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Abstract 
Several Methods are proposed for associate rule generation. They 
try to solve two problems related to redundancy and relevance of 
associate rules. In this paper we introduce a method called 
CONDCLOSE which provides the reduction of PRINCE algorithm 
run-time proposed by Hamrouni and al. in 2005.In fact, we show 
how the notions of pseudo context and condensed context which 
we introduce in this paper allows us to attempt these three 
objectives: no redundancy, relevance of associate rules and 
minimizing run time of associate rule extraction. 
Keywords: Associate rule, Minimal generator extraction, 
Pseudo context, condensed context. 

1. Introduction 

The extraction of association rules from transactional 
database was the object of several research departing from 
those of Agrawal [1]. However, the problems of the 
redundancy and the quality of the extracted rules still exist 
[2, 5, 6, 14, 16]. 
Indeed, we are interested in the last researches to this 
problem. 
As far as we are concerned, an approach introduced by 
[12] consists on extracting a subset of non-redundant rules 
and without losing any information [3]. This latter is based 
on the mathematical foundations of the Formal Analysis of 
Concepts (FCA) [7]. Its principle is to extract a sub-set of 
Itemsets called Closed Itemsets from which a subset of 
rules is generated. 
In spite of these efforts, the volume of rules remains 
important. For this reason, the researches of [15] were 
realized to introduce the notion of minimal generators. 
Indeed, the minimal generators are a minimal set of items 
the closure of which allows to generate all the closed 
Itemsets [13, 15, 17]. 
However [9] noticed that the relation of partial order 
between the minimal generators allows to reduce the 
volume of association rules and he presents an algorithm  
 
 

 
called PRINCE.  But, as it was mentioned in [9, 11], the 
runtime of minimal generators extraction as well as that 
their organization in partial order remains exponential. 
In this article, we present a n ew method called 
CONDCLOSE to reduce the run time by acting on the three 
steps defined in [9]. 
Before explaining in details our contribution, we are going 
to introduce in the first section, some basic concepts 
necessary to facilitate the understanding of our method. In 
the second section, we will present the principle of the 
PRINCE algorithm. In the third section, we are going to 
illustrate our method with an example. Afterward, we will 
make a comparative study with the PRINCE algorithm in 
order to present our contribution. 

2. Basic notions 

• Formal context: let (O, I, R) be a triplet with O and I 
are respectively sets of objects (eg. transactions), sets 
of items and R ⊆ O x I is a b inary relation between 
objects and items. 

• Itemset: It is a nonempty subset of items. An itemset 
consisting of k elements is called k-itemset. 

• Support of an i temset: the frequency of simultaneous 
occurrence of an itemset (I’) in the set of objects called 
Supp(I’).  

• Frequent itemset (FI): FI is a set of items whose 
support ≥ a user-specified threshold called minsup. All 
its subsets are frequent. The set of all frequent itemsets 
called SFI. 

• Associative rule: Any association rule having the 
following form: A  B, where A and B are disjoint 
itemsets with A is its premise (condition) and B is its 
conclusion. 

• Confidence: The confidence of an association rule A  
B measures how often items in B appear in objects that 
contain A: 

                (1) 
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      Supp(A,B): the number of objects that the itemset A 
and the itemset B share. 
o Supp(A): le number of objects that contain A. 

Based on the degree of confidence, association rules  
can be classified as follows:  
o Exact rule: rule which confidence = 1  
o Approximative rule: rule which confidence < 1 
o Valid rule: rule which confidence ≥ a user-

specified threshold called minconf  
• Galois connection: In A formal context K is a triplet K 

= (O, I, R), For every set of objects A ⊆ O, the set f(A) 
of attributes in relation R with the objects of A is as 
follow:    

                                     (2) 
   Dually, for every set of attributes B ⊆ I, the set g(B) of 

objects in relation R with the attributes of B is as 
follow:     

                                         (3) 
The two functions f and g defined between objects and 
attributes form a Galois connection.  
The operators f ° g(B) and g ° f(A) called φ are the 
closure operators.  
φ verifies the following properties ∀X, Y ⊆ I (resp. 
∀X1, Y1⊆ O):  

                                         (4) 
                                               (5) 
                                           (6) 
• Frequent Closed Itemset (FCI): An Itemset I’ is called 

closed if I’ = φ(I’). In other words, an itemset I’ is 
closed if the intersect of the objects to which I’ belongs 
is equal to I’ and it is frequent if its support  ≥ minsup. 
SFCI is the Set of Frequent Closed Itemset. 

• Minimal Generator: An Itemset c ⊆ I is a cl osed 
Itemset generator I’ ⇔ φ(c) = I ’. c i s a m inimal 
frequent generator if its support is ≥ minsup. 

     The set of frequent minimal generators of I’ called 
GMFI’’ 

                      (7)   
• Negative border (GBd-): the set on no-frequents 

minimal generator. 
• Positive border (GBd+): Let GMFk is the set of all 

minimal frequent generators:  
          (8)         
• Equivalent classes: The closure operator φ divides the 

set of frequents Itemsets into disjoint equivalent classes 
including elements having the same support. The 
largest element in a given class is an FCI called I’ and 
smaller ones are the GMFI’ [12].  

• Comparable equivalent classes: The classes Ci and Cj 
are only said comparable if FCI of Ci covers that of Cj. 

 

      The five following notions are defined in [7]: 

• Formal concept: a formal concept is a m aximal 
objects-attributes subset where objects and attributes 
are in relation. More formally, it is a pair (A, B) with A 
⊆ O and B ⊆ I, which verifies  f(A) = B and g(B) = A.  
A is the extent of the concept and B is its intent. 

• Partial order relation between concepts≤: The partial 
order relation called ≤ is defined as follow: for two 
formal concepts (A1, B1) and (A2, B2): (A1, B1) ≤ (A2, 
B2) ⇔ A2 ⊆ A1 and B1 ⊆B2. 

• Meet / Join: for each concepts (A1, B1) and (A2, B2), it 
exist a greatest lower bound (resp. a least upper bound) 
called Meet (resp. Join) denoted as ((A1, B1) ∧ (A2, 
B2) (resp. (A1, B1) ∨ (A2, B2)) defined by: 

                      (9) 
                     (10) 
• Galois lattice: The Galois lattice associated to a formal 

context K is a graph composed of a set of formal 
concepts equipped with the partial order relation ≤. 
This graph is a representation of all the possible 
maximal correspondences between a subset of objects 
O and a subset of attributes I.  

• Frequent minimal generators lattice: A partial ordered 
structure of which each equivalent class includes the 
appropriate frequent minimal generators [4].  

• Iceberg lattice: A partial ordered structure of frequent 
closed Itemsets having only the join operator. It is 
considered a superior semi-lattice [15].  

• Generic base of exact associative rules and 
Informative base of approximative associative rules: 
Generic base of exact associative rules (GBE) is a base 
composed of non-redundant generic rules having a 
confidence ratio equal to 1 [3]. Given a context (O, I, 
R), the set of frequent closed itemsets (SFCI) and the 
set of minimal generators GMFk : 

   (11)                                                                                                          
      While informative base of approximative associative 

(GBA) rules is defined as follows: 

     (12) 
The union of those bases constitutes a g eneric base 
without losing information. 

 3. Principle of PRINCE algorithm 

This algorithm can extract the minimal generators and 
build a structure partially ordered called Frequent minimal 
generators lattice in order to perform a v ertical scan 
(bottom to top) to find the frequent closed itemsets and 
then extract the informative association rules are fewer 
non-redundant rules and without loss of information. 
First, PRINCE extracts minimal generators of the initial 
context (∅ is the first generator to extract, its support is 
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equal to the cardinality of the initial context). It 
determines, all k-generator candidates and by doing this, at 
each level k, a self-join of (k-1)-generators. Subsequently, 
it eliminates any candidate of size k if at least one of its 
subsets is not a minimal generator or if its support is equal 
to one of them. GMFk is the union of all sets of frequent 
minimal generators determined in each level, while no-
frequents form the GBd-.  
Second, GMFk and GBd- be used to form a minimal 
generators lattice and this by comparing each minimal 
generator g to the list L of immediate successors of its 
subsets of size k-1. If L is empty then g is added to this list, 
otherwise, four cases are possible for each g1∈ L knowing 
that Cg and Cg1 are the equivalence classes of g and g1: 
• If (g∪g1) is a minimal generator then Cg and Cg1 are 

no-comparables. 
• If Supp(g) = Supp(g1) = Supp(g∪g1) then g and g1∈ a 

same class. 
• If Supp(g) < Supp(g1) = Supp(g∪g1) then g become 

the successor of g1. 
• If Supp(g) < Supp(g1) ≠ Supp(g∪g1) then Cg and Cg1 

are no-comparables. 
If (g∪g1) is not a minimal generator, the calculation of its 
support is performed by applying this proposal [15]: 
Let GMk  = GMFk ∪ GBd- (set of all generators), an itemset 
I’ is no-generator if: 
                       (13) 
The research process of Supp(g∪g1) stops whene one of 
its subsets has a strictly lower support than that of g and g1 
because this implies that Cg and Cg1 are no-comparables. 
After constructing the minimal generators lattice, PRINCE 
determines for each equivalence class, starting from C∅ to 
the top, the frequent closed itemset and built the Iceberg 
lattice by applying this proposal: 
Let I1 and I2 are two frequent closed itemsets such as I1 
covers I2 by the partial order relation and GMFI1 is the set 
of the frequent minimal generator of I1: 
                                                            (14)  
The two lattices are used to extract exact and 
approximative rules. Note that the rules with confidence = 
1 are exact and an implications extracted from each node 
(intra-node). Whereas, the approximative rules have 
confidence ≥ minconf are implications involving two 
comparable equivalence classes. These rules are 
implications between nodes.  
As proved in [9] all generated rules are no redundant and 
guarantee that there is no loss of information. But it should 
be noted that the complexity of the first step (the extraction 
of frequent minimal generators) is exponential, which 
implies an overall processing time high in the case of 
scattered contexts.   

4. Proposed Method  

Before presenting our method, we are going to define two 
notions: 
• Pseudo context: is a triplet (O’, I’, R’) with O’ and I’ 

are respectively sets of objects, sets of Itemsets and R’ 
⊆ O’ x I’ is a b inary relation between objects and 
Itemsets. 

• Condensed Context: is a t riplet (O”, I”, R”) created 
from pseudo context (O’, I’, R’); with O” is a set of 
objects ∈ O’, I” is formed of sets of Itemsets ∈ I’ 
called {I} and R’’ ⊆ O” x I” is a b inary relation 
between O” and I”. Any couple (o, {I}) ∈ R” indicate 
the fact that the object o ∈ O” is associated to the 
Itemsets of {I} which ∈ I”. 

 
In fact, to extract non redundant rules and without losing 
information by minimizing the time of the treatment, we 
present a n ew algorithm called CONDCLOSE (Closed 
Condensed) based on the notion of condensed context. It 
contains three steps. The first one allows to extract the 
frequent minimal generators as well as the positive border 
(GBd +) by condensing the initial context. 
The second one uses the minimal generators and the 
condensed context results to construct a frequent minimal 
generators lattice. The last step determines the generic base 
of exact and approximative rules associated to the lattice.   

 
The algorithm CONDCLOSE is presented as follows: 

 
Algorithm CONDCLOSE 
Input : C extraction context ; s minsup ; f minconf  
Ouput : GBE ; GBA 
 
Begin 
      EXT-GEN-COND(C, GMF, GBd+, C”)            
                 // Extraction of minimal generators and  GBd+  
       CONS-GEN-LATTICE(GMF, GBd+,  C”, Tgen)  
                    // Construction of minimal generators lattice  
       DETERM-GBE-GBA(Tgen, GBE, GBA) 
              // Determine GBE, GBA      
        return(GBE, GBA) 
End 

 
 
In the following sections, we are going to explain in details 
the three steps of our method as well as the two algorithms: 
EXT-GEN-COND and CONS-GEN-LATTICE. 
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4.1 Extraction of minimal generators 

In this section, we present the algorithm EXT-GEN-COND 
which allows to extract the frequent minimal generators 
(GMFk) and the positive border (GBd+) by using the notion 
of condensed context. 
In fact, we use the initial context to extract the 1-frequent 
generators. Afterward, we make a self-join of this set in 
order to determine the 2-candidate generators. Every 
candidate having minimal generators subsets, a s upport 
different to the support of its subsets and upper to the 
minsup will be added to the list of the frequent minimal 
generators. The candidate having an equal support at least 
to the support of one of their subsets is going to be stored 
in a positive border (GBd+).  
Having determined the 2-frequent generators, we 
concatenate the columns of their subsets. This new context 
is called pseudo context and it is used during the research 
of the 3-minimal generators.  
Then, a new pseudo context will be created with the same 
principle which is a co ncatenation of the columns of the 
subsets of the 3-generators.  
Finally, the process stops when there are no generators to 
be determined. 
The last pseudo context is used to form a new condensed 
context by grouping the Itemsets which share the same 
objects in a single column. This condensed context as well 
as the list of the minimal generators and the positive border 
will be used in the second step. 
The algorithm EXT-GEN-COND is presented as follows, 
knowing that: 
• GMF: set of frequent minimal generators. 
• GBd+: positive border 
• Gk: set of generators size k 
• ELIMINATE: Having the set of generators, this function 

eliminate the generators that the support < minsup.   
• DETERM-GENERATOR: it is the function which takes in 

input Gk and return the set of (k+1)- generators. 
     This is done by making a self-joint of k-generators and 

by eliminating every candidate of size (k+1) non 
generator.  A  candidate is called non generator if at 
least one of its subsets is not. Or its support is equal to 
that of the one of them. The calculation of the support 
of the subsets is made by using the condensed context.  

     This function also allows to save the candidate 
generators which have the same support as one of their 
subsets in GBd+. 

• CONS-PSEUDO-CONT: allows to create a pseudo context 
by grouping the columns of the subsets of every 
element of the list of k-generators in input. 

• CONS-COND-CONCEPTS: it is the function which allows 
to group the columns of Itemsets which share the same 
objects. 

Algorithm EXT-GEN-COND 
Input : C extraction contexte ; s minsup  
Output : GMF ; GBd+ ;   C’’ condensed contexte  
 
Begin 
       C’ ← C ; GMF ← ∅ ; GBd+ ← ∅ ; k ← 1  
       G1  ←   list of 1-itemsets 
       G1 ← ELIMINATE (G1, s)                                          
       while Gk.gen ≠ ∅ do 
           Gk+1 ← DETERM-GENERATOR(Gk, C’, GBd+)   
           C’← CONS-PSEUDO-CONT(Gk+1, C’)        
             GMF ← GMF  ∪ Gk 

              k ← k + 1 
       end while 
       C’’← CONS-COND-CONCEPTS(C’) 
       return(GMF ; GBd+ ;  C’’) 
End 

 
Example 1: 
We present an illustrative example to explain the detailed 
progress of the first step. 
Let’s be the binary context (O, I, R) as follows, minsup = 2 
and minconf = 0,5: 
  

 
 

R a1 a2 a3 a4 a5 
o1 1 0 1 1 0 
o2 0 1 1 0 1 
o3 1 1 1 0 1 
o4 0 1 0 0 1 
o5 1 1 1 0 1       

                                     Fig. 1: Initial context 
      

• The list of 1-frequent generators put in an increasing 
order of support = {a1:3, a2:4, a3:4, a5: 4}; GBd+ = ∅. 
 

• The determination of 2-frequent generators consists in 
making a self-joint of the elements of the 1-generators 
set and in eliminating every 2-candidate generator if at 
least one of its subsets has no minimal generator or if 
its support is equal to that of the one of them.  
We start with joining {a1} and {a2}, the 2-candidate 
generator = {a 1a2}, its support = 2 = minsup ≠ 
Supp({a1}) ≠ Supp({a2}) so the first  2 -frequent 
generator = {a1a2 : 2}. 
Afterwards, by joining {a1} and {a3}, the 2-candidate 
generator = {a 1a3}, its support = 3 >  minsup but = 
Supp({a1}). So, it is not added to the list of 2-frequent 
generators and it will be added to GBd+ which becomes 
= {a1a3 : 3}. 

O
 : 

se
t o

f o
bj

ec
ts

 

I : set of items 
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In the case of the joint of {a1} and {a5}, the support of 
2-candidate generator {a1a5} = 2 = m insup ≠ 
Supp({a1}) and Supp({a5}) thus it becomes a new 2-
frequent generator. The GBd+ remains the same. 
 At the end of the treatment, the 2-frequent generators 
are = {a 1a2 :2, a1a5 :2, a2a3 :3, a3a5 :3} and the GBd+ 
= {a1a3 :3, a2a5 :4}. 
 
We build a n ew pseudo context in which every 2-
generator forms a column. We eliminate the objects o4 
and o5 because no 2-generator is associated. 

 

 
 
 
 

            Fig. 2: Pseudo  context 1 
 
 

• To determine the 3-generators, we use the pseudo 
context 1 (Fig. 2), we make a self-joint of the 2-
frequent generators. The Itemset result after the joint of 
{a1a2} and {a1a5} is {a1a2a5}. Its support = 2 =  
minsup but = Supp({a1a2}) = Supp({a1a5}) thus it will 
not be added to the list of the 3-generators.  
By finishing the joints of the 2-generators, the list of 
the 3-generators is empty. 

 
• The final list of the frequent minimal generators 

classified in an increasing order of support (GMF) is: 
{a1a2 :2, a1a5 :2, a2a3 :3, a3a5 :3, a1 :3, a2 4; a3 4; a5 
4}. The GBd+ = {a1a3 :3, a2a5 :4}. 
 

 
At the end of this step, a new condensed context is built 
from the pseudo context 1 (Fig. 2). It consists on grouping 
the columns in which the Itemsets have the same support 
and share the same objects. Every column of the 
condensed context is formed by all the generators of the 
pseudo context columns which were grouped to create it.  
 

 
In our example, the first and the second column of the 
pseudo context 1 (Fig. 2) have the same support = 2 and 
share the same objects: {o3, o5}. Thus they are going to be 
grouped to form a single column in which the set of 
Itemsets is {a1a2; a1a5}. 
Also for the third and the fourth column which is 
transformed into a single column, the set of Itemsets is 
{a2a3; a3a5}. 

 

              
 
                        
 
 
 
                       Fig. 3: Condensed context 

 

4.2 Construction of the minimal generators lattice 

Having determined the list of the frequent minimal 
generators (GMF) and GBd+, we form, in an incremental 
way, equivalent classes containing generators having the 
same support and the same closure and we build a partially 
ordered structure called minimal generators lattice.  
The proposed algorithm, in this step, is called CONS-GEN-
LATTICE. It consists on forming, first of all, for every 
column of the condensed context a class in an increasing 
order of the support of associated Itemsets. These classes 
contain the minimal generators which were grouped to 
form the column, in other words, the elements of all the 
associated Itemsets.  
• After creating a new class associated to the column of 

the condensed context, we compare it with the classes 
already created according to a l essening order of the 
support. The comparison consists in verifying if the 
generators of the new class have at least a subset 
included in the generators of the old class. Its purpose 
is to determine the relation of parent and son between 
them. Every old class of the same condition becomes 
the parent of the new class and its parents will not be 
compared with it. 
 

Afterward, we start by treating the rest of the generators in 
increasing order of the support. Let’s g a new generator to 
insert in the lattice: 
• Compare g with the list of the classes having the same 

support as it, noted LClegl, if the union of g and at least 
one of the generators of these classes belongs to the 
positive border GBd+, g becomes an element of this 
class.  

• Create a new class containing only g if it is  still up to 
no class. 

• Compare g with the list of the classes having a lower 
support noted LClinf in decreasing order. If it is a 
subset of the generators of a given class Clinf in LClinf 
or if at least one of the generators of Clinf union g 
belongs to GBd+, Clinf becomes the parent of g and the 
parents of Clinf will not be compared to g. 

• At the end of the treatment we add a ∅ class containing 
an empty set as a generator, and connect it to any class 
which has no sons. 
 

                                                      a1a2 a1a5 a2a3 a3a5 
o2 0 0 1 1 
o3 1 1 1 1 
o5 1 1 1 1 

                                                      {a1a2 ; a1a5} {a2a3 ; a3a5} 
o2 0 1 
o3 1 1 
o5 1 1 
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The algorithm CONS-GEN-LATTICE appears as follows, 
knowing that: 
• Cl: indicate a class of the lattice. Every class is formed 

by a quadruplet (gen: list of the generators, supp: 
support, parents: list of the parents, sons: list of the 
sons.  

• CR-CLASS-CONT-COND: a function which allows to 
create for every column of the condensed context a 
class. Its generators are the Itemsets associated with 
this column.  

• DEL-GEN-CONT-COND: a function which allows to 
eliminate the list of the frequent generators associated 
to the columns of the condensed context. 

• INSER-CLASS-EQUAL-SUP: a function comparing a 
generator to the list of the classes having the same 
support as it. If its union with at least one of the 
generators of one of these classes belongs to GBd+, it 
becomes an element of this class. The function returns 
1 in that case otherwise 0.  

• CR-CLASS-GEN: a f unction which allows to create a 
class containing a given generator having for support 
the size of the generator, a list of the parents and sons 
is empty. 

• ADD-RELATION: a procedure which allows to determine 
relation parent/son between a given class and classes of 
lower supports. If the generators of the given class are 
included in a class of lower support or if their union 
with at least one of the generators of this last one 
belongs to GBd+, the class of lower support becomes 
the parent of the given class and its parents will not be 
compared with it. 

• ADD-CLASS∅: allows to add class and to connect it to 
any classes which have no sons. 

 
Algorithm CONS-GEN-LATTICE 
Input: GMF ; GBd+ ; C”: condensed context   
Output : Tgen : minimal generators lattice 
Begin 
    Tgen ← ∅ 
    Tgen ← CR-CLASS-CONT-COND(C”)          
    GMF ← DEL-GEN-CONT-COND(C”)                
     for any generator g ∈ GMF do      
        ResltIns ← INSER-CLASS-EQUAL-SUP(g, GBd+, Tgen)   
        if (ResltIns ==0) then                                    
            Cl ← CR-CLASS-GEN(g, Tgen)             
            ADD-RELATION(Cl, GBd+, Tgen)    
        end if 
      end for 
       ADD-CLASS∅(Tgen)      
      return(Tgen) 
End 
 

 

Contrary to PRINCE, we construct the lattice basing on the 
final condensed context because every column contains the 
generators of big sizes which have the same support and 
the same closure. This allows us to reduce the time during 
the construction of the lattice.  
Besides, the insertion of a g enerator in lattice does not 
require the calculation of the support of the union, which is 
expensive and which implies the use of the list of the 
frequent and no frequent generators. 
 
Continuation of example 1: 
To better understand the construction of the generators 
lattice, we complete the explanation of the example used in 
the first step.    
• We begin by sorting the condensed context in 

increasing order of the support, we note that the 
condensed context, in our example, need’nt to be sorted 
because it was already sorted.  

 
 
 
 

 
 
                       Fig. 4: Condensed context sorted 
  
• We insert a first class in the lattice containing the 

generators of the first column: {a1a2} and {a1a5} 
having for support 2. 

    

 
     

Fig. 5: Lattice after treatment of the first column 
 

• We introduce the second class in the lattice. It 
corresponds to the second column of the condensed 
context. It contains the following generators: {a2a3} 
and {a3a5} and a support = 3. 

 Besides, because two of these subsets ({a2} ; {a5}) are 
included in the generators of the first class it becomes 
the son of the first one. 

 
 
 
 
 
 
 
 
 

             Fig. 6: Lattice after treatment of the second column 
 

 {a1a2 ; a1a5} {a2a3 ; a3a5} 
o2 0 1 
o3 1 1 
o5 1 1 

 

 

     

 

 
 

({a1a2, a1a5} : 2) 

({a1a2, a1a5} : 2) 

({a2a3, a3a5} : 3) 
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• Afterward, we start by treating the rest of the 
generators in increasing order of the support. The list 
of the rest generators is: {a1:3 ; a2 :4 ; a3 :4 ; a5 :4}. 

 
• Insertion of {a1 :3} in the lattice: 
  

o   We compare it with the classes having the same 
support and if it is not allocated to any one of it, 
we create a cl ass and we compare it with the 
classes of lower support to establish the necessary 
relation between them.  

      We notice that the class [{a2a3, a3a5} :3] has the 
same support as the generator to be inserted, then, 
we verify if the union of {a1} and its generators 
belongs to GBd +. Because {a1} ∪ {a2a3, a3a5} ≠ 
GBd+, we create a new class [{a1} :3]. 

 
o Afterward, we compare if this generator is 

included in the generators of the classes of lower 
support. In our case, a class [{a1a2, a1a5} :2] 
having a lower support than a new class and {a1} 
is included in its generators. Then it becomes the 
parent of the new class. 

 
 
 
 
 

 
 
 
 

Fig. 7: Lattice after treatment of {a1:3} 
 

• The insertion of {a2 :4}:  
o The lattice does not contain any class that has the 

support 4, we create a new class and we compare 
it with the generators of three classes of the lattice 
in decreasing order of the support. 
 

o We begin by comparing {a2} with the class 
[{a2a3, a3a5} :3], we notice that it is included in 
its generators then the created class becomes the 
son of it. The parents of [{a2a3, a3a5} :3] will not 
be compared to {a2}. 
 

o Comparing [{a2} :3] with the class [{a1} :3]: 
shows that the inclusion = ∅. In addition {a2} ∪ 
{a1} (the generator of this class) ∉ GBd+ thus its 
two classes are incomparable. 
 

                    
 
 
 
 
 
 
 
                      Fig. 8: Lattice after treatment of {a2:4} 
 

• The insertion of {a3 :4}: 
o We compare {a3} with the class [{a1} :4]  which 

has the same support = 4 and we notice that the 
union of {a3} and its generator ∉ GBd+. Then we 
create a new class [{ a3} :4]. 

o Afterward, we compare if this generator is 
included in the generators of the classes of lower 
support in decreasing order: 

-   We verify if {a3} is included in the 
generators of the class [{a2a3, a3a5}: 3] thus 
it becomes the son of this class. Therefore, 
we are not going to compare the parent of 
this class in {a3}. 

 
-   While {a3} is not included in the generator of 

the class [{a1}: 3], the union {a1} and {a3} 
∈ GBd+. This implies that [{a3}: 4] becomes 
the son of [{a1}: 3]. 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9: Lattice after treatment of {a3 :4} 

 
• The insertion of {a5 :4} in the lattice: 

The class [{a2} :4] has a support = 4 which is the same 
as the generator to be inserted. We notice that the union 
of {a5} and its generators belongs to GBd+ then we add 
{a5} to this class. 
 
 

• The insertion of ∅ in lattice: 
At the end of the treatment, we insert a class having for 
generator {∅} and it becomes the son of both classes 
[{a3}: 4] and [{a2, a5}: 4]. 

 

    

 

     

 

 
 

    

     

 

 

 
 

    

 

     

 

 

 

 
 

({a1a2, a1a5} : 2) 

({a2a3, a3a5} : 3) {a1 : 3} 

{a2 : 4} {a3 : 4} 

({a1a2, a1a5} : 2) 

({a2a3, a3a5} : 3) {a1 : 3} 

{a2 : 4} 

({a1a2, a1a5} : 2) 

({a2a3, a3a5} : 3) {a1 : 3} 
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            Fig. 10: minimal generators lattice 

4.2 Exact and approximative rules extraction 

We notice that the principle of this third step is the same as 
the one presented in the algorithm PRINCE. Indeed, after 
the construction of the lattice of generators, we build the 
lattice of Iceberg containing frequent closed Itemsets 
associated to every equivalent class according to partial 
order relation. We use these two lattices to generate the 
basis of the exact and approximative rules during the third 
step [3]. 
 
Continuation of the example 1: 

Having built the lattice of minimal generators, we will 
construct the lattice Iceberg associated: 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 

 

             Fig. 11: Iceberg lattice 
 

The generic exact associative rules (GBE) and the 
informative approximative rules (GBA) are presented as 
follow knowing that a minconf = 0,5.  

 
 

GBE 

     Règle Confiance 

 R1 : a5  a2 1 

 R2 : a2  a5 1 

 R3 : a1  a3 1 

 R4 : a2a3  a5 1 

 R5 : a3a5  a2 1 

 R6 : a1a2  a3a5 1 

 R7 : a1a5  

a2a3 
1 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Comparative study 

To estimate our method CONDCLOSE, we are going to 
compare it with the algorithm PRINCE with regard to the 
level of the run time by using four bases of test 
(benchmark)1, the first two are scattered:  
• T40I10D100K is a base containing transactions 

generated randomly within the framework of a 
dbQUEST project. It imagines the behavior of the 
buyers in supermarkets. 

• RETAIL: a base of a Belgian hypermarket.  

1 http://fimi.ua.ac.be/data/ 

 

 

     

GBA 

     Règle Confiance 

 R8 : a3  a1 0,75 

 R9 : a3  a2a5 0,75 

 R10 : a3  a1a2a5 0,50 

 R11 : a1  a2a3a5 0,66 

 R12 : a5  a2a3 0,75 

R13 : a2  a3a5 0,75 

R14 : a5  a1a2a3 0,50 

R15 : a2  a1a3a5 0,50 

R16 : a2a3  a1a5 0,66 

R17 : a3a5  a1a2 0,66 

({a2, a5} : 4) 

({∅} : 5) 

({a3} : 4) 

({a1} : 3) ({a2a3}, {a3a5} : 3) 

({a1a2}, {a1a5} : 2) 

({a2a5} : 4) 

({∅} : 5) 

({a3} : 4) 

({a1a3} : 3) ({a2a3a5} : 3) 

({a1a2a3a5} : 2) 

{∅} 

{a2a3} {a3a5} 

{a2} {a5} {a3} 

{a1} 

{a1a2}  {a1a5} 
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While both following ones are dense: 
• PUMSB contains statistical data. 
• MUSHROOM contains the characteristics of diverse 

sorts of mushrooms. 
The table (Table 1) contains their main characteristics: the 
name, the type (dense, scattered), the number of objects, 
the number of attributes as well as the average number of 
attributes associated  to an object. 

5.1 Comparative study by using the scattered bases  

In this section, we are going to present the influence of 
both scattered bases: T40I10D100K and RETAIL on the 
global processing time of CONDCLOSE and PRINCE. 
Afterward, we are going to compare their run time by 
varying the values of supports in the case of every base. 
As shown in table (Table 1), the base T40I10D100K is 
characterized by a high number of objects (100 000) and 
the average number of attributes associated to an object 
(40).  Consequently, we observe that the first step of 
CONDCLOSE is the most expensive with regard to the 
processing time of the second and the third step. This is 
due to the number of the minimal generators which 
increases when we minimize the support.  
During the first step, the calculation time of the supports of 
the minimal generators is smaller than the time generated 
by PRINCE. This is due to the fact that CONDCLOSE uses 
pseudo contexts to determine the candidate generators and 
eliminate the non frequent generators while PRINCE bases 
himself on the initial context during all the treatment of 
this step. 
During, the second step, the condensed context and the 
positive border (GBd+) generated in the first step of 
CONDCLOSE plays an important role in the minimization of 
the processing time.  
We also notice that the construction of the Iceberg lattice 
and the extraction of the generic exact and approximative 
rules are systematic from the lattice of the minimal 
generators in the case of the base T40I10D100K and the 
base RETAIL. This implies a low processing time of the 
third step of both algorithms in the case of both bases. 
 

 
 

Fig. 12:   The run time of PRINCE and CONDCLOSE at different minimum 
support levels on T40I10D100K 

Indeed, according to the table (Table 1), RETAIL contains 
a high number of objects (88 162) and the average number 
of attributes associated to an object (10), which explains 
that it is scattered. The processing time of the first step of 
CONDCLOSE is reduced because of the use of pseudo 
contexts during the extraction of the minimal generators.  
We also notice that the condensed context and the small 
size of the positive border (GBd+) make a reduced time of 
the second step with regard to PRINCE.  
 

 
Fig. 13: The run time of PRINCE and CONDCLOSE at different minimum 

support levels on RETAIL 

5.2 Comparative study by using the dense bases  

This section contains an analysis of the impact of the 
characteristics of two bases: PUMSB and MUSHROOM 
on the processing time of both algorithms CONDCLOSE and 
PRINCE.     
Indeed, the reduced number of objects and the average 
number of attributes associated to an object (74) 
characterize the base PUMSB. The calculation of the 
supports of the candidate generators by using all the base 
every time is the major handicap of the algorithm PRINCE.  
While the use of the pseudo contexts by CONDCLOSE, 
which is a compact structure containing only the k-minimal 
generators used to determine the (k+1)-candidate 
generators is an important means of reduction of the 
calculation time of support and thus of the first step.  
We observe that the second and the third step have no 
significant influence on the run time of CONDCLOSE and 
PRINCE. 
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Fig. 14:   The run time of PRINCE and CONDCLOSE at different minimum 
support levels on PUMSB 

In fact, in the case of the MUSHROOM, the reduced 
number of objects as well as the average number of 
attributes associated to an object make a minimum time of 
treatment of the first step in the case of both algorithms.  
However, with a high support, the number of minimal 
generators becomes low and because PRINCE treats the 
notion of negative border (GBd-) which have a high size. 
This latter make a long time of research during the 
construction of the minimal generators lattice.  
As for CLOSECOND which treats the positive border 
(GBd+) that has a l ower size than the negative border 
(GBd+) which implies a lower cost of the second step with 
regards to that of PRINCE. 
The third step does not influence the global processing 
time of both algorithms in the tests, with PUMSB and with 
MUSHROOM. 

         

 
Fig. 15:   The run time of PRINCE and CONDCLOSE at different minimum 

support levels on MUSHROOM 
 

5. Conclusion 

With the aim of reducing the processing time of extraction 
of associative rules and improving the quality of the 
extracted knowledge, we presented a n ew method called 
CONDCLOSE based on the notion of condensed context 
allowing to build a structure partially ordered by frequent 
minimal generators which will be used, afterward, to 
determine the generic base of associative rules. 
We notice that the reduction of the size of the initial 
context in every iteration of extraction of k-generators by 
building pseudo contexts which contains only these last 
ones as well as their associated objects, minimizes the time 
of the treatment and more exactly the time of the self-joint 
and that of the elimination of non frequent generators.  
Besides, the use of the condensed context which is the 
result of the first step to build the lattice facilitates the 
definition of the elements of every equivalent classes and 
the relation of inclusion between them. 

So, our method allows to transform the scattered contexts 
into small-sized dense contexts to minimize the number of 
candidate generators and reduce the calculation time of the 
support. 
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Table 1: Characteristics of the bases of test 
 

 
 

     Name Type Nombre of 
objects 

Nombre of 
attributs 

Average number of 
attributes / an object 

T40I10D100K scattered 100 000 1 000 40 
RETAIL scattered 88 162 16 470 10 
PUMSB  Dense 49 046 7 117 74 
MUSHROOM  Dense 8 124 119 23 
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