personal credentials. Cross-Site
scripting (XSS) Attacks occur when accessing
information in intermediate trusted sites. Client side
solution acts as a web proxy to mitigate Cross Site
Scripting Attacks which manually generated rules to
mitigate Cross Site Scripting attempts. Client side solution
effectively protects against information leakage from the
user's environment. Cross Site Scripting (XSS) Attacks
are easy to execute, but difficult to detect and prevent.
This paper provides client-side solution to mitigate cross-
site scripting Attacks. The existing client-side solutions
degrade the performance of client's system resulting in a
poor web surfing experience. In this project provides a
client side solution that uses a step by step approach to
protect cross site scripting, without degrading much the
user's web browsing experience.

Keywords -- Cross Site Scripting; web proxy;
Software Protection; Code Injection Attacks;
Security Policies.

1. INTRODUCTION

Cross-Site Scripting, commonly known as XSS, is a
type of attack that gathers malicious information
about a u ser; typically in the form of a s pecially
crafted hyperlink that will save the users credentials.
Cross-site scripting, or XSS is a web security
vulnerability where the attacker injects malicious
client-side script into a web page. When a user visits
a web page, the script code is downloaded and

transparently run by the web browser. The malicious
script inherits the user’s rights, authentication, and so
on. XSS represents the majority of web based
security vulnerabilities
One reason for the popularity of XSS vulnerabilities
is that developers of web-based applications often
have little or no security background. The result is
that poorly developed code, riddled with security
flaws, is deployed and made accessible to the whole
Internet. Currently, XSS attacks are dealt with by
fixing the server-side vulnerability, which is usually
the result of improper input validation routines.
XSS protection can be configured for multiple types
of request and response data – URL query parameters
– URL encoded input (“POST data”) – HTTP
headers – Cookies.
The possibilities to manipulate HTML documents
displayed by the browser with JavaScript or to
influence the operation of the browser itself are
dangerous features if misused. The misuse potential
directly relates to the functions available for a
malicious programmer. Unfortunately JavaScript
provides full access to HTML documents using the
document object model (DOM). A script therefore
can modify at least the document it is residing in
arbitrarily: it is also possible to completely delete the
document and create a t otally different document.
From an attackers point of view two things are of
special interest: cookies associated to a document and
access credentials. JavaScript also provides access
possibilities to these information. The cookies
associated to a document can be accessed using the
function call document.cookie and application level
access credentials are often acquired using form
based login. Here the credentials are input into input
fields residing in a form environment. Since the form
is part of the document a script can access all
information in all fields or can simply modify the

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 650

target URL of the form. Then the credentials are sent
to the new target, which is under the control of the
attacker. JavaScript is a powerful tool for developing
rich Web applications. Without client-side execution
of code embedded in HTML and XHTML pages, the
dynamic nature of Web applications like Google
Maps, Try Ruby! and Zoho Office would not be
possible. Unfortunately, any time you add complexity
to a s ystem, you increase the potential for security
issues -- and adding JavaScript to a Web page is no
exception.

Among the problems introduced by JavaScript are:

 A malicious Web site might employ
JavaScript to make changes to the local
system, such as copying or deleting files.

 A malicious Web site might employ
JavaScript to monitor activity on the local
system, such as with keystroke logging.

 A malicious Web site might employ
JavaScript to interact with other Web sites
the user has open in other browser windows
or tabs.

The first and second problems in the above list can be
mitigated by turning the browser into a sort of
"sandbox" that limits the way JavaScript is allowed to
behave so that it only works within the browser's
little world. The third can be limited somewhat as
well, but it is all too easy to get around that limitation
because whether a p articular Web page can interact
with another Web page in a given manner may not be
something that can be controlled by the software
employed by the end user. Sometimes, the ability of
one Web site's JavaScript to steal data meant for
another Web site can only be limited by the due
diligence of the other Web site's developers.
The key to defining cross-site scripting is in the fact
that vulnerabilities in a given Web site's use of
dynamic Web design elements may give someone the
opportunity to use JavaScript for security
compromises. It's called "cross-site" because it
involves interactions between two separate Web sites
to achieve its goals. In many cases, however, even
though the exploit involves the use of JavaScript, the
Web site that's vulnerable to cross-site scripting
exploits does not have to employ JavaScript itself at
all. Only in the case of local cross-site scripting
exploits does the vulnerability have to exist in
JavaScript sent to the browser by a legitimate Web
site.

Fig 1: Overview of XSS Attack

2. TYPES OF CROSS-SITE SCRIPTING

To prevent the script code contained in a document
loaded from some Web site accesses documents
loaded from some other Web site, browsers do n ot
allow access between documents loaded from
different sites (i.e. cross-site access). Therefore
attackers use other techniques to implement a cross-
site attack. In general there are currently three major
categories of cross-site scripting. Others may be
discovered in the future, however, so don't think this
sort of misuse of Web page vulnerability is
necessarily limited to these three types.

- Reflected Cross-Site Scripting attacks

- Stored Cross-Site Scripting attacks

- DOM based Cross-Site Scripting attacks

• Reflected XSS: Probably the most common type of
cross-site scripting exploit is the reflected exploit. It
targets vulnerabilities that occur in some Web sites
when data submitted by the client is immediately
processed by the server to generate results that are
then sent back to the browser on the client system.
An exploit is successful if it can send code to the
server that is included in the Web page results sent
back to the browser, and when those results are sent
the code is not encoded using HTML special
character encoding thus being interpreted by the
browser rather than being displayed as inert visible
text.
The most common way to make use of this exploit
probably involves a link using a malformed URL,
such that a variable passed in a URL to be displayed
on the page contains malicious code. Something as
simple as another URL used by the server-side code
to produce links on the page, or even a user's name to
be included in the text page so that the user can be
greeted by name, can become a vulnerability
employed in a reflected cross-site scripting exploit.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 651

http://maps.google.com/
http://maps.google.com/
http://tryruby.hobix.com/
http://www.zoho.com/

• Stored XSS: Also known as HTML injection
attacks, stored cross-site scripting exploits are those
where some data sent to the server is stored (typically
in a database) to be used in the creation of pages that
will be served to other users later. This form of cross-
site scripting exploit can affect any visitor to your
Web site, if your site is subject to a stored cross-site
scripting vulnerability. The classic example of this
sort of vulnerability is content management software
such as forums and bulletin boards where users are
allowed to use raw HTML and XHTML to format
their posts.
As with preventing reflected exploits, the key to
securing your site against stored exploits is ensuring
that all submitted data is translated to display entities
before display so that it will not be interpreted by the
browser as code.
.
• DOM-based XSS: It is a special variant of reflected
XSS, where logic errors in legitimate JavaScript and
careless usage of client-side data result in XSS
conditions.
Application developers and owners need to
understand DOM Based XSS, as it represents a threat
to the web application, which has different
preconditions. As such, there are many web
applications on the Internet that are vulnerable to
DOM Based XSS, yet when tested for standard XSS,
are demonstrated to be “not vulnerable”. Developers
and site maintainers need to familiarize themselves
with techniques to detect DOM Based XSS
vulnerabilities, as well as with techniques to defend
against them.

3. RELATED WORK

By now there have been a variety of defensive
techniques to prevent XSS, including the following
aspects: static analysis, dynamic analysis, black-box
testing, white-box testing, anomaly detection, etc.
Generally, these approaches are deployed on the
client-side or server-side to protect web users from
XSS injection attack. To remedy the shortcomings of
server- side protection, there have been several
defensive strategies which are deployed on the client
side. In a client-side mechanism for detecting
malicious JavaScript is proposed. The system
consists of a browser-embedded script auditing
component, and an IDS that processes the audit logs
and compares them to signatures of known malicious
behavior or attacks. With this system, it is possible to
detect various kinds of malicious scripts, not only
XSS attacks.
However, the system has significant weakness: it can
only detect the XSS attacks whose behavior haven

been known. Attacks that do not anticipated by the
signature authors are left unprotected by the scheme.
The two main aims of XSS attacks are stealing the
victim user’s sensitive information and invoking
malicious acts on the user’s behalf. Noxes provides a
client-side web proxy to block URL requests by
malicious content using manual and automatic rules.
Reference presents another approach: tracking the
flow of sensitive information in the browser to
prevent malicious content from leaking such
information. Both of these projects focus on ensuring
confidentiality of sensitive data (e.g., cookies) by
analyzing the flow of data through the browser, rather
than preventing unauthorized script execution. They
can defeat only the first goal of XSS attacks. It would
be defeated by attacks that do not violate same-origin
policies. By contrast, our approach is based on
analyzing function-call sequences of JavaScript to
detect unauthorized scripts; we can defeat both
objectives of XSS attacks.
One of the most important discussions related to
aspects of code injection is by CERT. The paper
describes the source of code injection: invalidated
input from untrustworthy sources. It also proposes
solutions that may be carried out directly by users.
On the client side, the most effective solution is to
disable all scripting language support in user’s
browsers and e-mail readers. If this is not a feasible
option for business reasons, another recommendation
is to use reasonable caution when clicking links in
anonymous e-mails and dubious web pages. Also,
keeping up to date with the latest browser patches
and versions is important. But usually, neither do
users willing to disable all scripting language
support, nor do they keen to keep their browsers up to
date let alone how many of them are aware of the
dangerous XSS.
Scott and Sharp used an application proxy to abstract
Web application protection; the proxy validates user
input to protect against XSS attacks. Commercial
products such as Appshield and InterDo use a similar
approach. However, even though it provides
immediate assurance of Web application security, it
requires the correct identification of and validation
policy for each individual entry point to a Web
application. Another limitation is that this approach
protects Web applications at the deployment phase
instead of trying to eliminate bugs during the
development phase. One thing should not be avoided
when discussing the server side solution, the
performance.
Most existing browsers are capable of interpreting
and executing scripts created in such scripting
languages as JavaScript, JScript, VBScript that are
embedded in the Web-page downloads from the Web
server. When an attacker introduces a malicious

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 652

script to a dynamic form submitted by the user, a
cross-site scripting (XSS) attack then occurs.

4. PROPOSED MODEL

The solutions on server side result in considerable
degradation of web application and are often
unreliable, whereas the client side solutions result in
a poor web browsing experience, there is need of an
efficient client side solution which does not degrade
the performance. The proposed system is designed in
order to provide effective security against the Cross
Site Scripting attack, keeping the concept of usable
security with optimized web browsing. This approach
uses a three step process:

Fig 2: Proposed Solution: a three step process to detect XSS

Fig 3: Block Diagram to detect XSS

THREAT MODEL

Attacker Abilities. Client-side XSS _lters are
designed to mitigate XSS vulnerabilities in web sites
without requiring the web site operator to modify the

web site. We assume the attacker has the following
abilities:

• The attacker owns and operates a web site.
• The user visits the attacker's web site.
• The target web site lets the attacker inject an

arbitrary sequence of bytes into the entity-
body of one of its HTTP responses.

Vulnerability Coverage. Ideally, a client-side XSS
would prevent all attacks against all vulnerabilities.
However, implementation is infeasible. Instead, we
focus our attention on a narrower threat model that
covers a certain class of vulnerabilities. For example,
we consider only rejected XSS vulnerabilities, where
the byte sequence chosen by the attacker appears in
the HTTP request that retrieved the resource.

Attacker Goals: We assume the attacker's goal is to
run arbitrary script in the user's browser with the
privileges of the target web site. Typically, an
attacker will run script as a stepping stone to
disrupting the confidentiality or integrity of the user's
session with the target web site. In the limit, the
attacker can always inject script into a web site if the
attacker can induce the user into taking arbitrary
actions. In this paper, we consider attackers who seek
to achieve their goals with zero interaction or a
single-click interaction with the user.

5. IMPLEMENTATION & EXPERIMENTAL

RESULTS

This solution was implemented using open source
Mozilla Firefox 1.5 web browser from Mozilla
foundation.
The Mozilla Firefox web browser executes
JavaScript programs included in web pages with the
help of the JavaScript engine called SpiderMonkey.
The engine, written in C, is an important part of the
web browser. It is used to execute JavaScript
programs included in web pages as well as for the
Gecko rendering engine that is used to display
HTML, CSS, and XUL (Mozilla’s XML-based User
interface language), and run JavaScript programs.
The solution needed some major changes in the
JavaScript engine and some minor changes in other
components of the web browser. Some Data
structures were created, and others were modified
according to the need.

5.1. Security Evaluation

The proposed solution has been tested with thousands
of malicious inputs, non vulnerable input with white
listed tags and vulnerable websites. Fig. 4 shows
comparison of the proposed browser with Firefox

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 653

without security implemented, Microsoft’s Internet
Explorer, Apple’s Safari Web Browser and other
available web browsers on same platform and
environment. It has been observed that there are more
than 100 variants of XSS attacks exist and the
approach is tested with the data collected from
various research sites, white hat and black hat sites.

Fig 4: Security Evaluation of the proposed web browser

5.2. Performance Evaluation

The proposed solution has been tested with thousands
of malicious inputs, non vulnerable input with white
listed tags and vulnerable websites. Fig. 5 shows how
the attacker can inject the malicious script code into a
trusted website with the help of Control flow graph.
This control flow graph intimates to the Client
(Administrator) about when the attacker can hack the
information, what are all the information that can be
hacked. The vast of majority of XSS attacks can be
prevented by identifying the user input locations
within the web application and ensuring the source
code handling these has proper measures in place.
From a developer’s perspective, this means ensuring
all data inputted from a user is properly encoded to
remove HTML and script markup to be replaced with
text that all browsers can process.

Fig 5: Control Flow Graph displays how the attacker can inject
the code

6. CONCLUSION

The proposed solution is found to be very effective
by the experimental results. The solution is platform
independent so we block suspected attacks by
preventing the injected script from being passed to
the JavaScript engine rather than performing risky
transformations on the HTML. Cross-site scripting
attacks are among the most common classes of web
security vulnerabilities. Every browser should
include a client-side XSS to help mitigate unpatched
XSS vulnerabilities. Cross-site scripting is a Web-
based attack technique used to gain information from
a victim machine or leverage other vulnerabilities for
additional attacks. These practices employ policy,
people, and technology countermeasures to protect
against XSS and other Web attacks.
In general, the system successfully prohibits and
removes a variety of XSS attacks, maximizing the
protection of web applications.

REFERENCES

[1] Engin Kirda, Christopher Kruegel, Giovanni
Vigna, and Nenad Jovanovic. Noxes: A client-side
solution for mitigating cross site scripting attacks. In
Proceedings of the 21st ACM Symposium on
Applied Computing (SAC), 2006.

 [2] CERT. Advisory CA-2000-02: malicious HTML
tags embedded in client web requests,
<http://www.cert.org/advisories/CA- 2000-02.html>;
2000.

[3] CERT. Understanding malicious content
mitigation for web developers,
<http://www.cert.org/tech_tips/malicious_code_mitig
ation.html>; 2005

[4] D. Scott and R. Sharp. Abstracting Application-
Level Web Security. In Proceedings of the 11th
International World Wide Web Conference May
2002.

[5]Open Web Application Security Project, “The ten
most critical web application security
vulnerabilities”,2007,ww.owasp.org/index.php/OWA
SP_Top_Ten_Project

 [6] K. Fernandez and D. Pagkalos. Xssed.com - xss
(cross-site scripting) information and vulnerabile
websites archive. [online], http://xssed.com
(03/20/08).

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 654

