
Implementation & Analysis of EFRS Technique for
Intrusion Tolerance in Distributed Systems

Mr. A.B. Chougule1, Mr. G.A. Patil2

1Department of Information Technology, Bharati Vidyapeeth’s College of Engineering,

Kolhapur, Maharashtra, India

2Department of Computer Science, D.Y. Patil College of Engineering,
Kolhapur, Maharashtra, India

Abstract
This paper includes designing and implementing a
system that uses encryption-fragmentation-
replication-scattering for the purpose of developing
secure and dependable data storage within a
distributed system. The system will consist of one
central node which is assumed to be trusted and
multiple storage nodes. Data is collected at the
central node, which is then encrypted followed by
fragmentation. Data fragments then undergo a hash
function to give unique hash value of each fragment.
These fragments are then replicated and scattered
over the network. Thus, the system continues to
provide service even in case of failure of some
storage nodes.
Keywords: Intrusion, intrusion tolerance, encryption,
fragmentation, replication, scattering

1. Introduction

The static file storage systems used to store the files
at single location i.e. on one server. This storage
system is unreliable in case of failure of server since
data will not be available if the storage location is
unavailable due to some reason. In case of corruption
of file, complete data is lost. To avoid such problems
today distributed storage networks are used, which
consist of many computers at different locations
connected to each other via internet. However in such
systems there is no enforced replication of data. So, if
one of the machines is disconnected then the data will
not be available.

Another major problem in case of such distributed
storage networks is of intrusion. Intrusion has been
defined as an entry without permission. It has been
categorized in two different types, viz. active and
passive intrusion. Active intrusion involves
unauthorized alteration of data while passive
intrusion is theft of data and possibly misuse of it. A
few terms related to intrusion must be noted.

Intrusion Detection – It deals with discovering
several types of malicious behaviors that can
compromise the security and trust of a computer
system or a network.

Intrusion Prevention – It deals with monitoring the
network and/or system activities for malicious or
unwanted behavior and then reacting in real time to
block or prevent such activities.

Intrusion Tolerance – It assumes that there will be
attacks made on the system and some of them will be
successful. But it a ims to keep the system working
despite of such attacks.

We aim at making the distributed storage systems
more dependable and secure using the intrusion
tolerance technique – EFRS. We define a few terms
and make the following assumptions.

Terms

1. C-Node – A central server which is assumed to be
a trusted storage. The system will consist of a single
C-Node.

2. Storage node – A generic data storage server. The
system may consist of several storage nodes which
are responsible for storage of data fragments and
scattering.

The rest of the paper is arranged as follows:
The Section 2 details the procedure of encryption-
fragmentation-replication- scattering. Section 3
describes how the entire system was implemented.
Section 4 gives the analysis made of the system
performance and illustrates the results obtained.
Section 5 gives the conclusions made as a result of
the evaluation.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 616

2. EFRS Procedure
This section describes the basics of EFRS technique.

2.1 Encryption and Fragmentation

Encryption of data is performed at the central server
using AES encryption. After performing the
encryption, the data is fragmented into several
fragments, which are all of same size except the last
fragment. In some cases, the last fragment might be
smaller in size.

Encryption along with fragmentation is done
considering two important reasons.

1. Since a single storage location will contain only a
few fragments of data, the theft of single location is
of no use to the intruder. To decrypt the data, all the
fragments must be put in correct order.

2. Since fragmentation increases the security of data,
a simpler and faster cipher can be used for
encryption.

Fig. 1 Encryption

Fig. 2 Fragmentation

2.2 Hashing

The next step is to hash the fragments. Each fragment
is acted upon by a h ash function such as MD5, to
obtain a unique hash value for every fragment. This
hash value can later be used to confirm that the
fragments have not been altered.

Fig. 3 Hashing

2.3 Replication

Now we assign a co unter to each fragment. The
counter (c) decides the number of copies of a
fragment that will reside in the system. The counter is
decremented at every stage as the fragment is
forwarded from one storage location to another, thus
creating multiple replicas of every fragment in the
system.

Fig. 4 Replication (assignment of counter)

Data availability is increased, due to the fragment
replication within the system. To make a fragment
unavailable the intruder would have to destroy as any
sites as there were fragments in the system. The
intruder would have no idea how many copies of the
fragments were in the system, making it extremely
difficult to know for certain that all the fragments had
been destroyed. To affect the integrity of the data, an
intruder would need to find and then modify all the
replicas of a fragment stored in the system. This
would require several intrusions. Even once they
accomplished this, the cryptographic checksum of the
fragment would be changed if even one byte to the
fragment had been altered.

sample.txt File

Encryption (Rijndael)

sample.txt.enc Encrypted
File

sample.txt.enc Encrypted
File

Fragmentation

sample.txt.enc.1

sample.txt.enc.2

sample.txt.enc.n

sample.txt.enc.1

sample.txt.enc.2

sample.txt.enc.n

Hashing

Hashing

Hashing

795745834

xxxxxxxxx

289532012

sample.txt.enc.1

sample.txt.enc.2

sample.txt.enc.n

Assign
Counter
Assign
Counter

Assign
Counter

sample.txt.enc.1(c)

sample.txt.enc.2(c)

sample.txt.enc.n(c)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 617

2.4 Distribution

The distribution is initiated by the C-node. It
distributes the encrypted fragment of a d ata to
different storage nodes making sure that not all the
fragments of the data reside on a single storage node.

2.5 Scattering

In the scattering process, the counter assigned to each
fragment is decremented at each storage node until it
becomes zero. The storage node simply forwards the
fragment if it has already stored another replica of it.
The process of scattering increases the
confidentiality, as a number of intrusions are required
for an intruder to obtain all the fragments that make
up a single piece of data.

Fig. 5 Scattering

2.6 Retrieval

When the C-Node wishes to retrieve the fragments
from within the system, a process that is almost the
reverse of the fragmentation and scattering process
takes place. For each fragment, the C-Node sends out
a retrieve request to the network with the specific
fragment name as part of the request. This request is
forwarded from one storage node to another until the
fragment is eventually found. The fragment then
travels the reverse path until it finally reaches the C-
Node. Figure 6 shows how the system would cope if
a node failed. The C-Node is attempting to retrieve a
fragment from the system. Consider, there were a
copy of the fragment on Node4 and the request for
that fragment has followed the path
Node1→Node2→Node3. But Node3 has failed. Now
the C-Node sends another request for the fragment to
Node6. This request would then travel the path

Node6→Node5→Node4. It then finds the fragment
at Node4 and returns it to the C-Node by the path
Node4→Node5→Node6.

Fig. 6 Retrieval

2.7 Hash verification

When a fragment is retrieved successfully, the next
step is to verify that the fragment has not been
altered. The hash value for the fragment is re-
calculated after retrieval and this value is compared
with the original hash value as an integrity check. If
the two hashes are the same, we can be sure that the
fragment has not been altered in any way. This
process is repeated for each fragment that arrives at
C-Node until a viable copy of each fragment
requested from the network has been obtained.

2.8 Data re-construction

Once all the fragments have been successfully
retrieved, they are arranged into their original order
and joined. Now we have the encrypted version of
the data. The decryption is then performed on it, to
obtain the original data.

3. Implementation

This section describes how the system is
implemented to produce a d ependable and secure
way to store data within a distributed system. The
implementation has been divided into two parts: C-
Node and Storage Node. These two components were

Storage
Node 3

Storage
Node 2

Storage
Node 1

F(3) F(2) F(1)

Storage
Node 4

Storage
Node 2

Storage
Node 3

Storage
Node 4

F

Storage
Node 1

Storage
Node 5

Storage
Node 6

C-Node

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 618

implemented separately and then integrated using
.NET Remoting technology.

3.1 .NET Remoting

.NET remoting provides an abstract approach to
interprocess communication that separates the
remotable object from a s pecific client or server
application domain and from a specific mechanism of
communication. It is flexible and easily
customizable. The remoting system assumes no
particular application model.

3.2 C-Node

The functionality of the C-Node has been divided
into several modules, which are as follows.

Encryption/Decryption

The data encryption within the C-Node is performed
using the Rijndael algorithm. Rijndael is categorized
under Advanced Encryption Standard (AES). AES
provides greater security than its predecessor, DES
and is also faster. It combines security, performance,
efficiency, ease of implementation and flexibility and
has low memory requirements. We have used 128bit
block size and same key size for
encryption/decryption. The methods used for
encryption/decryption have the signatures as follows,

Boolean EncryptFile(String fileName,
String targetFileName, String sKey)
Boolean DecryptFile(String fileName,
String targetFileName, String sKey)

Fragmentation/Joining

The fragmentation function takes the fragment size
FragSize and destination directory as the inputs.
It forms a data block of FragSize KB in a single
iteration and saves it a s a fragment. This process is
repeated until there is no more data to be processed.
The joining function works in similar manner but in
opposite way. The takes the directory name as input
where the fragments are stored. It processes each
fragment in a sequence and appends it to form a
single data block. The following are the function
declarations.

bool Fragment(string FileName, int
FragSize,string DirName)
void Join(string FileName, string
DirName)

Hashing

The hashing of the fragments is done by using MD5
hashing algorithm. MD5 (Message-Digest algorithm
5) is a widely used cryptographic hash function with
a 128-bit hash value. MD5 processes a v ariable-
length message into a fixed-length output of 128 bits.
The function signature is as given below.

string GetHash(string FileName)

3.3 Storage Node

The storage node has been implemented in several
modules. The storage node should handle three types
of requests – store, retrieve and status check.

Fragment structure

Storage node defines a structure Fragment. It holds
all the information related to the fragment and the
fragment data. Every fragment has name, sequence
number, counter, source location identifier and the
actual data. The structure Fragment is defined
with following members.

string sourceIP;
string name;
byte[] data;
int counter;
int SeqNo;

Request Handler

The request handler is the core component of the
storage node implementation. It handles the requests
for storage of fragments, retrieval and the status
requests. The RequestHandler class implements
an interface IStorageNode. Objects of this class
are remotable i.e. they can be accessed through other
processes which may reside on same machine or on a
different machine.

The IStorageNode declares the three methods:
1. string CheckStatus();
2. GetFragment(int ReqID, string
FragName, string SourceIP);
3. StoreFragment(Fragment Frag);

Despite of these three methods, the interface also
declares some additional methods to achieve some
supporting tasks.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 619

Storage request

For the process of handling the requests for storage of
a fragment, the storage node first checks if the
fragment has been already stored using the function,
isFragAlreadyStored(). If it has not stored
the fragment already, it will store the fragment,
decrement the counter and then – if the counter has
not reached zero – forward the request. If the
fragment is already stored, then the storage node will
just forward the request without storing it. The
storage will only know one link back to the chain to
the originator of the request. The storage node will
also check to see if all the fragments of same data are
being stored on it and if so, it will avoid such case by
merely forwarding the fragment to some other
storage node. Thus, all the fragments of the data will
never reside on a single storage node, which adds to
the security of the system
.
Retrieval request

If the message that the storage node receives is a
retrieval request, the storage node first checks the
database to see if it has the fragment stored. If it does,
it will send the fragment to the node that requested it.
If the storage node does not have the fragment stored
in its database, it will record which storage node
requested the fragment and then forward on the
request to other storage node. Therefore, if a n ode
further in the system does have the fragment stored
then it can be passed back through the system
following the reverse path. Each retrieval request will
have a unique request identifier. Whenever a storage
node receives a r etrieval request, it checks the
identifier to determine if it has already processed the
same request and if so, it will not forward the request
this time, thus avoiding flooding of requests.

Status request

The status request is used to check if the storage node
is working. When the storage node receives a status
request, it returns an “OK” message back to the
requester. Thus, if the storage node has failed, the
requester will not receive an OK message within the
given timeout period and will have to select some
other storage node for further processing.

4. Evaluation

The EFRS system was tested on a wired local area
network with speed 1Gbps. Each node in the testing
environment had the following configuration:

1. Operating system – Microsoft Windows XP
2. Processor – Intel Pentium IV
3. RAM – 1GB DDR
The tests were carried out keeping some of the
parameters constant such as the number of storage
nodes, number of replicas and the size of the
fragments. Three different experiments were carried
out by taking a different fragment size for each of
them. The values of constant parameters were as
follows:
1. File size – 22959KB
2. No. of replicas – 3
3. Total no. of storage nodes – 6

Experiment 1:
Fragment size – 1024KB
Initially all the storage nodes were kept in working
state and the time required for the retrieval of the
fragments was measured. Same process was repeated
three more times by increasing the failed nodes.

Table 1. Experiment 1: No. of storage failed nodes vs.
time required for retrieval

No. of Failed Nodes Time Required (ms)

0 13250
1 15328
2 17750
3 19110
4 20752
5 23661

Fig. 6 Experiment 1: No. of storage failed nodes vs.

time required for retrieval

Experiment 2:
Fragment size – 5120KB
Same experiment was performed with fragment size
5120KB. We can observe that the increase in the size
of fragment has considerably reduced the required
time.

0

5000

10000

15000

20000

25000

1 2 3 4 5 6

Time (ms)

No. of Failed
Nodes

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 620

Table 2. Experiment 2: No. of storage failed nodes vs.

time required for retrieval

No. of Failed Nodes Time Required (ms)
0 4078
1 5484
2 9703
3 11310
4 13245
5 15548

Fig. 7 Experiment 2: No. of storage failed nodes vs.
time required for retrieval

Experiment 3:
Fragment size – 7168KB
Same experiment was performed with fragment size
7168 KB. We can observe here that the rate of time
reduction has declined.

Table 3. Experiment 3: No. of storage failed nodes vs.
time required for retrieval

No. of Failed Nodes Time Required (ms)

0 4703
1 8359
2 12375
3 15430
4 19740
5 22584

Fig. 7 Experiment 3: No. of storage failed nodes vs.
time required for retrieval

5. Conclusion

The EFRS system provides a secure and dependable
way to store data in a distributed environment. The
system stores the data in form of fragments. Each
fragment contains only a chunk of data. Moreover, all
the fragments can never be found on a single storage
node. So, if some intruder succeeds in retrieving
some of the fragments, the attack can be of no use.
Even if the intruder somehow manages to obtain all
the fragments, the joining of fragments and
decryption is an impractical task. Thus, the system
tolerates passive intrusion.

The problem of active intrusion has been handled
using the hash verification. The system verifies the
hash value of each fragment as it is retrieved. If the
hash value mismatches then the fragment is rejected
and the system tries to find some other replica of it.
In this way, even if some of the fragments are altered
by the intruder, the system tolerates the attack and
continues to provide service.

EFRS also addresses fault tolerance by using the
same mechanism as in case of active intrusion
attacks. The enforced replication of the fragments
allows the system to keep working even in case of
failure of some storage nodes.

Some limitations have also been observed in case of
EFRS. The encryption, fragmentation and hashing is
done on a s ingle central server. Failure of central
node can result into loss of crucial data such as
encryption keys.

0

5000

10000

15000

20000

1 2 3 4 5 6

Time (ms)

No. of Failed
Nodes

0

5000

10000

15000

20000

25000

1 2 3 4 5 6

Time (ms)

No. of Failed
Nodes

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 621

References

[1] Victoria Spurrett, University of Kent, UK,
“Intrusion tolerance in dynamic distributed systems”
[2] Y. Deswarte, L. Blain, J.-C. Fabre. Intrusion
Tolerance in Distributed Computing Systems.
Proceedings of the IEEE Symposium on Security and
Privacy.
[3] J.C. Fabre, Y. Deswarte, B. Randell Designing
Secure and R eliable Applications using
Fragmentation- Redundancy-Scattering: an O bject-
Orientated Approach in 1st European Dependable
Computing Conference

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 622

