
CONDCLOSE: new algorithm of association rules extraction
Hamida AMDOUNI1, Mohamed Mohsen GAMMOUDI2

 1Computer Science Department, FST

Tunisia
Member of Research Laboratory RIADI

2Higher School of Statistics and Information Analysis
University of Carthage,

Member of Research Laboratory RIADI
Charguia II, Tunisia

Abstract
Several Methods are proposed for associate rule generation. They
try to solve two problems related to redundancy and relevance of
associate rules. In this paper we introduce a method called
CONDCLOSE which provides the reduction of PRINCE algorithm
run-time proposed by Hamrouni and al. in 2005.In fact, we show
how the notions of pseudo context and condensed context which
we introduce in this paper allows us to attempt these three
objectives: no redundancy, relevance of associate rules and
minimizing run time of associate rule extraction.
Keywords: Associate rule, Minimal generator extraction,
Pseudo context, condensed context.

1. Introduction

The extraction of association rules from transactional
database was the object of several research departing from
those of Agrawal [1]. However, the problems of the
redundancy and the quality of the extracted rules still exist
[2, 5, 6, 14, 16].
Indeed, we are interested in the last researches to this
problem.
As far as we are concerned, an approach introduced by
[12] consists on extracting a subset of non-redundant rules
and without losing any information [3]. This latter is based
on the mathematical foundations of the Formal Analysis of
Concepts (FCA) [7]. Its principle is to extract a sub-set of
Itemsets called Closed Itemsets from which a subset of
rules is generated.
In spite of these efforts, the volume of rules remains
important. For this reason, the researches of [15] were
realized to introduce the notion of minimal generators.
Indeed, the minimal generators are a minimal set of items
the closure of which allows to generate all the closed
Itemsets [13, 15, 17].
However [9] noticed that the relation of partial order
between the minimal generators allows to reduce the
volume of association rules and he presents an algorithm

called PRINCE. But, as it was mentioned in [9, 11], the
runtime of minimal generators extraction as well as that
their organization in partial order remains exponential.
In this article, we present a n ew method called
CONDCLOSE to reduce the run time by acting on the three
steps defined in [9].
Before explaining in details our contribution, we are going
to introduce in the first section, some basic concepts
necessary to facilitate the understanding of our method. In
the second section, we will present the principle of the
PRINCE algorithm. In the third section, we are going to
illustrate our method with an example. Afterward, we will
make a comparative study with the PRINCE algorithm in
order to present our contribution.

2. Basic notions

• Formal context: let (O, I, R) be a triplet with O and I
are respectively sets of objects (eg. transactions), sets
of items and R ⊆ O x I is a b inary relation between
objects and items.

• Itemset: It is a nonempty subset of items. An itemset
consisting of k elements is called k-itemset.

• Support of an i temset: the frequency of simultaneous
occurrence of an itemset (I’) in the set of objects called
Supp(I’).

• Frequent itemset (FI): FI is a set of items whose
support ≥ a user-specified threshold called minsup. All
its subsets are frequent. The set of all frequent itemsets
called SFI.

• Associative rule: Any association rule having the
following form: A  B, where A and B are disjoint
itemsets with A is its premise (condition) and B is its
conclusion.

• Confidence: The confidence of an association rule A 
B measures how often items in B appear in objects that
contain A:

 (1)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 550

 Supp(A,B): the number of objects that the itemset A
and the itemset B share.
o Supp(A): le number of objects that contain A.

Based on the degree of confidence, association rules
can be classified as follows:
o Exact rule: rule which confidence = 1
o Approximative rule: rule which confidence < 1
o Valid rule: rule which confidence ≥ a user-

specified threshold called minconf
• Galois connection: In A formal context K is a triplet K

= (O, I, R), For every set of objects A ⊆ O, the set f(A)
of attributes in relation R with the objects of A is as
follow:

 (2)
 Dually, for every set of attributes B ⊆ I, the set g(B) of

objects in relation R with the attributes of B is as
follow:

 (3)
The two functions f and g defined between objects and
attributes form a Galois connection.
The operators f ° g(B) and g ° f(A) called φ are the
closure operators.
φ verifies the following properties ∀X, Y ⊆ I (resp.
∀X1, Y1⊆ O):

 (4)
 (5)
 (6)
• Frequent Closed Itemset (FCI): An Itemset I’ is called

closed if I’ = φ(I’). In other words, an itemset I’ is
closed if the intersect of the objects to which I’ belongs
is equal to I’ and it is frequent if its support ≥ minsup.
SFCI is the Set of Frequent Closed Itemset.

• Minimal Generator: An Itemset c ⊆ I is a cl osed
Itemset generator I’ ⇔ φ(c) = I ’. c i s a m inimal
frequent generator if its support is ≥ minsup.

 The set of frequent minimal generators of I’ called
GMFI’’

 (7)
• Negative border (GBd-): the set on no-frequents

minimal generator.
• Positive border (GBd+): Let GMFk is the set of all

minimal frequent generators:
 (8)
• Equivalent classes: The closure operator φ divides the

set of frequents Itemsets into disjoint equivalent classes
including elements having the same support. The
largest element in a given class is an FCI called I’ and
smaller ones are the GMFI’ [12].

• Comparable equivalent classes: The classes Ci and Cj
are only said comparable if FCI of Ci covers that of Cj.

 The five following notions are defined in [7]:

• Formal concept: a formal concept is a m aximal
objects-attributes subset where objects and attributes
are in relation. More formally, it is a pair (A, B) with A
⊆ O and B ⊆ I, which verifies f(A) = B and g(B) = A.
A is the extent of the concept and B is its intent.

• Partial order relation between concepts≤: The partial
order relation called ≤ is defined as follow: for two
formal concepts (A1, B1) and (A2, B2): (A1, B1) ≤ (A2,
B2) ⇔ A2 ⊆ A1 and B1 ⊆B2.

• Meet / Join: for each concepts (A1, B1) and (A2, B2), it
exist a greatest lower bound (resp. a least upper bound)
called Meet (resp. Join) denoted as ((A1, B1) ∧ (A2,
B2) (resp. (A1, B1) ∨ (A2, B2)) defined by:

 (9)
 (10)
• Galois lattice: The Galois lattice associated to a formal

context K is a graph composed of a set of formal
concepts equipped with the partial order relation ≤.
This graph is a representation of all the possible
maximal correspondences between a subset of objects
O and a subset of attributes I.

• Frequent minimal generators lattice: A partial ordered
structure of which each equivalent class includes the
appropriate frequent minimal generators [4].

• Iceberg lattice: A partial ordered structure of frequent
closed Itemsets having only the join operator. It is
considered a superior semi-lattice [15].

• Generic base of exact associative rules and
Informative base of approximative associative rules:
Generic base of exact associative rules (GBE) is a base
composed of non-redundant generic rules having a
confidence ratio equal to 1 [3]. Given a context (O, I,
R), the set of frequent closed itemsets (SFCI) and the
set of minimal generators GMFk :

 (11)
 While informative base of approximative associative

(GBA) rules is defined as follows:

 (12)
The union of those bases constitutes a g eneric base
without losing information.

 3. Principle of PRINCE algorithm

This algorithm can extract the minimal generators and
build a structure partially ordered called Frequent minimal
generators lattice in order to perform a v ertical scan
(bottom to top) to find the frequent closed itemsets and
then extract the informative association rules are fewer
non-redundant rules and without loss of information.
First, PRINCE extracts minimal generators of the initial
context (∅ is the first generator to extract, its support is

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 551

equal to the cardinality of the initial context). It
determines, all k-generator candidates and by doing this, at
each level k, a self-join of (k-1)-generators. Subsequently,
it eliminates any candidate of size k if at least one of its
subsets is not a minimal generator or if its support is equal
to one of them. GMFk is the union of all sets of frequent
minimal generators determined in each level, while no-
frequents form the GBd-.
Second, GMFk and GBd- be used to form a minimal
generators lattice and this by comparing each minimal
generator g to the list L of immediate successors of its
subsets of size k-1. If L is empty then g is added to this list,
otherwise, four cases are possible for each g1∈ L knowing
that Cg and Cg1 are the equivalence classes of g and g1:
• If (g∪g1) is a minimal generator then Cg and Cg1 are

no-comparables.
• If Supp(g) = Supp(g1) = Supp(g∪g1) then g and g1∈ a

same class.
• If Supp(g) < Supp(g1) = Supp(g∪g1) then g become

the successor of g1.
• If Supp(g) < Supp(g1) ≠ Supp(g∪g1) then Cg and Cg1

are no-comparables.
If (g∪g1) is not a minimal generator, the calculation of its
support is performed by applying this proposal [15]:
Let GMk = GMFk ∪ GBd- (set of all generators), an itemset
I’ is no-generator if:
 (13)
The research process of Supp(g∪g1) stops whene one of
its subsets has a strictly lower support than that of g and g1
because this implies that Cg and Cg1 are no-comparables.
After constructing the minimal generators lattice, PRINCE
determines for each equivalence class, starting from C∅ to
the top, the frequent closed itemset and built the Iceberg
lattice by applying this proposal:
Let I1 and I2 are two frequent closed itemsets such as I1
covers I2 by the partial order relation and GMFI1 is the set
of the frequent minimal generator of I1:
 (14)
The two lattices are used to extract exact and
approximative rules. Note that the rules with confidence =
1 are exact and an implications extracted from each node
(intra-node). Whereas, the approximative rules have
confidence ≥ minconf are implications involving two
comparable equivalence classes. These rules are
implications between nodes.
As proved in [9] all generated rules are no redundant and
guarantee that there is no loss of information. But it should
be noted that the complexity of the first step (the extraction
of frequent minimal generators) is exponential, which
implies an overall processing time high in the case of
scattered contexts.

4. Proposed Method

Before presenting our method, we are going to define two
notions:
• Pseudo context: is a triplet (O’, I’, R’) with O’ and I’

are respectively sets of objects, sets of Itemsets and R’
⊆ O’ x I’ is a b inary relation between objects and
Itemsets.

• Condensed Context: is a t riplet (O”, I”, R”) created
from pseudo context (O’, I’, R’); with O” is a set of
objects ∈ O’, I” is formed of sets of Itemsets ∈ I’
called {I} and R’’ ⊆ O” x I” is a b inary relation
between O” and I”. Any couple (o, {I}) ∈ R” indicate
the fact that the object o ∈ O” is associated to the
Itemsets of {I} which ∈ I”.

In fact, to extract non redundant rules and without losing
information by minimizing the time of the treatment, we
present a n ew algorithm called CONDCLOSE (Closed
Condensed) based on the notion of condensed context. It
contains three steps. The first one allows to extract the
frequent minimal generators as well as the positive border
(GBd +) by condensing the initial context.
The second one uses the minimal generators and the
condensed context results to construct a frequent minimal
generators lattice. The last step determines the generic base
of exact and approximative rules associated to the lattice.

The algorithm CONDCLOSE is presented as follows:

Algorithm CONDCLOSE
Input : C extraction context ; s minsup ; f minconf
Ouput : GBE ; GBA

Begin
 EXT-GEN-COND(C, GMF, GBd+, C”)
 // Extraction of minimal generators and GBd+
 CONS-GEN-LATTICE(GMF, GBd+, C”, Tgen)
 // Construction of minimal generators lattice
 DETERM-GBE-GBA(Tgen, GBE, GBA)
 // Determine GBE, GBA
 return(GBE, GBA)
End

In the following sections, we are going to explain in details
the three steps of our method as well as the two algorithms:
EXT-GEN-COND and CONS-GEN-LATTICE.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 552

4.1 Extraction of minimal generators

In this section, we present the algorithm EXT-GEN-COND
which allows to extract the frequent minimal generators
(GMFk) and the positive border (GBd+) by using the notion
of condensed context.
In fact, we use the initial context to extract the 1-frequent
generators. Afterward, we make a self-join of this set in
order to determine the 2-candidate generators. Every
candidate having minimal generators subsets, a s upport
different to the support of its subsets and upper to the
minsup will be added to the list of the frequent minimal
generators. The candidate having an equal support at least
to the support of one of their subsets is going to be stored
in a positive border (GBd+).
Having determined the 2-frequent generators, we
concatenate the columns of their subsets. This new context
is called pseudo context and it is used during the research
of the 3-minimal generators.
Then, a new pseudo context will be created with the same
principle which is a co ncatenation of the columns of the
subsets of the 3-generators.
Finally, the process stops when there are no generators to
be determined.
The last pseudo context is used to form a new condensed
context by grouping the Itemsets which share the same
objects in a single column. This condensed context as well
as the list of the minimal generators and the positive border
will be used in the second step.
The algorithm EXT-GEN-COND is presented as follows,
knowing that:
• GMF: set of frequent minimal generators.
• GBd+: positive border
• Gk: set of generators size k
• ELIMINATE: Having the set of generators, this function

eliminate the generators that the support < minsup.
• DETERM-GENERATOR: it is the function which takes in

input Gk and return the set of (k+1)- generators.
 This is done by making a self-joint of k-generators and

by eliminating every candidate of size (k+1) non
generator. A candidate is called non generator if at
least one of its subsets is not. Or its support is equal to
that of the one of them. The calculation of the support
of the subsets is made by using the condensed context.

 This function also allows to save the candidate
generators which have the same support as one of their
subsets in GBd+.

• CONS-PSEUDO-CONT: allows to create a pseudo context
by grouping the columns of the subsets of every
element of the list of k-generators in input.

• CONS-COND-CONCEPTS: it is the function which allows
to group the columns of Itemsets which share the same
objects.

Algorithm EXT-GEN-COND
Input : C extraction contexte ; s minsup
Output : GMF ; GBd+ ; C’’ condensed contexte

Begin
 C’ ← C ; GMF ← ∅ ; GBd+ ← ∅ ; k ← 1
 G1 ← list of 1-itemsets
 G1 ← ELIMINATE (G1, s)
 while Gk.gen ≠ ∅ do
 Gk+1 ← DETERM-GENERATOR(Gk, C’, GBd+)
 C’← CONS-PSEUDO-CONT(Gk+1, C’)
 GMF ← GMF ∪ Gk

 k ← k + 1
 end while
 C’’← CONS-COND-CONCEPTS(C’)
 return(GMF ; GBd+ ; C’’)
End

Example 1:
We present an illustrative example to explain the detailed
progress of the first step.
Let’s be the binary context (O, I, R) as follows, minsup = 2
and minconf = 0,5:

R a1 a2 a3 a4 a5
o1 1 0 1 1 0
o2 0 1 1 0 1
o3 1 1 1 0 1
o4 0 1 0 0 1
o5 1 1 1 0 1

 Fig. 1: Initial context

• The list of 1-frequent generators put in an increasing
order of support = {a1:3, a2:4, a3:4, a5: 4}; GBd+ = ∅.

• The determination of 2-frequent generators consists in
making a self-joint of the elements of the 1-generators
set and in eliminating every 2-candidate generator if at
least one of its subsets has no minimal generator or if
its support is equal to that of the one of them.
We start with joining {a1} and {a2}, the 2-candidate
generator = {a 1a2}, its support = 2 = minsup ≠
Supp({a1}) ≠ Supp({a2}) so the first 2 -frequent
generator = {a1a2 : 2}.
Afterwards, by joining {a1} and {a3}, the 2-candidate
generator = {a 1a3}, its support = 3 > minsup but =
Supp({a1}). So, it is not added to the list of 2-frequent
generators and it will be added to GBd+ which becomes
= {a1a3 : 3}.

O
 :

se
t o

f o
bj

ec
ts

I : set of items

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 553

In the case of the joint of {a1} and {a5}, the support of
2-candidate generator {a1a5} = 2 = m insup ≠
Supp({a1}) and Supp({a5}) thus it becomes a new 2-
frequent generator. The GBd+ remains the same.
 At the end of the treatment, the 2-frequent generators
are = {a 1a2 :2, a1a5 :2, a2a3 :3, a3a5 :3} and the GBd+
= {a1a3 :3, a2a5 :4}.

We build a n ew pseudo context in which every 2-
generator forms a column. We eliminate the objects o4
and o5 because no 2-generator is associated.

 Fig. 2: Pseudo context 1

• To determine the 3-generators, we use the pseudo
context 1 (Fig. 2), we make a self-joint of the 2-
frequent generators. The Itemset result after the joint of
{a1a2} and {a1a5} is {a1a2a5}. Its support = 2 =
minsup but = Supp({a1a2}) = Supp({a1a5}) thus it will
not be added to the list of the 3-generators.
By finishing the joints of the 2-generators, the list of
the 3-generators is empty.

• The final list of the frequent minimal generators

classified in an increasing order of support (GMF) is:
{a1a2 :2, a1a5 :2, a2a3 :3, a3a5 :3, a1 :3, a2 4; a3 4; a5
4}. The GBd+ = {a1a3 :3, a2a5 :4}.

At the end of this step, a new condensed context is built
from the pseudo context 1 (Fig. 2). It consists on grouping
the columns in which the Itemsets have the same support
and share the same objects. Every column of the
condensed context is formed by all the generators of the
pseudo context columns which were grouped to create it.

In our example, the first and the second column of the
pseudo context 1 (Fig. 2) have the same support = 2 and
share the same objects: {o3, o5}. Thus they are going to be
grouped to form a single column in which the set of
Itemsets is {a1a2; a1a5}.
Also for the third and the fourth column which is
transformed into a single column, the set of Itemsets is
{a2a3; a3a5}.

 Fig. 3: Condensed context

4.2 Construction of the minimal generators lattice

Having determined the list of the frequent minimal
generators (GMF) and GBd+, we form, in an incremental
way, equivalent classes containing generators having the
same support and the same closure and we build a partially
ordered structure called minimal generators lattice.
The proposed algorithm, in this step, is called CONS-GEN-
LATTICE. It consists on forming, first of all, for every
column of the condensed context a class in an increasing
order of the support of associated Itemsets. These classes
contain the minimal generators which were grouped to
form the column, in other words, the elements of all the
associated Itemsets.
• After creating a new class associated to the column of

the condensed context, we compare it with the classes
already created according to a l essening order of the
support. The comparison consists in verifying if the
generators of the new class have at least a subset
included in the generators of the old class. Its purpose
is to determine the relation of parent and son between
them. Every old class of the same condition becomes
the parent of the new class and its parents will not be
compared with it.

Afterward, we start by treating the rest of the generators in
increasing order of the support. Let’s g a new generator to
insert in the lattice:
• Compare g with the list of the classes having the same

support as it, noted LClegl, if the union of g and at least
one of the generators of these classes belongs to the
positive border GBd+, g becomes an element of this
class.

• Create a new class containing only g if it is still up to
no class.

• Compare g with the list of the classes having a lower
support noted LClinf in decreasing order. If it is a
subset of the generators of a given class Clinf in LClinf
or if at least one of the generators of Clinf union g
belongs to GBd+, Clinf becomes the parent of g and the
parents of Clinf will not be compared to g.

• At the end of the treatment we add a ∅ class containing
an empty set as a generator, and connect it to any class
which has no sons.

 a1a2 a1a5 a2a3 a3a5
o2 0 0 1 1
o3 1 1 1 1
o5 1 1 1 1

 {a1a2 ; a1a5} {a2a3 ; a3a5}
o2 0 1
o3 1 1
o5 1 1

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 554

The algorithm CONS-GEN-LATTICE appears as follows,
knowing that:
• Cl: indicate a class of the lattice. Every class is formed

by a quadruplet (gen: list of the generators, supp:
support, parents: list of the parents, sons: list of the
sons.

• CR-CLASS-CONT-COND: a function which allows to
create for every column of the condensed context a
class. Its generators are the Itemsets associated with
this column.

• DEL-GEN-CONT-COND: a function which allows to
eliminate the list of the frequent generators associated
to the columns of the condensed context.

• INSER-CLASS-EQUAL-SUP: a function comparing a
generator to the list of the classes having the same
support as it. If its union with at least one of the
generators of one of these classes belongs to GBd+, it
becomes an element of this class. The function returns
1 in that case otherwise 0.

• CR-CLASS-GEN: a f unction which allows to create a
class containing a given generator having for support
the size of the generator, a list of the parents and sons
is empty.

• ADD-RELATION: a procedure which allows to determine
relation parent/son between a given class and classes of
lower supports. If the generators of the given class are
included in a class of lower support or if their union
with at least one of the generators of this last one
belongs to GBd+, the class of lower support becomes
the parent of the given class and its parents will not be
compared with it.

• ADD-CLASS∅: allows to add class and to connect it to
any classes which have no sons.

Algorithm CONS-GEN-LATTICE
Input: GMF ; GBd+ ; C”: condensed context
Output : Tgen : minimal generators lattice
Begin
 Tgen ← ∅
 Tgen ← CR-CLASS-CONT-COND(C”)
 GMF ← DEL-GEN-CONT-COND(C”)
 for any generator g ∈ GMF do
 ResltIns ← INSER-CLASS-EQUAL-SUP(g, GBd+, Tgen)
 if (ResltIns ==0) then
 Cl ← CR-CLASS-GEN(g, Tgen)
 ADD-RELATION(Cl, GBd+, Tgen)
 end if
 end for
 ADD-CLASS∅(Tgen)
 return(Tgen)
End

Contrary to PRINCE, we construct the lattice basing on the
final condensed context because every column contains the
generators of big sizes which have the same support and
the same closure. This allows us to reduce the time during
the construction of the lattice.
Besides, the insertion of a g enerator in lattice does not
require the calculation of the support of the union, which is
expensive and which implies the use of the list of the
frequent and no frequent generators.

Continuation of example 1:
To better understand the construction of the generators
lattice, we complete the explanation of the example used in
the first step.
• We begin by sorting the condensed context in

increasing order of the support, we note that the
condensed context, in our example, need’nt to be sorted
because it was already sorted.

 Fig. 4: Condensed context sorted

• We insert a first class in the lattice containing the

generators of the first column: {a1a2} and {a1a5}
having for support 2.

Fig. 5: Lattice after treatment of the first column

• We introduce the second class in the lattice. It
corresponds to the second column of the condensed
context. It contains the following generators: {a2a3}
and {a3a5} and a support = 3.

 Besides, because two of these subsets ({a2} ; {a5}) are
included in the generators of the first class it becomes
the son of the first one.

 Fig. 6: Lattice after treatment of the second column

 {a1a2 ; a1a5} {a2a3 ; a3a5}
o2 0 1
o3 1 1
o5 1 1

({a1a2, a1a5} : 2)

({a1a2, a1a5} : 2)

({a2a3, a3a5} : 3)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 555

• Afterward, we start by treating the rest of the
generators in increasing order of the support. The list
of the rest generators is: {a1:3 ; a2 :4 ; a3 :4 ; a5 :4}.

• Insertion of {a1 :3} in the lattice:

o We compare it with the classes having the same
support and if it is not allocated to any one of it,
we create a cl ass and we compare it with the
classes of lower support to establish the necessary
relation between them.

 We notice that the class [{a2a3, a3a5} :3] has the
same support as the generator to be inserted, then,
we verify if the union of {a1} and its generators
belongs to GBd +. Because {a1} ∪ {a2a3, a3a5} ≠
GBd+, we create a new class [{a1} :3].

o Afterward, we compare if this generator is

included in the generators of the classes of lower
support. In our case, a class [{a1a2, a1a5} :2]
having a lower support than a new class and {a1}
is included in its generators. Then it becomes the
parent of the new class.

Fig. 7: Lattice after treatment of {a1:3}

• The insertion of {a2 :4}:
o The lattice does not contain any class that has the

support 4, we create a new class and we compare
it with the generators of three classes of the lattice
in decreasing order of the support.

o We begin by comparing {a2} with the class
[{a2a3, a3a5} :3], we notice that it is included in
its generators then the created class becomes the
son of it. The parents of [{a2a3, a3a5} :3] will not
be compared to {a2}.

o Comparing [{a2} :3] with the class [{a1} :3]:
shows that the inclusion = ∅. In addition {a2} ∪
{a1} (the generator of this class) ∉ GBd+ thus its
two classes are incomparable.

 Fig. 8: Lattice after treatment of {a2:4}

• The insertion of {a3 :4}:
o We compare {a3} with the class [{a1} :4] which

has the same support = 4 and we notice that the
union of {a3} and its generator ∉ GBd+. Then we
create a new class [{ a3} :4].

o Afterward, we compare if this generator is
included in the generators of the classes of lower
support in decreasing order:

- We verify if {a3} is included in the
generators of the class [{a2a3, a3a5}: 3] thus
it becomes the son of this class. Therefore,
we are not going to compare the parent of
this class in {a3}.

- While {a3} is not included in the generator of

the class [{a1}: 3], the union {a1} and {a3}
∈ GBd+. This implies that [{a3}: 4] becomes
the son of [{a1}: 3].

Fig. 9: Lattice after treatment of {a3 :4}

• The insertion of {a5 :4} in the lattice:

The class [{a2} :4] has a support = 4 which is the same
as the generator to be inserted. We notice that the union
of {a5} and its generators belongs to GBd+ then we add
{a5} to this class.

• The insertion of ∅ in lattice:
At the end of the treatment, we insert a class having for
generator {∅} and it becomes the son of both classes
[{a3}: 4] and [{a2, a5}: 4].

({a1a2, a1a5} : 2)

({a2a3, a3a5} : 3) {a1 : 3}

{a2 : 4} {a3 : 4}

({a1a2, a1a5} : 2)

({a2a3, a3a5} : 3) {a1 : 3}

{a2 : 4}

({a1a2, a1a5} : 2)

({a2a3, a3a5} : 3) {a1 : 3}

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 556

 Fig. 10: minimal generators lattice

4.2 Exact and approximative rules extraction

We notice that the principle of this third step is the same as
the one presented in the algorithm PRINCE. Indeed, after
the construction of the lattice of generators, we build the
lattice of Iceberg containing frequent closed Itemsets
associated to every equivalent class according to partial
order relation. We use these two lattices to generate the
basis of the exact and approximative rules during the third
step [3].

Continuation of the example 1:

Having built the lattice of minimal generators, we will
construct the lattice Iceberg associated:

 Fig. 11: Iceberg lattice

The generic exact associative rules (GBE) and the
informative approximative rules (GBA) are presented as
follow knowing that a minconf = 0,5.

GBE

 Règle Confiance

 R1 : a5  a2 1

 R2 : a2  a5 1

 R3 : a1  a3 1

 R4 : a2a3  a5 1

 R5 : a3a5  a2 1

 R6 : a1a2  a3a5 1

 R7 : a1a5 

a2a3
1

5. Comparative study

To estimate our method CONDCLOSE, we are going to
compare it with the algorithm PRINCE with regard to the
level of the run time by using four bases of test
(benchmark)1, the first two are scattered:
• T40I10D100K is a base containing transactions

generated randomly within the framework of a
dbQUEST project. It imagines the behavior of the
buyers in supermarkets.

• RETAIL: a base of a Belgian hypermarket.

1 http://fimi.ua.ac.be/data/

GBA

 Règle Confiance

 R8 : a3  a1 0,75

 R9 : a3  a2a5 0,75

 R10 : a3  a1a2a5 0,50

 R11 : a1  a2a3a5 0,66

 R12 : a5  a2a3 0,75

R13 : a2  a3a5 0,75

R14 : a5  a1a2a3 0,50

R15 : a2  a1a3a5 0,50

R16 : a2a3  a1a5 0,66

R17 : a3a5  a1a2 0,66

({a2, a5} : 4)

({∅} : 5)

({a3} : 4)

({a1} : 3) ({a2a3}, {a3a5} : 3)

({a1a2}, {a1a5} : 2)

({a2a5} : 4)

({∅} : 5)

({a3} : 4)

({a1a3} : 3) ({a2a3a5} : 3)

({a1a2a3a5} : 2)

{∅}

{a2a3} {a3a5}

{a2} {a5} {a3}

{a1}

{a1a2} {a1a5}

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 557

While both following ones are dense:
• PUMSB contains statistical data.
• MUSHROOM contains the characteristics of diverse

sorts of mushrooms.
The table (Table 1) contains their main characteristics: the
name, the type (dense, scattered), the number of objects,
the number of attributes as well as the average number of
attributes associated to an object.

5.1 Comparative study by using the scattered bases

In this section, we are going to present the influence of
both scattered bases: T40I10D100K and RETAIL on the
global processing time of CONDCLOSE and PRINCE.
Afterward, we are going to compare their run time by
varying the values of supports in the case of every base.
As shown in table (Table 1), the base T40I10D100K is
characterized by a high number of objects (100 000) and
the average number of attributes associated to an object
(40). Consequently, we observe that the first step of
CONDCLOSE is the most expensive with regard to the
processing time of the second and the third step. This is
due to the number of the minimal generators which
increases when we minimize the support.
During the first step, the calculation time of the supports of
the minimal generators is smaller than the time generated
by PRINCE. This is due to the fact that CONDCLOSE uses
pseudo contexts to determine the candidate generators and
eliminate the non frequent generators while PRINCE bases
himself on the initial context during all the treatment of
this step.
During, the second step, the condensed context and the
positive border (GBd+) generated in the first step of
CONDCLOSE plays an important role in the minimization of
the processing time.
We also notice that the construction of the Iceberg lattice
and the extraction of the generic exact and approximative
rules are systematic from the lattice of the minimal
generators in the case of the base T40I10D100K and the
base RETAIL. This implies a low processing time of the
third step of both algorithms in the case of both bases.

Fig. 12: The run time of PRINCE and CONDCLOSE at different minimum
support levels on T40I10D100K

Indeed, according to the table (Table 1), RETAIL contains
a high number of objects (88 162) and the average number
of attributes associated to an object (10), which explains
that it is scattered. The processing time of the first step of
CONDCLOSE is reduced because of the use of pseudo
contexts during the extraction of the minimal generators.
We also notice that the condensed context and the small
size of the positive border (GBd+) make a reduced time of
the second step with regard to PRINCE.

Fig. 13: The run time of PRINCE and CONDCLOSE at different minimum

support levels on RETAIL

5.2 Comparative study by using the dense bases

This section contains an analysis of the impact of the
characteristics of two bases: PUMSB and MUSHROOM
on the processing time of both algorithms CONDCLOSE and
PRINCE.
Indeed, the reduced number of objects and the average
number of attributes associated to an object (74)
characterize the base PUMSB. The calculation of the
supports of the candidate generators by using all the base
every time is the major handicap of the algorithm PRINCE.
While the use of the pseudo contexts by CONDCLOSE,
which is a compact structure containing only the k-minimal
generators used to determine the (k+1)-candidate
generators is an important means of reduction of the
calculation time of support and thus of the first step.
We observe that the second and the third step have no
significant influence on the run time of CONDCLOSE and
PRINCE.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 558

Fig. 14: The run time of PRINCE and CONDCLOSE at different minimum
support levels on PUMSB

In fact, in the case of the MUSHROOM, the reduced
number of objects as well as the average number of
attributes associated to an object make a minimum time of
treatment of the first step in the case of both algorithms.
However, with a high support, the number of minimal
generators becomes low and because PRINCE treats the
notion of negative border (GBd-) which have a high size.
This latter make a long time of research during the
construction of the minimal generators lattice.
As for CLOSECOND which treats the positive border
(GBd+) that has a l ower size than the negative border
(GBd+) which implies a lower cost of the second step with
regards to that of PRINCE.
The third step does not influence the global processing
time of both algorithms in the tests, with PUMSB and with
MUSHROOM.

Fig. 15: The run time of PRINCE and CONDCLOSE at different minimum

support levels on MUSHROOM

5. Conclusion

With the aim of reducing the processing time of extraction
of associative rules and improving the quality of the
extracted knowledge, we presented a n ew method called
CONDCLOSE based on the notion of condensed context
allowing to build a structure partially ordered by frequent
minimal generators which will be used, afterward, to
determine the generic base of associative rules.
We notice that the reduction of the size of the initial
context in every iteration of extraction of k-generators by
building pseudo contexts which contains only these last
ones as well as their associated objects, minimizes the time
of the treatment and more exactly the time of the self-joint
and that of the elimination of non frequent generators.
Besides, the use of the condensed context which is the
result of the first step to build the lattice facilitates the
definition of the elements of every equivalent classes and
the relation of inclusion between them.

So, our method allows to transform the scattered contexts
into small-sized dense contexts to minimize the number of
candidate generators and reduce the calculation time of the
support.

Acknowledgments

My special thanks go to Mrs. Ahlem Dababi Zwawi for her
help to translate this paper from French to English.

References
[1] Agrawal R., Imielinski T. and Swami A. N., “Mining

association rules between sets of items in large databases”,
In Proceedings of the International Conference on
Management of Data, ACM SIGMOD’93, Washington,
D.C., USA, page 207-216, May 1993.

[2] Agrawal R. and Srikant R., “Fast algorithms for mining
association rules”, In J. B. Bocca, M. Jarke and C. Zaniolo,
editors, Proceedings of the 20th International Conference on
Very Large Databases, Santiago, Chile, p.p. 478-499, June
1994.

[3] Bastide Y., Pasquier N., Taouil R., Lakhal L. and Stumme
G., “Mining minimal non-redundant association rules using
frequent closed itemsets”, Proceedings of the Intl.
Conference DOOD’2000, LNCS, Springer-verlag, July
2000, p. 972-986.

[4] Ben yahia S., Latiri C., Mineau G.W. and Jaoua A.,
“Découverte des règles associatives non r edondantes –
application aux corpus textuels”, In M.S. Hacid, Y.
Kodrattof and D. Boulanger, editors EGC, volume 17 of
Revue des Sciences Technologies de l’Information – série
RIA ECA, pages 131-144. Hermes Sciences Publications,
2003.

[5] Brin S., Motwani R., Ullman J.D. and Tsur S., “Dynamic
itemset counting and implication rules for market basket
data”, In : Proceedings ACM SIGMOD International
Conference on Management of Data, Tucson, Arizona,
USA, éd. par Peckham (Joan). pp. 255-264 - ACM Press,
1997.

[6] Cheung W., Heung W. and Zaiane O., “Incremental Mining
of Frequent Patterns Without Candidate Generation or
Support Constraint”, Proceedings of the Seventh
International Database Engineering and Applications
Symposium (IDEAS 2003), Hong Kong, China, July 2003.

[7] Ganter B. and Wille R., “Formal Concept Analysis”,
Mathematical Foundations, Springer, 1999.

[8] Han J., Pei J. and Yin Y., “Mining frequent patterns without
candidate generation”, CM-SIGMOD Int. Conf. on
Management of Data, pp. 1-12, Mai 2000.

[9] Hamrouni T., Ben Yahia S. and Slimani Y., “Prince: An
algorithm for generating rule bases without closure
computations”, In 7th International Conference on Data
Warehousing and Knowledge discovery (DaWaK’05), pages
346-355, Copenhagen, Denmark, 2005. Springer-Verlag,
LNCS.

[10] Kruse R. L. and Ryba A. J., “Data structures and program
design in c++”, Prentice Hall, 1999.

[11] Liu G., Li J. and Wong L., “A new concise representation of
frequent Itemsets using generators and a positive border”,
Knowledge and Information Systems, 17(1) : 35-56, 2008.

[12] Pasquier N., Bastide Y., Taouil R., Lakhal L., “Efficient
Mining of Association Rules Using Closed Itemset

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 559

Lattices”, Information Systems Journal, vol. 24, no 1, 1999,
p. 25-46.

[13] Pei J., Han J., Mao R., Nishio S., Tang S. and Yang D.,
“CLOSET : An efficient algorithm for mining frequent
closed Itemsets”, Proceedings of the ACM SIGMOD
DMKD’00, Dallas, TX, 2002, p. 21-30.

[14] Savasere A., Omiecinsky E. et Navathe S., “An efficient
algorithm for mining association rules in large databases”,
21st Int'l Conf. on Very Large Databases (VLDB),
Septembre 1995.

[15] Stumme G., Taouil R., Y. Basride, N. Pasquier and L.
Lakhal, “Computing Iceberg Concept Lattices with
TITANIC”, J. on Knowledge and Data Engineering (KDE),
vol. 2, no 42, 2000, p. 189-222.

[16] Zaki M., Parthasarathy S., Ogihara M. and Li W., “New
algorithms for fast discovery of association rules”, In : 3rd
Intl. Conf. on Knowledge Discovery and Data Mining, éd.
par Heckerman (D.), Mannila (H.), Pregibon (D.),
Uthurusamy (R.) et Park (M.). pp. 283-296. AAAI Press,
1997.

[17] Zaki M. and Hsiao C. J., “CHARM : An Efficient Algorithm
for Closed Itemset Mining”, Proceedings of the 2nd SIAM
International Conference on Data Mining, Arlington, April
2002, p. 34-43.

First Author Hamida Amdouni received her Master degree in
Computer Science at FST-Tunisia in 2005. Now, she prepared her
PhD at the Faculty of Sciences of Tunis. Her main research
contributions concern: data mining, Formal Concept Analysis

(FCA) and Customer Relation Management. She is member of
Research Laboratory RIADI

Second Author Mohamed Mohsen Gammoudi is currently an
Associate Professor at the Engineering School of Statistics and
Data Analysis. He is member of Research Laboratory RIADI. He
obtained his habilitation to Supervise research in 2005 at the
Faculty of Sciences of Tunis. He got his PhD in September 1993
in Sophia Antipolis Laboratory I3S/CNRS in the team of Professor
Serge Miranda. In 1989, He received his Master degree in
computer Sciences at LIRM laboratory of Montpellier, France. He
succeeded his graduate degree in computer sciences at the
University of Aix Marseille II during 1986-1988. Professor
Gammoudi’s professional work experience began in 1992 when he
was assigned as an assistant at the Technical University of Nice.
Then he was hired as a visiting professor between 1993 and 1997
at Federal University of Maranhao, Brazil. He was the head of
research group in this university during that period. In November
1997, he was Senior Lecturer at the Faculty of Sciences of Tunis.
Since, he supervised several PhD and master thesis. In 2005 he
served as Lecturer and w orked at the Higher Institute for
Computer Sciences and Management of Kairouan, Tunisia.

Table 1: Characteristics of the bases of test

 Name Type Nombre of
objects

Nombre of
attributs

Average number of
attributes / an object

T40I10D100K scattered 100 000 1 000 40
RETAIL scattered 88 162 16 470 10
PUMSB Dense 49 046 7 117 74
MUSHROOM Dense 8 124 119 23

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 560

