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Abstract 

 
While operating in a co -channel environment, the accuracy of the 
speech processing technique degrades. When more than one person is 
talking at same time, then there occurs the co-channel speech. The 
objective of usable speech segmentation is identification and 
extraction of those portions of co-channel speech that are degraded in 
a negligible range but still needed for various speech processing 
application like speaker identification. Some features like usable 
speech measures are extracted from the co-channel signal to 
differentiate between usable and unusable types of speech. The 
features are extracted recursively by this new method and variable 
length segmentation is carried out by making sequential decision on 
class assignment of LLWNN pattern classifier. The correct 
classification using this technique is 84.5% whereas the false 
classification is 15.5%. The result shows that the proposed classifier 
gives better classification and is robust. 
Keywords: Co-channel Speech; Usable Speech, Sequential 
Detection; LLWNN; RLS; Speaker Identification. 

1.   Introduction 

Studies till date has revealed that speech has enough 
information about the speaker to perform reliable speaker 
identification even when the overall target speech energy is 
equal to that of the interferer speech energy. The performance 
of speaker identification system degrades under some co- 
 

 
channel conditions, i.e., at a particular instant of time, when 
two persons are talking, a signal of speech from the prominent 
speaker is termed as target speech. The signal from the 
interfering speaker is referred as interferer speech. It  was 
found that,  the Target-to- Interferer Ratio  (TIR) (i.e. 
energy ratio of the target and the interfering speech signals) is 
a good metric to identify portions of the speech data usable for 
speaker identification [1]. Speech signals are first transformed 
away from the time domain, which is a p rocess of feature 
extraction or preprocessing. The inevitable loss of possibly 
useful information for speech discrimination tasks is due to 
pre-processing. 
For the speaker identification system, studies have revealed 
that about 40% of the co-channel speech has all frames 
having a TIR (computed over a 10 m sec frame) greater than 
20dB is considered to be “usable. It was also found that the 
accuracy of speaker identification system can be improved 
when extracted usable speech segment is used as an input to 
the speaker identification system instead of co-channel speech 
[2].  The application of usable speech processing for speaker 
identification system is represented in Figure 1. Extracted 
usable speech segments and the co-channel data considered in 
this research and recorded over a single microphone are used by 
the speaker identification system. Hence the co-channel data 
cannot make it to compute target speech energy and 
interference speech energy. So usable speech measures which 
have high correlation with the TIR is required to determine the 
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usability in co-channel speech. 
 
 
       
Co-channel 
Speech 

 
 

Figure 1: Application of Usable Speech Extraction   System for   Speaker   
Identification   System. 

Several usable speech measures have been proposed [3, 4, 5, 6, 
7, 8] with mediocre performance in usable speech 
identification. Usable speech segments are identified measures 
to perform a frame-by-frame (of a fixed frame length) and 
consider periodicity or structure of the speech frame.  In this 
paper, we are considering a different approach to identify the 
usable speech segments. The speech data is studied at a sample-
by-sample level and the fixed size frame analysis is eliminated. 
The coefficients of the all-pole speech model is obtained by the 
recursive least squares (RLS) algorithm. These coefficients are 
used in a LLWNN pattern classifier to obtain sample-by-sample 
class associations. The Speech segmentation is achieved by 
grouping samples belonging to the same class together by the 
sequential probability ratio (SPR) test.  The SPR is a class ratio 
computed for each class and segment class associations are 
made comparing by the SPR with a fixed threshold. The 
lenience to be given for the segmentation scheme determines 
the threshold.  The term LLWNN-RLS of the algorithm 
denotes the segmentation scheme being developed. 
The system was tested with clean data recorded in the studio 
environment as well as in various noisy environments to test 
the performance and accuracy of the system in different 
environments. 
The rest of the paper is organized as follows.  A detail 
discussion of LLWNN as pattern classifier as given in [9, 10] 
and concepts of sequential detection is presented in section 2. 
Discussion about RLS-LLWNN algorithm is enumerated in 
section 3. Experimental setup, testing and result validation of 
the new classification scheme is carried out in section 4. 
Finally, section 5 draws the conclusions. 

2.   Background 

The RLS-LLWNN algorithm consists of two main parts.  First, 
the feature extraction steps using the recursive least squares 
[11] and second, a LLWNN classifier performs sequential 
classification. 

2.1. Local linear wavelet neural network 

In terms of wavelet transformation theory, wavelets in the 
following form: 

i i
x-bi nψ={ψi= ai ψ( ):a ,b R ,i Z},
ai

∈ ∈                                       (1) 

X=(x1,x2,......xn),  
X=(x1,x2,......xn),  
bi=(bi1,bi2,....bin),  
are a family of functions generated from one single function 
Ψ(x) by the operation of dilation and translation. Ψ(x), which is 
localized in both the time space and the frequency space, is 
called a mother wavelet and the parameters ai and bi are named 
the scale and translation parameters, respectively. The x 
represents inputs to the WNN model. 
In the standard form of WNN, the output of a WNN is given by 

M M x-bi-1/2
f(x)=ωiψi(x)= ωi ai ψ(( ),

i=1 i=1 ai
∑ ∑

                                   (2) 
Where Ψi is the wavelet activation function of ith unit of the 
hidden layer and ωi is the weight connecting the ith unit of the 
hidden layer to the output layer unit. Note that for the n-
dimensional input space, the multivariate wavelet basis 
function can be calculated by the tensor product of n single 
wavelet basis functions as follows. 

n
ψ(x)= ψ(xi)

i=1
Π

                                                                      (3) 
Obviously, the localization of the ith units of the hidden layer is 
determined by the scale parameter ai and the translation 
parameter bi. According to the previous researches, the two 
parameters can either be predetermined based upon the wavelet 
transformation theory or be determined by a training algorithm. 
Note that the above WNN is a kind of basis function neural 
network in the sense of that the wavelets consists of the basis 
functions.  Note that an intrinsic feature of the basis function 
networks is the localized activation of the hidden layer units, so 
that the connection weights associated with the units can be 
viewed as locally accurate piecewise constant models whose 
validity for a given input is indicated by the activation 
functions. Compared to the multilayer perceptron neural 
network, this local capacity provides some advantages such as 
the learning efficiency and the structure transparency. 
However, the problem of basis function networks is also led by 
it. Due to the crudeness of the local approximation, a l arge 
number of basis function units have to be employed to 
approximate a given system. A shortcoming of the WNN is that 
for higher dimensional problems many hidden layer units are 
needed. 
Local Linear wavelet network in fact is a modification of 
WNN. The architecture of the proposed LLWNN is shown in 
Fig. 1. Its output in the output layer is given by 

 

M
y= (ωi0+ωi1x1+....+ωinxn)ψi(x)

i=1
∑

 

         =

M x-bi-1/2
(ωi0+ωi1x1+....+ωinxn) ai ψ( )

i=1 ai
∑

,                                   (4) 
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Figure 2:  A local linear wavelet neural network. 

Where X = [ x1,x2,….,xn ] Instead of the straight forward 
weight iω  (piecewise constant model), a linear model 
 vi = 0iω + 1 1 ....i in nx xω ω+ +                                               (5) 
is introduced. The activities of the linear models vi (I = 
1,2,….,M) are determined by the associated locally active 
wavelet functions ψi(x)  (I = 1,2,….,M) thus vi is only locally 
significant. The motivations for introducing the local linear 
models into a WNN are as follows: (1) local linear models have 
been studied in some neuro-fuzzy systems and shown good 
performances [12, 13]; and (2) local linear models should 
provide a more parsimonious interpolation in high-dimension 
spaces when modeling samples are sparse. The scale and 
translation parameters and local linear model parameters are 
randomly initialized at the beginning and are optimized by 
recursive least square algorithm.  

2.2   Sequential Detection 

Wald [14] introduced the concept of sequential test and 
formulated sequential probability ratio test (SPRT). The test 
was designed to decide between two simple hypotheses 
sequentially.  Given two constant as the upper and the lower 
stopping thresholds and the hypotheses H0   and H1 , by 
observing the data and computing the accumulated log 
likelihood ratio sequentially, SPRT can make a decision on 
either continuing observation or stopping the testing accepting 
H0 and H1. This algorithm needs pre-determined threshold 
value. 

Sequential detection scheme over the LLWNN class association 
is made and hence automatically segmenting the speech data 
into two classes. Hypothesis H0 corresponds to declaring the 
segment as usable speech and H1 corresponds to declaring the 
segment as unusable speech.  On every in- coming sample of 
speech, the SPRT is done and one of the three possible 
decisions is made. 

1. Decide H0 
2. Decide H1 
3. Not enough information to decide either H0  or H1 . 
If decision 1) or 2) is made, the hypothesis testing procedure 
stops. Otherwise, an additional observation is taken, and the 
test is performed again. This process continues until a decision 
is made either in favor of H0  or H1 . Note that the number of 
observations taken to obtain a decision of H0   or H1  is not 
fixed but a random variable. 

3.   RLS-LLWNN Algorithm 

The RLS-LLWNN algorithm performs segmental 
classification of speech data. The segmental classification is 
accomplished by classifying on a sample-by-sample basis. It is 
easy to realize that a sample-by-sample classification would 
need large amounts of computational power.  Hence in this 
algorithm we extract features recursively and simultaneously 
perform classification.  
Recursive-least squares was used to obtain the auto-regressive 
model coefficients.  A step-size of 0.4 and forgetting-factor of 
0.99 was used in the computation of the weight vector w̃ [n] 
for sample point n: 

 
w̃ [n] = w̃ [n − 1] + k[n]e[n]             (6) 
 

Where e[n] is the error in prediction and  k[n] is the update 
factor which is computed using the step-size, forgetting factor 
and inverse correlation matrix.  The new weight vector 
computed at every recursion is used to determine the a 
posteriori class probabilities P(ωi |w̃ ) for the LLWNN classifier 
using equation 1. The class probabilities are then mapped as 
labels Φ[n]: “1” representing usable speech class and “0” 
represents the unusable speech class: 

1 01, ( ) ( )
[ ] {  if 

otherwise0,
P P w

n
ω ω

φ
  ∼| ≥ | 

=             (7) 

 
In the next step the segmental classification is done, by con- 
sidering a sequence of labels obtained at each recursion. We 
define the SPR j  for segment j and classes   0  and   1  as: 
 

( ) [ ]j
s

j n
s k n

j
s

n n k

n n

φ
ϕ =− − ∑

=
−

              (8) 

and 
[ ]j

s

n
k n

j
s

k

n n

φ
ϕ =∑

=
−

              (9) 

where j
sn denotes the index of the beginning sample point 

and we will use j
en to denote the segment end sample point of 

the segment j. The class ratios j
iϕ are compared to a fixed 

Ψ2 

∑ 

ΨM Ψ1 

X1                           x2                         xm     

               ω10 + ω11x1 +…+ n 

 
 
 

     ωM0 + ωM1x1 +…+ ωMnxn 

 
 
   ω20 + ω21x1 +…+ 
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j 
s 

threshold ρ . A valid range for this threshold is 0.5 ≤ ρ ≤ 1. If 
j

iϕ  ≥ ρ for any {i : 0, 1}, then the segment j between indices 
j
sn and j

en =n is assigned to class iω and a new segment with 

start point index 1 1j
sn n+ = +  

 
 
 
 
 
 
 
 
 
 
                                                                 NO 
 
 
 
` 
 
 
 
            Segment Speech 
 

Figure 3: Usable Speech Segment Classification Using Sequential LLWNN 
Classifier. 

The RLS-LLWNN algorithm performing classification of co- 
channel data is illustrated with the block diagram shown in 
figure 2. Co-channel speech is the input to the system and the 
output is speech segmented into usable and unusable classes. 
The speech segment with usable or unusable labels. The steps 
shown above the dashed line represents the training process 
and the steps below the dashed line represent the testing process. 

4.   Experimental setup and Results 

To evaluate the proposed segmentation algorithm, two separate 
schemes for training and testing were designed.  The training 
scheme requires a priori knowledge of the class associations of 
the training data. 

4.1   Training 

The training process involves the RLS coefficient computations 
and assigning labels based on the TIR values and the TIR 
threshold of 20dB. Speech data was taken from TIMIT 
database was used for all the experiments.  Subsets of 42 files 
from speakers spanning the entire dialect regions were chosen.  
The original speech was sampled at 16 kHz and re sampled to   
8 kHz after low-pass filtering to 3 kHz. Two utterances were 
read at a time (hence making a total number 861 co-channel 

utterances) and their amplitudes were scaled such that the 
energy of the two utterances are equal over the entire utterance. 
The scaled speech data was added to simulate co-channel data 
recorded over a single microphone. The TIR values were 
computed over fixed frame sizes of 10 m sec. The RLS 
coefficients w̃ [nT] were extracted to make the coefficients 
synchronous with the TIR values. T is the number of samples 
corresponding to the frame size of 10 m sec. 

4.2   Testing 

A two fold testing was carried out on the co-channel utterances. 
Out of 861 co-channel utterances, 431 utterances were used for 
the training process and the remaining 430 utterances were used 
for testing and evaluation. The first step in the testing stage is 
to perform RLS and obtain the coefficients. At every recursion 
the LLWNN classifier performs classification and assigns class 
labels as described in section 3. 
In this experiment, the value of k was chosen as 9, and SPR of 
0.65 was chosen. These numbers gave the best performance 
in the experiments.  A Correct detection (hit) is said to occur 
when both the RLS-LLWNN classifier and TIR identifies a 
segment of speech belonging to the same class and a false hit 
when RLS-LLWNN classifier and TIR declares a speech 
segment to belong in different classes. Figure 3 shows the 
comparison of detection of usable and unusable speech 
segment between proposed algorithm and using TIR with 
20dB threshold.  
The best network model was selected based on the 
classification performance of the sequential LLWNN pattern 
classifier based on the following criterion. Accordingly we have 
drawn the confusion matrix. In addition, we draw two graphs to 
reach the conclusion: One for the mean of CCR versus its 
standard deviation and the other for the mean of the ASCE 
versus mean of MDL. These graphs help us to decide which 
classifier is better in its performance. In both plots, each 
classifier is represented by a symbol. 
In the graph of the average of CCR versus its standard 
deviation, a good classifier should appear in the lower right 
corner of the graph. In the graph of average of MDL versus 
average of ASCE, a good classifier should appear in the 
bottom left of the plot. In addition, corresponding to these 
graphs, we summarize the results in Tables. In these Tables, 
the highest CCR’s are given in boldface.  
1.  C orrect Classification Rate (CCR) and Average 
Squared Classification Error (ASCE): 

c-1
CCkk=0 ; 
n

CCR
∑

=
k k

ASCE= 

c-1 2[n -cc ]
k=0

n

∑

                                 (10) 
where nk is the number of observations in class k, and CCR is 
the number of correctly classified observations in the class k. 
The best functional network is the one with both highest CCR 
and smallest ASCE. We construct the confusion matrix, which 
is a c x c matrix, its diagonal contains the number of correctly 
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classified observations, CCR, and the off-diagonal elements are 
the number of misclassified observations, mck, for k = 0,…, c - 
1 
2. Computational cost (Time of execution):  It is the 
time needed to execute the classifier till obtaining the best 
model in both calibration and validation. The less computation 
cost is the better classifier. 
3. The Minimum Description Length (MDL) criterion:  
As explained in [15], and then the best model is the one with 
the smallest MDL value. The form of the description length for 
the classification problem using the functional network is 
defined as  

m log (nk) nk 1 2L( ) =   log ( )kk 2 2 nk 1

n
i

i
ε

 
 Θ + Θ∑ 

=                     (11) 
For all k = 0… c-1, where m and k are the number of elements 
in the family and the category levels, respectively. We note that 
the principle ( )L

k
Θ  is the code length of the estimated 

parameters Θk, ∀k = 0, 1, 2,…,c-1  
1. We note that the description length has two terms: 

(a) The first term 
log( )

2
m nk

is a penalty for including too many 

parameters in the functional    network model. 

(b) The second term 1 2 log  ( )
2 1

nnk
i knk i

ε
 
 Θ∑ 

= 
 measures the 

quality of the functional network model fitted to the training 
set. Therefore, the best model is the model with the smallest 
value of its description length. MDL is the best model 
performance. In addition, we draw two graphs to reach the 
conclusion regarding the performance of RLS-KNN and RLS-
LLWNN classifiers. The graphs are drawn to represent two 
ideas, one for the mean of CCR versus its standard deviation 
and the other for the mean of the ASCE versus mean of MDL. 
These graphs help us to decide which classifier is better in its 
performance. In both plots, each classifier is represented by a 
symbol. In the graph of the average of CCR versus its standard 
deviation, a g ood classifier should appear in the lower right 
corner of the graph. In the graph of average of MDL versus 
average of ASCE, a good classifier should appear in the 
bottom left of the plot.  

Table 1: Confusion Matrix 
 

Class Class1 Class2 
Class1 86 14 
Class2 17 83 

 
The rows of the confusion matrix represent the performance of 
actual classes and the columns represent the identified classes. 
The first row represents performance of classifying usable 
speech and the second row represents the performance of 
classifying unusable speech. The percentage of correct 
identifying usable speech is 86% and unusable is 83%. The 
false alarms are 14% and 17% respectively. This gives the 
overall identification rate of 84.5%. 

The proposed algorithm was compared with the best 
performing usable speech measure: Adjacent Pitch Period 
Comparison (APPC) and with RLS-KNN as given in [16] and 
the results are presented in figure 4. It should be noted that 
the sequential LLWNN pattern classifier was able to increase 
correct detection of usable speech by 11.5 relatively with 
respect to the performance of APPC and 5.5 % relative to 
KNN classifier. 
Only 48 sample points on an average were required by the 
proposed sequential LLWNN technique to make a class 
decision i.e., at least one of the SPR, exceeding 0.65. Fixed 
320 samples (40ms) frames of speech for usable speech were 
used by other usable speech measure. Thus it can be inferred 
that less data are required by the new methods to derive 
statistical decision. 

 
 

100                    
   80 
 
  60 
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                        Hit %                      False % 

 
  
 

   

Figure 4: Comparison of Results of Detection of Usable Speech: Black bars 
represent performance using APPC measure, gray bars using sequential k- NN 

classifier and light gray representing LLWNN classifier. 
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(b) Mean CCR vs σCCR 

5.   Conclusion 

The purpose of this paper was to develop a sequential LLWNN 
classifier and evaluate it to classify the usable and unusable 
portions of co-channel speech in the context of speaker 
identification. It was found that by using [17] RLS 
coefficients as a feature and sequential LLWNN classifier; we 
were able to achieve identification rate of 84.5%.  It was 
noticed that one can obtain desired performance rate by 
changing SPR. Also, it was observed that the proposed 
algorithm requires less data to decide on the class memberships. 
In the proposed algorithm, we have used only one set of 
features; however due to the fact that speech is non- linear in 
nature and single a feature can not model entire system. This 
leads to poor classification performance.  Therefore to improve 
the classification rate, one can think of using the usable speech 
measures itself as a feature for the sequential LLWNN classifier. 
In the current research, the SPR was chosen based on heuristics. 
It is of our next interest and we intend to use a larger data base, 
from medical science and/or business sector to evaluate the 
performance of the proposed technique. 
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