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Abstract 
There has been a s ubstantial amount of research on high 
performance inverted index because most web and search 
engines use an inverted index to execute queries. 
Documents are normally stored as lists of words, but 
inverted indexes invert this by storing for each word the list 
of documents that the word appears in, hence the name 
“inverted index”. This paper presents the crucial research 
findings on inverted indexes, their types and techniques. 
 
1. Introduction 
 
Most web and intranet search engines uses an 
inverted text index to execute text queries. Because 
inverted indexes are expensive to update, search 
engines typically reconstruct their index from scratch 
on a periodic basis. The more frequently an index can 
be reconstructed, the faster update will be reflected in 
search results, which in turns improves search 
quality. There has been a substantial amount of 
research on high performance inverted index because 
most web and search engines use an inverted index to 
execute queries. Documents are normally stored as 
lists of words, but inverted indexes invert this by 
storing for each word the list of documents that the 
word appears in, hence the name “inverted index”. 
 
2. Inverted indexes 
 
Documents are normally stored as lists of words, but 
inverted indexes invert this by storing for each word 
the list of documents that the word appears in, hence 
the name “Inverted index”. There are several 
variations on inverted indexes. At a minimum, you 
need to store for each word the list of documents that 
the word appears in. If you want to support phrase 
and proximity queries you need to store word 
positions for each document, i.e. the positions that the 
word appears in. The granularity of a position can 
range from byte offset to word to paragraph to 
section, but usually it is  stored at word position 
granularity. You can also store just the word 

frequency for each document instead of word 
positions. 
 
Storing the total frequency for each word can be 
useful in optimizing query execution plans. Some 
implementations store two inverted lists, one storing 
just the document lists (and usually the word 
frequencies) and one storing the full word position 
lists. Simple queries can then be answered consulting 
just the much shorter document lists. Some 
implementations go even further and store meta-
information about each “hit”, i.e. word position. They 
typically use a b yte or two for each hit that has bits 
for things like font size, text type (title, header, 
anchor (HTML), plain text, etc.) This information 
can then be used for better ranking of search results 
as words that have special formatting are usually 
more important. 
 
Another possible variation is whether the lexicon is 
stored separately or not. The lexicon stores all the 
tokens indexed for the whole collection. Usually it 
also stores statistical information for each token like 
the number of documents it appears in. The lexicon 
can be helpful in various ways that we refer to later 
on. 
 
The space used by the inverted index varies 
somewhere in the range of 5-100% of the total size of 
the documents indexed. This enormous range exists 
because inverted index implementations come in so 
many different variations. Some store word positions, 
some do not, some do aggressive document 
preprocessing to cut down the size of the index, some 
do not, some support dynamic updates (they cause 
fragmentation and usually one must reserve extra 
space for future updates), some do not, some use 
more powerful (and slower) compression methods 
than others, and so on.ble 3 contains three examples 
of inverted indexes for the document collection from 
table 2. No stop words or stemming are used in this 
example. The indexes are: 
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Table 1: Sample document collection 
Id Contents 
1 The only way not to think about money is to have 

a great deal of it. 
2 When I was young I thought that money was the 

most important thing in life; now that I am ld I 
know that it is. 

3 A man is usually more careful of his money than 
he is of his principles. 

 
List 1 Just the document lists. The format is (d1, d2 . 
. .), where dn is the document id number. 
 
List 2 Document lists with word frequencies. The 
format is (d1:f1, d2:f2 . . .), where dn is the document 
id number and fn is the word frequency. 
 
List 3 Document lists and word positions with word 
granularity. The format is (d1 :( w1, w2 . . .), (d2 :( 
w1, w2 . . .)  . . .) , where dn is the document id 
number and wn are the word positions. 
 
Table 3 is also a good example of how time-
consuming manual construction of inverted indexes 
is. It took over half an hour to create the lists by 
hand, but that pales when compared to Mary Cowden 
Clarke, who in 1845 pu blished a concordance (an 
archaic term for an inverted index) of Shakespeare’s 
works that had taken her 16 years to create 
 
2.1 Compression 
 
Storing inverted lists totally uncompressed wastes 
huge amounts of space. Using the word “is” in table 3 
as an example, if we stored the numbers as fixed-
width 32-bit integers, list 1 would take 12 bytes, list 2 
would take 26 bytes (using a special marker byte to 
mark ends of word position lists), and list 3 would 
take 30 bytes. 
 

Table 2: Inverted list example 
Word List1 List2 List3 

a 1,3 1:1.3:1 1: (12) ,3: 
(1) 

About 1 1:1 1: (7) 
am 2 2:1 2: (19) 

Careful 3 3:1 3: (6) 
deal 1 1:1 1: (16) 
great 1 1:1 1: (13) 
have 1 1:1 1: (11) 
he 3 3:1 3: (11) 
his 3 3:2 3: (8,14) 
i 2 2:4 2: 

(2,5,18,21) 
important 2 2:1 2: (12) 

in 2 2:1 2: (14) 
is 1,2,3 1:1,2:1,3:2 1:(: (9),2: 

(25),3: 
(3,12) 

it 1,2 1:1,2:1 1:(16) ,2: 
(25) 

know 2 2:1 2: (22) 
life 2 2:1 2: (25) 
man 3 3:1 3: (2) 

money 1,2,3 1:1,2:1,3:1 1: (8), 
2:(8),3:(9) 

more 3 3:1 3: (5) 
most 2 2:1 2: (11) 
not 1 1:1 1: (4) 
now 2 2:1 2: (16) 
of 1,3 1:1 , 3:2 1: (15),3: 

(7,13) 
old 2 2:1 2: (20) 
only 1 1:1 1: (2) 

principles 3 3:1 3: (15) 
than 3 3:1 3: (10) 
that 2 2:2 2: (7,23) 
the 1,2 1:1,2:1 1: (1),2: (10) 

thing 2 2:1 2: (13) 
think 1 1:1 1: (6) 

thought 2 2:1 2: (6) 
to 1 1:2 1: (5,10) 

usually 3 3:1 3:4 
was 2 2:1 2: (9) 
way 1 1:1 1: (3) 

when 2 2:1 2: (1) 
 
There are many ways to store the lists in a more 
compact form. They can be divided into two 
categories depending on whether the number of bits 
they use for coding a single value is always a 
multiple of 8 or  not. The non-byte-aligned methods 
are slightly more compact, but more complex, harder 
to handle if dynamic updates are needed, and much 
slower to encode/decode. In practice, simple byte-
aligned methods are the preferred choice in most 
cases. 
 
Variable length integers Instead of using 32 bits to 
store every value, we can use variable length integers 
that only use as many bytes as needed. There are 
many variations on these, but a simple and often used 
variation marks the final byte of the value by setting 
the high bit (0x80) to 1. The lower 7 bits of each byte 
are concatenated to form the value. 
 
Elias gamma Elias gamma coding [Eli75] consists of 
the number written in binary, prefixed by N zeros, 
where N = number of bits in the binary representation 
− 1. This is efficient for small values, for example 1 
is coded as 1, 2 as 010, and 3 as 011, but inefficient 
for bigger values, for example 64396 is coded as 
0000000000000001111101110001100, which is 31 
bits. Elias delta Elias delta coding [Eli75] consists of 
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separating the number into the highest power of 2 it 
contains (2N) and the remaining N binary digits of 
the number, encoding N+1 with Elias gamma coding, 
and appending the remaining N binary digits. This is 
slightly more inefficient than Elias gamma coding for 
very small values, but much more efficient for large 
numbers. For example, 1 is coded as 1, 2 as 010|0, 3 
as 010|1, and 64396 as 
000010000|111101110001100, which is 24 bi ts. The 
character | in the examples is used to mark the 
boundary between the two parts of the coded value. 
 
Golomb-Rice Golomb coding [Gol66] differs from 
Elias codes in that it is a parameterized one. The 
parameter b changes how the values are coded, and 
must be chosen according to the distribution of 
values to be coded, either real or expected. If b is a 
power of two, the coding is known as Golomb-Rice 
coding, and is the one usually used, since shift 
operations can then be used instead of divides and 
multiplies.The number to be coded is divided into 
two parts: the result of a division by b, and the 
remainder. The quotient is stored first, in unary 
coding, followed by the remainder, in truncated 
binary encoding. Using a value of 4 for b, 1 is coded 
as 101, 2 as 110, 3 as 111, and 4 as 0100. Coding the 
number 64396 with b = 4 would take over 16100 bits, 
so using a r oughly correct value for b is of critical 
importance. 
 
Delta coding We can increase our compression ratios 
for the lists of numbers significantly if we store them 
delta coded. This means that instead of storing 
absolute values, we store the difference to the 
previous value in the list. Since we can sort the lists 
before storing them, and there are no duplicate 
values, the difference between consecutive values is 
always ¸ 1.The smaller the values are that we store, 
the more efficient the compression methods 
described above are. It takes less space to store (1, 
12, 5, 2, 3, 15, and 4) than (1, 13, 18, 20, 23, 38, and 
42). In table 3, the word “is” has the following for list 
3: “1 :( 9), 2 : ( 25), 3 : ( 3, 12)”. Applying delta 
coding would produce the following list: “1 :( 9), 1 :( 
25), 1 :( 3, 9)”. 
 

def memoryInvert(documents): 
                         index = {} 

for d in documents: 
    for t in tokenize(d): 

            if t.word not in index: 
                               index[t.word] = CompressedList() 

        index[t.word].add(t) 
                  return index 
 

Figure 1: In-memory inversion 

2.1.2 Construction 
 
Constructing an inverted index is easy. Doing it 
without using obscene amounts of memory, disk 
space or CPU time is a much harder task. Advances 
in computer hardware do not help much as the size of 
the collections being indexed is growing at an even 
faster rate. If the collection is small enough; doing 
the inversion process completely in memory is the 
fastest and easiest way. The basic mechanism is 
expressed in Python pseudo code in Figure 1. 
 
In-memory inversion is not feasible for large 
collections so in those cases we have to store 
temporary results to disk. Since disk seeks are 
expensive, the best way to do that is to construct in-
memory inversions of limited size, store them to disk, 
and then merge them to produce the final inverted 
index. 
 
Moffat and Bell describe such a method .To avoid 
using twice the disk space of the final result they use 
an in-place multi-way merge sort to merge the 
temporary blocks. After the sort is complete the index 
file is still not quite finished, since due to the in-place 
aspect of the sort the blocks are not in their final 
order, and need to be permuted to their correct order. 
Heinz and Zobel present a modified version of the 
above algorithm that is slightly more efficient, 
mainly because it does not require keeping the 
lexicon in memory permanently during the inversion 
process and also due to their careful choice of data 
structures used in the implementation. Keeping the 
lexicon in memory permanently during the inversion 
process is a p roblem for very large collections, 
because as the size of the lexicon grows, the memory 
available for storing the position lists decreases. 
 
3. Inverted index techniques 
 
In this section we describe the techniques needed to 
implement a search engine using an inverted index. 
At the end of the section we describe some of the 
remaining unsolved problems. 
 
3.1 Document preprocessing 
 
Documents are normally not indexed as-is, but are 
preprocessed first. They are converted to tokens in 
the lexing phase, the tokens are possibly transformed 
into more generic ones in the stemming phase, and 
finally some tokens may be dropped entirely in the 
stop word removal phase. The following sections 
describe these operations. 
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3.1.1 Lexing 
 
Lexing refers to the process of converting a 
document from a list of characters to a list of tokens, 
each of which is a single alphanumeric word. Usually 
there is a maximum length for a single token, 
typically something like 32 characters, to avoid 
unbounded index size growth in atypical cases. To 
generate these tokens from the input character 
stream, first case-folding is done, i.e. the input is 
converted to lowercase. Then, each collection of 
alphanumeric characters separated by non-
alphanumeric characters (whitespace, punctuation, 
etc.) is added to the list tokens. Tokens containing too 
many numerical characters are usually pruned from 
the list since they increase the size of the index 
without offering much in return. The above only 
works for alphabetic languages. Ideographic 
languages (Chinese, Japanese, and Korean) do not 
have words composed of characters and need 
specialized search technologies. 
 
3.1.2 Stemming 
 
Stemming means not indexing each word as it 
appears after lexing, but transforming it to its 
morphological root (stem) and indexing that instead. 
For example, the words “compute”, “computer”, 
“computation”, “computers”, “computed” and 
“computing” might all be indexed as “compute”. 
 
The most common stemming algorithm used for the 
English language is Porter’s. All stemming 
algorithms are complex, full of exceptions and 
exceptions to the exceptions, and still do a lot of 
mistakes, i.e., they fail to unite words that should be 
united or unite words that should not be united. They 
also reduce the accuracy of queries, especially phrase 
queries. In the old days, stemming was possibly 
useful since it decreased the size of the index and 
increased the result set for queries, but today the 
biggest problems search engines have are too many 
results returned by queries and ranking the results so 
that the most relevant ones are shown first, both of 
which are hindered by stemming. For this reason, 
many search engines (Google, for example) do not do 
stemming at all. This trend will probably increase in 
the future, as stemming can be emulated quite easily 
by wildcard queries or by query expansion. 
 
3.1.3 Stop words 
 
Stop words are words like “a”, “the”, “of”, and “to”, 
which are so common that nearly every document 
contains them. A stop word list contains the list of 

words to ignore when indexing the document 
collection. For normal queries, this usually does not 
worsen the results, and it saves some space in the 
index, but in some special cases like searching for 
“The Who” or “to be or not to be” using stop words 
can completely disable the ability to find the desired 
information. Since stop words are so common the 
differences between consecutive values in both 
document number and word position lists for them 
are smaller than for normal words, and thus the lists 
compress better. Because of this, the overhead for 
indexing all words is not as big as one might think. 
Like with stemming, modern search engines like 
Google do not seem to use stop words, since doing so 
would put them at a competitive disadvantage. A 
slightly bigger index is a small price to pay for being 
able to search for any possible combination of words. 
 
3.2 Query types 
 
There are many different ways of searching for 
information. Here we describe the most prominent 
ones and how they can be implemented using an 
inverted index as the base structure. Sample queries 
are formatted in bold type. 
 
3.2.1 Normal 
 
A normal query is any query that is not explicitly 
indicated by the user to be a specialized query of one 
of the types described later in this section. For 
queries containing only a single term, the desired 
semantics are clear: match all documents that contain 
the term. For multi-word queries, however, the 
desired semantics are not so clear. Some 
implementations treat it as an implicit Boolean query 
(see the next section for details on Boolean queries) 
by inserting hidden AND operators between each 
search term. This has the problem that if a user enters 
many search terms, for example 10, then a document 
that only contains 9 of them will not be included in 
the result set even though the probability of it being 
relevant is high. For this reason, some 
implementations choose another strategy: instead of 
requiring all search terms to appear in a d ocument, 
they allow some of the terms to be missing, and then 
rank the results by how many of the search terms 
were found in each document. This works quite well, 
since a user can specify as many search terms as he 
wants without fear of eliminating relevant matches. 
Of course it is also much more expensive to evaluate 
than the AND version, which is probably the reason 
Most Internet search engines do not seem to use it. 
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3.2.2 Boolean 
 
Boolean queries are queries where the search terms 
are connected to each other using the various 
operators available in Boolean logic [Boo54], most 
common ones being AND, OR and NOT. Usually 
parentheses can be used to group search terms. A 
simple example is madonna AND discography, and a 
more complex one is bruce AND mclaren AND NOT 
(“formula one” OR “formula 1” OR f1). These are 
implemented using an inverted index as follows: 
 
NOT A pure NOT is usually not supported in Full- 
Text Search (FTS) implementations since it can 
match almost all of the documents. Instead it must be 
combined with other search terms using the AND 
operator, and after those are processed and the 
preliminary result set is available, that set is then 
further pruned by eliminating all documents from it 
that contain the NOT term. This is done by retrieving 
the document list for the NOT term and removing all 
document ids in it from the result set.  
 
OR The query term1 OR term2 OR . . . term n is 
processed by retrieving the document lists for all of 
the terms and combining them by a union operation, 
i.e., a document id is in the final result set if it is  
found in at least one of the lists. 
 
AND  The query term1  AND  term2  AND . . . term 
n is processed by retrieving the document lists for all 
of the terms and combining them by an intersection 
operation, i.e., a document id is in the final result set 
if it is found in all of the lists. 
 
Unlike the OR operation which potentially expands 
the result set for each additional term, the AND 
operation shrinks the result set for each additional 
term. This allows AND operations to be implemented 
more efficiently. If we know or can guess which 
search term is the least common one, retrieving the 
document list for that term first saves memory and 
time since we are not storing in memory longer lists 
than are needed. The second document list to retrieve 
should be the one for the second least common term, 
etc. 
 
If we have a lexicon available, a good strategy is to 
sort the search terms by each term’s document count 
found in the lexicon, with the term with the smallest 
document count being first, and then doing the 
document list retrievals in that order. As an example, 
consider the query cat AND toxoplasmosis done on a 
well known Internet search engine. If we processed 
cat first, we would have to store a temporary list 

containing 136 million document ids. If we process 
toxoplasmosis first, we only have to store a 
temporary list containing 2 million document ids. In 
both cases the temporary list is then pruned to contain 
only 200,000 document ids when the lists for the 
terms are combined. Another way to optimize AND 
operations is by not constructing any temporary lists. 
Instead of retrieving the document lists for each term 
sequentially, they are all retrieved in parallel, and 
instead of retrieving the whole lists, they are read 
from the disk in relatively small pieces. These pieces 
are then processed in parallel from each list and the 
final result set is constructed. Which one of the above 
optimizations is used depends on other 
implementation decisions in the FTS system. Usually 
the latter one is faster, however. 
 
3.2.3 Phrase 
 
Phrase queries are used to find documents that 
contain the given words in the given order. Usually 
phrase search is indicated by surrounding the 
sentence fragment in quotes in the query string. They 
are most useful for finding documents with common 
words used in a very specific way. For example, if 
you do not remember the author of some quotation, 
searching for it on the Internet as a phrase query will 
in all likelihood find it for you. An example would be 
“there are few sorrows however poignant in which a 
good income is of no avail”. 
 
The implementation of phrase queries is an extension 
of Boolean AND queries, with most of the same 
optimizations applying, e.g., it is best to start with the 
least common word. Phrase queries are more 
expensive though, because in addition to the 
document lists they also have to keep track of the 
word positions in each document that could possibly 
be the start position of the search phrase. For 
example, consider the query “big deal”. The lexicon 
is consulted and it is  determined that “deal” is the 
rarer word of the two, so it is retrieved first. It occurs 
in document 5 a t positions 1, 46 and 182, and in 
document 6 a t position 74. We transform these so 
that the word positions point to the first search term, 
giving us 5(0, 45, 181) and 6(73). Since position 0 is 
before the start of the document, we can drop that one 
as it cannot exist. 
 
Next we retrieve the document lists for the word 
“big” and prune our result set so it only contains 
words where “big” occurs in the right place. If “big” 
occurs in document 5 at positions 33 and 45 and in 
document 53 a t position 943, the final result set is 
“document 5, word position 45”. Since the above is 
more expensive than normal searches, there have 
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been efforts to investigate the use of auxiliary 
indexes for phrase searches. For example, Bahle, 
Williams and Zobel propose using a “next word 
index”, which indexes selected two-word sentence 
fragments. They claim that it achieves significant 
speedups with only a modest disk space overhead. 
 
3.2.4 Proximity  
 
Proximity queries are of the form term1 NEAR(n) 
term2, and should match documents where term1 
occurs within n words of term2. They are useful in 
many cases, for example when searching for a 
person’s name you never know whether a name is 
listed as “Osku Salerma” or “Salerma, Osku”, so you 
might use the search osku NEAR(1) salerma to find 
both cases. Queries where n is 1 could also be done 
as a co mbination of Boolean and phrase queries 
(“osku salerma” OR “salerma osku”), but for larger 
n, proximity queries cannot be emulated with other 
query types. An example of such a q uery is apache 
NEAR (5) “performance tuning”. 
 
Proximity queries are implemented in the same way 
as phrase queries, the only difference being that 
instead of checking for exact relative word positions 
of the search terms, the positions can differ by a 
maximum of n. 
 
3.2.5 Wildcard 
 
Wildcard queries are a f orm of fuzzy, or inexact, 
matching. There are two main variants:  
• Whole-word wildcards, where whole words are left 
unspecified. For example, searching for Paris is the * 
capital of the world matches documents that contain 
phrases “Paris is the romance capital of the world”, 
“Paris is the fashion capital of the world”, “Paris is 
the culinary capital of the world”, and o on. This can 
be implemented efficiently as a variant of a phrase 
query with the wildcard word allowed to match any 
word. 
• In-word wildcards, where part of a single word is 
left unspecified. It can be the end of a word 
(Helsin*), the start of the word (*sinki), the middle of 
the word (Hel*ki) or some combination of these 
(*el*nki). 
 
These can be handled by first expanding the wildcard 
word to all the words it matches and then running the 
modified query normally with the search term 
replaced by (word1 OR word2 OR . . . wordn). To be 
able to expand the word, the inverted index needs a 
lexicon available. If it does not have a lexicon, there 
is no way to do this query. 

If the lexicon is implemented as a tree of some kind, 
or some other structure that stores the words in sorted 
order, expanding suffix wildcards (Helsin*) can be 
done efficiently by finding all the words in the given 
range ([Helsin, Helsio]).If the lexicon is implemented 
as a h ash table this cannot be done. Expansion of 
non-suffix wildcards is done by a complete traversal 
of the lexicon, and is potentially quite expensive. 
Since in-word wildcard queries need an explicit 
lexicon and are much more expensive in terms of 
time – and possibly space – needed than other kinds 
of queries, many implementations choose not to 
support them. 
 
3.3 Result ranking 
 
There are certain applications that do not care about 
the order in which the results of a query are returned, 
such as when the query is done by a computer and all 
the matching documents are processed identically. 
Usually, however, the query is done by a human 
being who is not interested in all the documents that 
match the query, but only in the few that best do so. 
It is for the latter case that ranking the search results 
is so important. With the size of the collections 
available today, reasonable queries can match 
millions of documents. If the search engine is to be of 
any practical use, it must be able to somehow sort the 
results so that the most relevant are displayed first. 
 
Traditionally, the information retrieval field has used 
a similarity measure between the query and a 
document as the basis for ranking the results. The 
theory is that the more similar the query and the 
document are to each other, the better the document 
is as an answer to the query. Most methods of 
calculating this measure are fairly similar to each 
other and use the factors listed below in various 
ways. 
 
Some of the factors to consider are: the number of 
documents the query term is found in (ft), the number 
of times the term is found in the document (fd,t), the 
total number of documents in the collection (N), the 
length of the document (Wd) and the length of the 
query (Wq). 
 
If a document contains a few instances of a rare term, 
that document is in all probability a better answer to 
the query than a document with many instances of a 
common term, so we want to weigh terms by their 
inverse document frequency (IDF, or 1 ft ). 
Combining this with the term frequency (TF, or fd,t) 
within a document gives us the famous TF × IDF 
equation. 
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The cosine measure is the most common similarity 
measure. It is an implementation of the TF × I DF 
equation with many variants existing, with a fairly 
typical one shown below: 
 

 
 
The details of how Wd and Wq are calculated are not 
important in this context. Typically they are not 
literal byte lengths, or even term counts, but 
something more abstract like the square root of the 
unique term count in a document. They are not even 
necessarily stored at full precision, but perhaps with 
as few bits as five. 
 
The above similarity measures work reasonably well 
when the queries are hundreds of words long, which 
is the case for example in the TREC (Text Retrieval 
Conference) competitions [tre], whose results are 
often used to judge whether a given ranking method 
is good or not. 
 
Modern search engine users do not use such long 
queries, however. The average length of a query for 
web search engines is under three words, and the 
similarity measures do not work well for such 
queries. 
 
There are several reasons for this. With short queries, 
documents with several instances of the rarest query 
term tend to be ranked first, even if they do not 
contain any of the other query terms, while users 
expect documents that contain all of the query terms 
to be ranked first. 
 
Another reason is that the collections used in official 
competitions like TREC are from trusted sources and 
contain reasonable documents of fairly similar 
lengths, while the collections indexed in the real 
world contain documents of wildly varying lengths 
and the documents can contain anything at all. People 
will spend a lot of time tuning their documents so 
that they will appear on the first page of search 
results for popular queries on the major web search 
engines. 
 
Thus, any naive implementation that tries to 
maximize the similarity between a q uery and a 
document is bound to do ba dly, as the makers of 
Google discovered when evaluating existing search 
engines. They tried a search for “Bill Clinton” and 
got as a top result a page containing just the text “Bill 
Clinton sucks”, which is clearly not the wanted result 
when the web is full of pages with relevant 
information about the topic. 

3.4 Query evaluation optimization 
 
Much research over the last 20 years has been 
conducted on optimizing query evaluation. The main 
things to optimize are the quality of the results 
returned and the time taken to process the query. 
 
There are surprising gaps in the published research, 
however. The only query type supported by the best 
Internet search engines today is a hybrid mode that 
supports most of the extended query types discussed 
in Section 3.2 but also ranks the query results. 
 
The query evaluation optimization research literature, 
however, ignores the existence of this hybrid query 
type almost completely and discusses just plain 
ranked queries, i.e., queries with no particular syntax 
which are supposed to return the k most relevant 
documents as the first k results. This is unfortunate 
since normal ranked queries are almost useless on 
huge collections like the Internet, because almost any 
query besides the most trivial one needs to use 
extended query methods like disallowing some words 
(Boolean AND NOT) and matching entire phrases 
(phrase query) to successfully find the relevant 
documents from the vast amounts in the collection. 
 
The reason for this lack of material is obvious: the 
big commercial search engines power multi-billion 
dollar businesses and have had countless very 
expensive man years of effort from highly capable 
people invested in them. Of course they are not going 
to give away the results of all that effort for everyone, 
including their competitors, to use against them. 
Some day the details will leak out or an academic 
researcher will come up with them on his own, but 
the bar is continuously being raised, so I would not 
expect this to happen any time soon. That said, we 
now briefly mention some of the research done, but 
do not discuss the details of any of the work. Most of 
the optimization strategies work by doing some kind 
of dynamic pruning during the evaluation process, by 
which we mean that they either do not read all the 
inverted lists for the query terms (either skipping a 
list entirely or not reading it through to the end) or 
read them all, but do not process all the data in them 
if, it is unnecessary. The strategies can be divided 
into safe and unsafe groups, depending on whether or 
not they produce the exact same results as un-
optimized queries. Buckley and Lewit were one of 
the first to describe such a heuristic. 
 
Turtle and Flood give a good overview of several 
strategies. Anh and Moffat describe yet another 
pruning method. Persin et al. describe a method 
where they store the inverted lists not in document 
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order as is usually done, but in frequency-order, 
realizing significant gains in processing time. 
 
There are two basic methods of evaluating queries: 
term-at-a-time and document at- a-time. In term-at-a-
time systems, each query term’s inverted list is read 
in turn and processed completely before proceeding 
to the next term. In document-at-a time systems, each 
term’s inverted lists are processed in parallel. 
Kaszkiel and Zobel investigate which of these is 
more efficient, and end up with a different conclusion 
than Broder et al. who claim that document at- a-time 
is the more efficient one. To be fair, one is talking 
about context-free queries, i.e. queries that can be 
evaluated term by term without keeping extra data 
around, while the other one is talking about context-
sensitive queries, e.g. phrase queries, where the 
relationships between query terms are important. 
Context sensitive queries are easier to handle in 
document-at-a-time systems since all the needed data 
is available at the same time. 
 
Anh and Moffat also have another paper, this time on 
impact transformation, which is their term for a 
method they use to enhance the retrieval 
effectiveness of short queries on large collections. 
They also describe a dynamic pruning method based 
on the same idea. 
 
Anh and Moffat make a t hird appearance with a 
paper titled “Simplified similarity scoring using term 
ranks”, in which they describe a simpler system for 
scoring documents than what has traditionally been 
used. 
 
Strohman et al. describe an optimization to 
document-at-time query evaluation they call term 
bounded max_score, which has the interesting 
property of returning exactly the same results as a un 
optimized query evaluation while being 61% faster 
on their test data. Carmel et al. describe a static index 
pruning method that removes entries from the 
inverted index based on whether or not the removals 
affect the top k documents returned from queries. 
Their method completely removes the ability to do 
more complex searches like Boolean and phrase 
searches, so it is usable only in special circumstances. 
 
J´onsson et al. tackle an issue left alone in 
information retrieval research so far, buffer 
management strategies. They introduce two new 
methods: 1) a modification to a query evaluation 
algorithm that takes into account the current buffer 
contents, and 2) a new buffer-replacement algorithm 
that incorporates knowledge of the query processing 
strategy. The applicability of their methods to generic 

Full-Text Search (FTS) systems is not especially 
straightforward, since they use a very simplistic Full 
–Text Search (FTS) system with only a single query 
running at one time and other restrictions not found 
in real systems, but they do have some intriguing 
ideas. 
 
4. Conclusion 
 
To construct inverted index is an important issue in 
web search engines. In this paper we showed how to 
build inverted index for web search engine. We have 
discussed about the different strategies, and 
techniques. We have also discussed about various 
research findings on how to efficiently build inverted 
index. 
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