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Abstract. Now days, manufacturers are focusing on increasing 
the concurrency in multiprocessor system-on-a-chip (MPSoC) 
architecture instead of increasing clock speed, for embedded 
systems. Traditionally lock-based synchronization is provided to 
support concurrency; as managing locks can be very difficult and 
error prone. Transactional memories and lock based systems 
have been extensively used to provide synchronization between 
multiple processors [1] in general-purpose systems. It has been 
shown that locks have numerous shortcomings over transactional 
memory in terms of power consumption, ease of programming 
and performance. In this paper, we propose a new semaphore 
scheme for synchronization in shared cache memory in an 
MPSoC. Moreover, we have evaluated and compared our scheme 
with locks and transactions in terms of energy consumption and 
cache miss rate using SimpleScalar functional simulator. 
Keywords: Cache Coherence, Embedded Systems, Locks, 
Transactions 

1. Introduction 

A System-on-a-chip is defined as integration of all 
components of a computer or some other electronic system 
into a single integrated circuit (chip). It may contain 
digital, analog, mixed-signal, and often radio-frequency 
functions–all on a single chip substrate. Embedded system 
is a t ypical area of application of systems on chip. With 
the expansion in the technologies and requirement of fast 
and compact systems, need to have more and more 
electronic circuits on a single chip has increased 
drastically. A key to this problem leads to evolution of 
multiprocessor system on a single chip. The 
multiprocessor System-on-a-chip (MPSoC) [2] is a 
system-on-a-chip (SoC) which has multiple processors on 
a single chip, generally used for embedded applications. It 
is used by platforms that include multiple, generally 
heterogeneous, processing elements with particular 
functionalities which contain a memory hierarchy and I/O 
components. An on-chip interconnect is used to link all 
these components to each other on the chip such as AMBA 
interconnect. 
 

Multiple processors on a chip communicate through 
shared caches [4]. Integrated platforms for embedded 
applications [3] are even more aggressively pushing core-
level parallelism. SoCs with tens of cores are ordinary [5], 
[6], [7], [8] and platforms with hundreds of cores have 
been already announced [9]. Multi-core architectures have 
the advantages of increased power-performance scalability 
and faster design cycle time by utilizing replication of pre-
designed components. If applications make use of a high 
level of concurrency, then only we can attain power and 
performance benefits.  
 
One of the toughest challenges to be addressed by multi-
core architects is how to expose application parallelism in 
systems Thread level parallelism brings revolution in 
MPSoC [10]. As multiple threads can be executed 
simultaneously, it increases the real advantage of multiple 
processors on a single chip [11]. However, this also leads 
to a p roblem of concurrent access to cache by multiple 
processors. When more than one processor simultaneously 
wants to access same shared cache then there is a need of 
synchronization mechanism. 
 
In this paper, we are presenting the use of semaphores to 
solve the problem of synchronization among processors. A 
number of solutions for the problem of cache coherency 
are already given by many researchers and that we are 
going to discuss in Section 2. Section 3 describes our 
proposed solution to the problem with algorithm in detail. 
Simulation environment is discussed in Section 4 with 
Section 5 explaining our experimental results of 
performance evaluation and comparison. Lastly, the work 
is concluded in Section 6 with tentative future work. 

2. Background and Motivation 

Locks are the most common approach to synchronization 
[12]. Locked data item in memory by a processor cannot 
be locked and used by any other processor at the same 
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time. In spite of their wide use, Locks have many 
disadvantages. Locks also cause vulnerability to thread 
failures and delays: if a thread holding a lock is delayed by 
a context switching or page fault, other running threads 
may be blocked. Locks also hamper concurrency because 
they must be used conventionally that is a thread must 
acquire a lock even in rare case of conflict possibility.  
 
Authors in [13] evaluated the energy costs of two 
approaches to multiprocessor memory synchronization: 
transactional memory versus locking. The behavior of 
these synchronization approaches is highly dependent on 
the system contention level. Hence, their results shows that 
both transactional memory and standard locking code were 
not designed with energy consumption in mind, and hence 
the design of energy-aware synchronization mechanisms 
remains a largely unexplored area. Moreover, authors 
suggest a promising energy-aware approach of speculative 
synchronization for low contention programs and 
serialization approach for high contention programs to 
handle synchronization in shared-memory 
multiprocessors. 
 
C.Ferri and other authors in [14] also compared locking 
with transaction based synchronization approach. They use 
frequency, power numbers and architectural assumptions 
based on simple cores for an embedded multiprocessor. 
According to their results transactional memory can 
provide clear performance advantages and also they prove 
the need of careful consideration to hardware design in 
order to meet the tight energy constraints of an embedded 
system. It has been shown by their graphs that 
transactional memory has advantages over locks in terms 
of ease of programming, performance and energy 
consumption. However, their applicability to embedded 
multi-core platforms has yet to be explored. 
 
Energy efficient synchronization techniques for embedded 
systems like transactional memory and distributed 
semaphores were implemented by R. Iris Bahar and others 
are presented in [15]. According to their results embedded 
systems were constrained as compared to general purpose 
systems, and implementing these techniques using 
established mechanisms will not necessarily lead to an 
energy-efficient solution. To solve this issue, they 
developed an enhancement to the transactional hardware, 
which flushed the contents of the transactional cache back 
into the traditional cache hierarchy. There approach lead to 
a 17% savings in energy over a t raditional transactional 
memory implementation. Although their mechanism was 
efficient in improving energy efficiency in contrast to 
locking, but no scheme till now is best in all benchmarks 
and in every situation.  
 

We try to solve the issue of memory conflict in case of 
shared cache memory in MPSoC. Researchers have given 
many solutions like locking, transaction based 
synchronization [16] and many more but still there were 
drawback factors like high energy consumption, large 
cache miss rates, high CPU cycles etc.  
 
Hence, to address these problems, we design a n ew 
synchronization technique which we are going to discuss 
in next section. 

3. Proposed Solution 

Synchronization conflicts cause transactions to abort and 
restart, causing the system to consume energy doing 
useless work [17]. Motivated by this tradeoff, in this paper 
we propose a semaphore solution with the intent of 
decreasing energy consumption and cache miss rate. In 
real time implementation, a semaphore is an integer 
variable accessed through two standard atomic operations: 
wait and signal. We can modify the value of semaphore 
but modifications to the integer value in the wait and 
signal operations must be executed atomically. Signal 
operation increases the semaphore count by one. Hence, 
when one processor modifies the semaphore value, no 
other processor can simultaneously modify that same 
semaphore value that is no other can access the same 
semaphore or data value on which semaphore is attached. 
While a p rocessor is accessing a d ata item in shared 
memory, any other processor that tries to access the same 
must wait continuously to wait for the other processor to 
complete. However, in waiting, the processor can block 
itself. The block operation places a processor into a 
waiting queue associated with the semaphore attached 
with memory and the state of the processor is switched to 
the waiting state. 
 
A blocked processor, waiting on a s emaphore restarted 
when some other processor executes a signal operation. 
The processor is restarted by a wakeup operation, which 
changes the processor from the waiting state to the ready 
state. The processor is then placed in a ready queue. Our 
proposed algorithm as explained above is written below in 
fig 1. We have taken a counting semaphore initialized with 
value of maximum no. threads (processors) generated. A 
semaphore limits the number of concurrent users of a 
shared resource (memory) up to a maximum number. 
Threads can request access to the resource (decrementing 
the count of semaphore), and can signal that they have 
finished using the resource (incrementing the count of 
semaphore by signal operation) as we have done in our 
algorithm.  
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Algorithm 
 
Step 1. Initialize the value of semaphore x with no. of         
processors for data values in shared memory. 
Step 2. For each shared data value x 
                For each processor accessing shared memory 
                     If x!=0 then processor can access the data   
                                  and decrease the value of x by 1. 
                     Else wait and add requesting processor 
                            to waiting queue of semaphore. 
Step 3. Whenever any processor completes execution, 
increments x by 1 i.e. signal for other processor and 
remove that processor from waiting queue and start 
execution. 

 
Fig. 1 Proposed Algorithm 

 
 
 
 
 
 
 

 

 

 

 

Fig.2  Implemented architecture 

4. Simulation Environment 

When the processor needs to read from or write to a 
location in main memory, it first checks whether a copy of   
that   data   is in   the cache.  If   so,   the   processor 
immediately reads from or writes to the cache [18], [19], 
which is much faster than reading from or writing to main 
memory.  
 
Caches used in systems can be divided into  three  types:  
[20]  an  instruction  cache  which can increase speed of 
executable instruction fetch, [21] a data cache to increase 
the speed of data fetch and store, and a translation look 
aside buffer (TLB) [22] to speed up virtual-to-physical 

address translation for both instructions and data. We have 
taken data cache and TLB cache both in consideration. 
The size of the cache line is usually larger than the size of 
the usual access requested by a CPU instruction [23], 
which ranges from 1 to 16 bytes. In a Multiprocessor 
System on chip (MPSoC) there can be two types of 
memories: Private memory for each processor and shared 
memories for processor [24].  
 
We have taken up the scenario having four processors on a 
chip with private memories for each processor and two 
shared memories attached to each processor through a 
common ARM bus as shown in fig 2. We generate 
multiprocessing by using threads. The basic system 
configuration consists of a variable number of cores (each 
having direct-mapped D1and T1 cache), a s et of private 
memories (64 KB each), two shared memories (64KB). 
We use Linux operating system.  
 
We developed our architecture on SimpleScalar functional 
simulator [25]. The SimpleScalar tool set provides a 
system software infrastructure to build modeling 
applications for analysis of program performance, detailed 
microarchitectural modeling and hardware-software co-
verification. We can build modeling applications that 
simulate real programs running on a  range of modern 
processors and systems in SimpleScalar.  The tool set 
includes sample simulators ranging from a fast functional 
simulator (sim-fast) to a meticulous, dynamically 
scheduled processor model that supports non-blocking 
caches, speculative execution, and state-of-the-art branch 
prediction (sim-cache). 
 
                  

 

Fig. 3 Performance comparison in terms of energy consumption for 
locks,transactions vs semaphore 
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Fig. 4 Performance comparison in terms of cache miss rate for 
locks,transactions vs semaphore 

 
We modify the original functional simulator sim-fast to 
calculate energy consumption [26]. We use sim-cache to 
evaluate cache miss rate for different benchmarks and 
techniques. We run simulation a number of times and final 
value is the average of all simulated values. We have 
chosen parallel application benchmarks as they require a 
large number of calculations and suffering from recurring 
conflict misses. 

5. Experimental Results  

This work is to compare locks and transactions to new 
proposed scheme semaphores in terms of energy 
consumption and cache miss rate.  The bars labeled with 
locks in Fig 3 show the energy consumption of each of the 
benchmark runs in its initial configuration. The first three 
bars show memory accesses for the three benchmarks 
using locks while the next three bars are for the 
benchmarks using transactions, and the last three bars for 
our semaphores scheme. Shared memory accesses 
dominate energy consumption, making the locks 
simulation an unattractive energy-aware solution. 
Executing transactions mode consumes less energy than 
executing them with locks. Semaphores show almost 
comparable results of energy consumption to transactions. 
 
The bars in Fig 4 show the performance of each of the 
benchmark runs reported above, in terms of cache miss 
rate. A shorter run displays better performance. For all 
benchmarks, transactions exceed locks, in terms of both 
energy and performance. Switching to semaphore 
execution mode improves both energy and performance. 
For this particular splash-2 microbenchmark, running 
transactions without semaphore and transaction execution 
mode generated more re-executions, which eventually 

resulted in more conflicts. These conflicts, in turn, led to 
more wasted instruction execution and cache miss rates 
and an increased number of cycles to complete the 
simulation.  

6. Conclusion and Future Work 

This paper proposes a new semaphore synchronization 
scheme and compares it with two other well-known shared 
memory synchronization techniques namely locks and 
Transaction. We compared these schemes based on energy 
consumption and cache miss rate using three benchmarks: 
Red Black Trees, Fast Fourier Transformation and a 
splash-2 microbenchmark as these are well known parallel 
applications.   
 
We compared transactions and standard locks to our 
proposed semaphore, which require support from the OS. 
While locks can probably be optimized for energy in 
various ways (via sleep instructions, or platform-specific 
optimization), there is no standard way of modeling such 
optimizations, and no standard optimized locking package 
currently available to programmers. In this work, we do 
not claim to analyze the best of all conceivable lock 
implementations, but only to compare the standard, almost 
universally used locking libraries and transactions to 
semaphores. To summarize, for locks, the cost of 
synchronization depends on the number of locks in the 
application. For transactions, it d epends on the conflict 
rate. Therefore, transactional energy consumption depends 
on the specific scenario. For semaphore, performance 
depends on processor waiting time. 
 
Our results prove that proposed semaphore 
synchronization technique have less cache miss rate in 
comparison to locks and transactions. In case of energy 
consumption, semaphore is almost comparable to 
transaction but much better than locks as shown by 
simulation results.  
 
Our Future work consists of considering some other 
benchmarks and a wider range of architectural choices and 
hardware implementations. 
 
References 
[1] M. Herlihy, V. Luchangco, M. Moir and W. Scherer, 

Software transactional memory for dynamic-sized data 
structures, In Symposium on P rinciples of Distributed 
Computing, 2003. 

[2] S. Pasricha, N.D. Dutt and M.B. Romdhane, BMSYN: Bus 
Matrix Communication Architecture Synthesis for MPSoC, 
IEEE Transactions on Computer Aided design of 
Integrated Circuits and Systems 26(8), 2007. 

[3] I. Issenin, E. Brockmeyer, B. Durinck and N.D. Dutt, Data-
Reuse-Driven Energy-Aware Cosynthesis of Scratch Pad 

0

0.1

0.2

0.3

0.4

0.5

Ca
ch

e 
M

is
s R

at
e Red Black 

Trees

Fast Fourier 
Transform

Splash-2

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 506



Memory and Hierarchical Bus-Based Communication 
Architecture for Multiprocessor Streaming Applications, 
IEEE Transactions on Computer Aided design of 
Integrated Circuits and Systems 27(8), 2008.  

[4] D. Cho, S. Pasricha, I. Issenin, N.D. Dutt, M. Ahn and Y. 
Paek, Adaptive Scratch Pad Memory Management for 
Dynamic Behavior of Multimedia Applications, IEEE 
Transactions on C omputer Aided design of Integrated 
Circuits and Systems 28(4), 2009. 

[5] Nomadik platform. www.st.com. 
[6] PC205 platform. www.picochip.com. 
[7] Philips nexperia platform. 

www.semiconductors.philips.com.  
[8] STMicroelectronics. www.stm.com. 
[9] OMAP5910 platform. www.ti.com. 
[10] J.W. Chung, H. Chafi, C.C. Minh, A. McDonald, B.D. 

Carlstrom, C. Kozyrakis and K. Olukotun, The common 
case transactional behavior of multithreaded programs, In 
Proceedings of the 12th International Symposium on High-
Performance Computer Architecture, 2006. 

[11] I. Issenin, E. Brockmeyer, B. Durinck and N.D. Dutt, 
Multiprocessor system-on-a-chip  data reuse analysis for 
exploring customized memory hierarchies, In Proceedings 
Des. Autom. Conf., 2006, 49-52. 

[12] C.Ferri for Lock-Free Data Structures, In International 
Symposium on Computer Architecture, 1993. 

[13] T. Moreshet, R.I. Bahar and M. Herlihy, Energy-Aware 
Microprocessor Synchronization: Transactional Memory 
vs. Locks, In Workshop on M emory Performance Issues, 
2006.  

[14] C. Ferri, T. Moreshet, R.I. Bahar, L. Benini and M. 
Herlihy, A Hardware/Software Framework for supporting 
Transactional Memory in a MPSoC Environment, in ACM 
SIGARCH Computer Architecture News, 35(1), 2007. 

[15] C. Ferri, R.I. Bahar, T. Moreshet, A. Viescas and M. 
Herlihy, Energy Efficient Synchronization Techniques for 
Embedded Architectures, GLSVLSI’08, USA, 2008. 

[16] M. Loghi, M.P. and L. Benini, Cache Coherence Tradeoffs 
In Shared-Memory MpSoCs, ACM Transactions On 
Embedded Computing Systems, 5(2), 383-407, 2006. 

[17] E.W. Dijkstra, Hierarchical ordering of sequential 
processes, Acta Informatica, 1, 115-138, 1971f. 

[18] D.H. Albonesi, Selective cache ways: On-demand cache 
resource allocation, In 32nd Intl.  s ymposium on 
Microarchitecture, 1999. 

[19] R.I. Bahar, G. Albera and S. Manne, Power and 
performance tradeoffs using various caching strategies, In 
Proceedings of the Intl. Symposium on L ow Power 
Electronics and Design, 1998. 

[20] H. Akkary, R. Rajwar and S.T. Srinivasan, Checkpoint 
processing and recovery: Towards scalable large 
instruction window processors, In the 36th Intl. 
Symposium on Microarchitecture, 2003. 

[21] R. Fromm, S. Perissakis, N. Cardwell, C. Kozyrakis, B. 
McGaughy, D. Patterson, T.  Anderson and K. Yelick, The 
energy efficiency of IRAM architectures, In the 24th Intl. 
Symposium on Computer Architecture, 1997. 

[22] L. Hammond, V. Wong, M. Chen, B.D. Carlstorm, J.D. 
Davis, B. Hertzberg, M.K. Prabhu, H. Wijaya, C. 
Kozyrakis and K. Olukotun, Transactional memory 

coherence and consistency, In the 31st Intl. Symposium on 
Computer Architecture, 2004. 

[23] T. Harris and K. Fraser, Language support for lightweight 
transactions, In Conference on Object-Oriented 
Programming Systems, Languages and Applications, 2003. 

[24] M. Huang, J. Renau, S.M. Yoo and J. Torrellas, A 
framework for dynamic energy efficiency and temperature 
management, In the 33rd Intl. Symposium on 
Microarchitecture, 2000. 

[25] D. Burger and T. Austin, The SimpleScalar tool set, CS 
Dept., Univ. Wisconsin, Madison, WI, ech. Rep. 1342, 
1997, version 2.0.7.  

[26] M. Herlihy and J.E.B. Moss, Transactional Memory: 
Architectural Support I. Issenin, E. Brockmeyer, B. 
Durinck and N.D. Dutt, Data-Reuse-Driven Energy-Aware 
Cosynthesis of Scratch Pad Memory and Hierarchical Bus-
Based Communication Architecture for Multiprocessor 
Streaming Applications, IEEE Transactions on Computer 
Aided design of Integrated Circuits and Systems 27(8), 
2008.  

 
 
 
Shaily Mittal received the B.Tech. degree in Computer Science 
and Engg. from Kurukshetra University, Kurukshetra, India in 2004 
and M.Tech in computer science from M.D.U, Rohtak (India) in 
2009.  She was university ranker in her masters. She is currently 
pursuing her Phd from Jaypee University of Information & 
Technology, Waknaghat (India) from 2010. She is currently with 
ITM University, Gurgaon, India as Asst. Prof in CSE department. 
She had 5 y ears of teaching experience. She is author of 3 
research papers during her masters. Her areas of interest include 
multiprocessor systems with a s hared distributed memory 
subsystem and networks. 
 
Nitin is Ex. Distinguished Adjunct Professor of Computer Science, 
University of Nebraska, Omaha, USA. Currently he is working as 
an Assistant Professor in the Department of Computer Science & 
Engineering and I nformation Technology, Jaypee University of 
Information Technology, Waknaghat, Solan, Himachal Pradesh, 
India. 
 
 
 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 507

http://www.st.com/
http://www.picochip.com/
http://www.semiconductors.philips.com/
http://www.stm.com/
http://www.ti.com/



