
Multi FPGA Based Novel Reconfigurable Hybrid
Architecture for High Performance Computing

Sunil Kr. Singh1, R. K. Singh2, M.P.S. Bhatia3, Ratnakar Madan4

 1 Ph.D, Research scholar, Uttarakhand Technical University, Uttarakhand, INDIA

2 Professor, Uttarakhand Technical University,Dehradun, Uttarakhand, INDIA,

3Professor, CSE Department, NSIT, University of Delhi, New Delhi, INDIA

4 UG Research scholar, Bharati Vidyapeeth College of Engineering, New Delhi, INDIA

Abstract

The growth of the verticals depending on the
reconfigurable computing has been very fast. S atellite
systems, land rovers, rocket launchers and other heavy
duty high performance systems are making use of
reconfigurable processors. However, still these processors
are not able to provide for the strict hard real time
deadlines required. The reason behind is the flexibility of
being reconfigured, the delay in the transfer of signals and
the time required to reconfigure the part of FPGA based
multiprocessors is slightly higher. Thus we are proposing a
Multi FPGA based Novel Reconfigurable hybrid
architecture which provides for a l esser delay, more
reliability and a higher throughput. This system
architecture has been developed with the intent of reducing
the dynamic decision making so as to reduce the run time
and also by minimising the number of context switching
operations by providing more than one FPGA processors.
So that the need for context switching in normal
circumstances is reduced to zero and is only required in
case a failure occurs in the system.

Keywords: Reconfigurable Computing, FPGA, Hybrid
Architecture, RPU, Context switching

I. Introduction:

 In the past few years, applications requiring high
performance computing have become really heavy and
need lot of computations to be done. To solve this
problem, a lot of research has been going on in the area of
reconfigurable computing, where the hardware is
reconfigured at runtime to adapt to the need of the
applications. Currently, the products that are available in
the market are a combination of a host, General Purpose
Processor (GPU) and a R econfigurable Processor (RPU)
on a single VLSI chip. The performance (in terms of time
delays) of this architecture is acceptable till the application
demands more of software based processing but when the
application needs more hardware processing, this

architecture fails to deliver the required performance
because the GPU present cannot be used for hardware
tasks, it can only be used for software tasks [11]. So
whenever high percentage of hardware processing is
required it leads to increase in the number of the times the
RPU is reconfigured by the GPU. During this
“reconfiguration time” no other work is done by the GPU
and the RPU. This increases the delay and also the
turnaround time.

 The delay time in hardware intensive tasks is also
increased due to a l arge number of context switches are
required in such systems. The increase in number of
context switches is due to limited number of hardware
functional units. As the number of hardware intensive
tasks increase, the number of context switches increase
proportionately. Higher the number of context switches,
more is the time the GPU spends doing no effective work.
This further has a cas cading impact and increases the
turnaround time of the software intensive tasks. The
cumulative increase in delay and turnaround time for both
hardware intensive tasks and software intensive tasks is an
area of concern.

 It has been seen that the applications like weather
forecasting, Remote sensing etc. that make the use of
supercomputers have more of hardware dependant
processing and vector processing requirements [4]. In
future more such applications are expected to emerge and
hence a better approach would be required to cater to such
needs. It has been shown that the current “hybrid
architecture” is capable of handling the present
requirements, but a more dependable and sophisticated
hybrid architecture is necessary for future requirements
[10].

 In this contribution to the world of reconfigurable
computing, we propose a Multi FPGA based (more than 1
FPGA based reconfigurable processor) Hybrid
architecture, without the separate General Purpose
processor that is being commonly employed in the present

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 335

products available from the leading manufacturers like
Altera & Xiline. In our proposed hybrid architecture we
configure a portion of the RPU to act as the GPU.
Although this increases the delay time for software
intensive tasks but the decrease in throughput time for
hardware intensive tasks is considerable and this is where
we intend to use our proposed hybrid architecture.
Through the use of an extended operating system with a
real time kernel we reconfigure the RPUs according to the
application requirement and take full leverage of the multi-
FPGA environment. The extended OS Kernel efficiently
reconfigures the processors whenever required, switches
between the multiple RPUs that are being used and also
provides for message passing and inter-process
communication between the processes running on s ame
RPU and also between processes running on different
RPUs. The architecture that we propose, not only
compensates the removal of GPU, but also aims to reduce
the power consumption by reducing the power being
wasted in the present “Hybrid Architecture” during the
reconfiguration time and also during normal hardware
processing when the GPU sits idle and consumes power.
Not only we aim to save power, our aim is to further
enhance the performance and reduce the turnaround time
by reducing the waiting time and also by extending the
multiprocessing terminology to Multiple Reconfigurable
Processors.

II. Current Hybrid Architecture & Related
Operating System:

 Hybrid architecture is a co mbination of a G PU
and RPU (FPGA or CPLD based). In this paper we refer to
the system composed of a general purpose microprocessor
(GPP), together with its memory, coupled with a
reconfigurable hardware module based on a FPGA
component (RH), as we take it as a base architecture and
modify it to propose our Novel architecture.

 This system includes all peculiarities of more
complex hybrid architectures, and therefore allows us the
development of a general methodology that can be later
extended to more complex designs. The hybrid
architecture considered for modifications to be made to
lead to our novel Hybrid. In general, any application that
has to be executed on the hybrid architecture needs to be
partitioned into a set of tasks. Computational intensive
tasks are usually executed on RH, while the remaining
ones can be executed on GPP. In order to let the
programmer dealing with a homogeneous system instead
of two separate entities, hardware abstraction is usually
exploited [2]. In propose hthreads (or hybrid threads), an
abstract computational mode that actually allows thread
partitioning between a general purpose processor and a
reconfigurable device [13][2]. It is composed of a
hardware/software co-designed operating system and
middleware services that support the multithreaded
programming model. The hthreads compiler and run-time
libraries allow programmers to write multithreaded
programs with the standard C language.

Figure 1. Classical Hybrid Architecture using Reconfigurable
Hardware

The hthreads operating system and middleware services
provide the mechanisms that allow the threads to run on
either the general purpose microprocessor or within a
custom circuit on the FPGA. In the hthreads design flow,
programmers express their system computations using
traditional pthreads semantics. The main drawback of this
solution is the rigid distinction between the portion of the
application executed by specialized hardware, and the one
executed by the general purpose microprocessor. In order
to efficiently exploit software reconfiguration for
implementing fault tolerance systems, software
applications are now able to dynamically map the
execution of different functionalities both on the general
purpose hardware, and on the reconfigurable hardware.
This in turns requires providing the application itself with
a structured description of the available reconfiguration
facilities that can be exploited at run-time to reconfigure
the computational tasks every time a fault is detected.

Software Based Self-Test (SBST) techniques executed on
GPP, as well as embedded hardware Built-In Self-Test
(BIST) facilities directly embedded into the hardware
cores mapped on RH are used to check the correct
behaviour of the different hardware blocks [5]. A monitor,
either implemented as a hardware component or a software
routine, is in charge of collecting test responses and
generating proper reconfiguration events into the system.
The time required for the test execution and the system
reconfiguration has a l imited impact on the overall
performance.
 Figure 2 shows the structure of the software
framework, logically split into two main parts: (i) the
exploitation package, and (ii) the software support
package.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 336

 The exploitation package acts as a middleware
layer, exporting software modules used to manage the
underlying hardware platform. In particular it exports
information concerning the hardware and software
facilities available at the operating system level. This
information can be used by a software component (or just
by the operating system itself) as a database of available
reconfiguration alternatives, allowing to optimally
deciding how to map application functionalities. From the
reliability point of view this allows to take optimal
decision at run-time on how to replace faulty hardware
functions on RH or faulty units on GPP. The software
reconfiguration is based on an automatic switching
mechanism: when a h ardware failure is detected, a
notification is sent through the operating system to the
program that, based on the available replacement facilities,
can eventually replace the faulty functionality with a
different hardware implementation, or with an equivalent
software version, executed on GPP.

Figure 2. The classical dependable and fault tolerant

framework

 Similarly, if one of the software functions cannot
be correctly executed due to a hardware fault in GPP (e.g.,
a fault in the FPU), it can be replaced by an equivalent
hardware function. The software support package contains
software elements (i.e., a software library and the
integrated development environment) used to realize the
hardware abstraction mechanism. It provides the designer
with a transparent mechanism to access both software and
hardware resources using a uniform interface, thus giving
a flexible way to split the application [6][7].

 Exploitation package

 The exploitation package resorts to four basic
elements to provide hardware virtualization at the
application level: (i) the hardware configuration files, (ii)
the operating system drivers, (iii) the function files, and
(iv) the description file. A hardware configuration file
identifies a hardware component that can be mapped into
RH to perform a certain function FPGA devices,
representing the target reconfigurable components, which
can be configured by mean of a b inary bit stream file
containing the mapping of the internal configuration
facilities.
 A library of these files is stored to form a
repository of available hardware functions. Each core is
eventually provided with an embedded test mechanism and
a monitor block able to check the correct behaviour of the
core itself, and to notify faulty conditions. In order to have
a general architecture, all available blocks are provided
with a common access interface, e.g., a register file used to
configure the core with a set of specific parameters, or to
read back the result of the computation. In order to
decouple the hardware layer from the different software
layers, the actual communication with the hardware cores
is managed through a d edicated operating system driver
provided together with each core. The driver is also in
charge of collecting hardware notifications of faulty
conditions, and generating proper notifications to the
programs currently using the faulty cores. The driver also
issues reconfiguration requests to optimally balance the
system load. All available functionalities, both at the
hardware level and at the software one, are actually
exported to the program through a set of function files
described using a target high level programming language.
For example considering the ANSI C language [1][12], the
set of available functionalities is declared with a couple of
files, one for the header of the functions, and the other one
for the specific implementation. Pure software
functionalities are directly described in these function files,
while hardware implemented functionalities simply consist
at this level of a set of calls to specific operating system
driver functions. Finally, the description file is used to
provide a highly structured model of the available
functionalities. The description file is the main component
of the exploitation package. It is used to abstract the
underlying hardware architecture. It is described using a
high level structured description language such as the
standard XML language (In standard XML lang.). The
structure of the file is easily navigated by a software
module and used as a database containing the description
of the available resources. Each resource (i.e. software or
hardware function) is described in terms of access
mechanism, performance, and location within the software
framework. Fig. 3 shows an example of the internal
structure of the description file for a hardware function.
The access mechanism is described through the declaration
of the input parameters required to correctly execute the
specific function and the output parameters used to store
the result of the computation. For each parameter the type
is provided. The performance is described in terms of
estimated execution time, which can be used to select the
optimal replacement for a faulty function, while the

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 337

location in the framework is given by the corresponding
library that specifies the behaviour of the function and the
software or hardware function counterpart.

 Software support package

 The software support package provides the
software designer with the possibility of writing in a
simple and straightforward manner programs that can
switch their execution from the hardware context to the
software one, and vice versa. In principle, it is composed
of a s oftware library and an Integrated Development
Environment (IDE) (see Fig. 2).

Figure 3. Example of the exported XML description file

 The software library contains all functions used to
perform reconfiguration whenever a request occurs. These
functions are used by the operating system driver to
correctly handle all low level reconfiguration actions,
starting from the selection of the proper component, to the
bit stream configuration into RH. The library also contains
functions to access and navigate the content of the XML
description file. These functions are designed to parse the
content of the description file, and to collect that
information that are useful for taking optimal decisions for
the replacement (e.g., a f aulty hardware function can be
replaced with a single equivalent software function or
using a s et of hardware and software functions that
minimize the execution time). The IDE aims at simplifying
the creation of the reconfigurable-program. The key point
of this component is the possibility of writing applications
as close as possible to normal software-only programs.

 We take this hybrid architecture proposed by
Stefano Di Carlo et al as the basis of our novel architecture
presented ahead, we also propose the extension of the
Operating System used to manage the changes in the

architecture and present an efficient static efficient
functional unit mapping algorithm for the multiple
reconfigurable processors taking into account various
factors which provide for fast execution, reduction in
power usage , and also a reduction in the heat generated
reducing the extensive need of cooling functional units
required.

III. Proposed Hardware Architecture & the
Extended Operating System:

 In our proposed Hybrid architecture (Figure 4),
we do away with a separate GPU being used currently, and
instead add a Reconfigurable Processor (RPU2). With the
GPU functionality being incorporated in the partially pre –
configured RPU1. There have been free blocks left in the
RPU1 for future use. This has been done to manage any
hardware problem that may occur in the GPU part. The
block reserved for the future use can then be partially
reconfigured during runtime and that functionality can be
mapped to this hardware block [3][14]. Both the RPUs and
the Input Output Interface have been connected to the
memory hierarchy of the system. The kind of memory
systems used, depends extensively on the applications to
be used, hence we have not specified the hierarchy in
detail.

 As in the current architecture, any application is
first split into tasks, computationally intensive will be
executed on RH while the remaining ones on the GPP. We
also propose for the same hardware abstraction that is
being currently exploited but we follow the hthreads, the
abstract computation mode instead of being provide the
flexibility for interchanging of thread execution on the
GPP or the RH at the runtime. This is done as we have
provided for free blocks which can be reconfigured by the
bitstream file of the faulty block in the GPU and the
functionality can be replicated. The Hardware Description
Repository files maintained in the memory are updated as
soon as a fault is detected in any of the blocks, and also
when the execution of a task is completed in the block.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 338

Figure 4. The proposed novel hybrid high fault tolerant
architecture

 The files in our case, also store the time (tl) when
the execution of the last task is completed. This factor
plays an important part when a block is selected for the
task to be performed. We avoid the continuous using of
one block to evenly distribute the utilization of the block
so as to avoid generating excess heat from one block. We
use the LRU algorithm to choose which block executes a
particular task. However, if failure in the GPU portion
occurs during the execution of a task, a failure notification
is sent to the application through the Operating System.
This task is then, allowed to execute on the RH, while the
functionality of the faulty GPU block is replicated in the
“future use” block [9].

 A task that has been structured by the application
to be run on the RH, will be executed on the RH part.
Either of the RPU s could be chosen for hardware tasks.
The LRU algorithm maps the task to the selected block in
the RPU at the time of software compilation. The mapping
decision also considers the factors such as bus usage for
e.g. if the RPU2- memory bus is in use, and the task is
high priority or needs a near real time completion, then it
is mapped to RPU1 and vice versa. This can be indicated
by the developer during the time of system application
development by setting the parameters provided in the
IDE.

 All the above decisions are taken by the
components of the hardware\software co-designed
extended operating systems giving the programmer’s
choice of parameters a p riority. The extended operating
system provides the same hardware abstraction as in the
current architecture, the hthreads model based on the
pthreads semantics mentioned above can be used. This
means that the application developers do n ot have to
change the application and the development process
remains the same. Although the flexibility of the hthreads

model is considered a drawback in the current architecture,
we have overcome that drawback by providing ample
hardware and computation resources, which helps in fast
execution as the decision of which processing element to
choose is not made at the run time rather during the
development of the application itself. We also keep the
“fault tolerant” property of the current architecture intact,
by mapping the hardware block dynamically for those
tasks meant to be executed by the RH and providing for
execution of the GPP tasks on the RH part if a runtime
failure in the incorporated GPU is detected.

 All in all the framework of the current
architecture is maintained as shown in Figure2, only the
components of the framework, such as the Hybrid
architecture have been completely modified and the
“exploitation package “ in the current framework has been
extended to manage the multi RPU architecture and also
for limiting the number of context switches. The “Software
package” has been slightly modified such that the decision
to choose between the GPP and the RH now rests with the
developer and has to be taken at the development time,
however in case of a failure, the GPP tasks are
automatically mapped to RH making the use of the
extensive “exploitation package” in the proposed extended
operating system.

VI. Context Switching:

 A context switch (also sometimes referred to as
a process switch or a task switch) is the switching of
the CPU (central processing unit) from one process or
thread to another. A process (also sometimes referred to as
a task) is an executing (i.e.,running) instance of a program.
In Linux, threads are lightweight processes that can run in
parallel and share an address space (i.e., a r ange
of memory locations) and other resources with
their parent processes (i.e., the processes that created
them).

 Context switching can be described in slightly
more detail as the kernel (i.e., the core of the operating
system) performing the following activities with regard to
processes (including threads) on the processor: (1)
suspending the progression of one process and storing the
processor's state (i.e., the context) for that process
somewhere in memory, (2) retrieving the context of the
next process from memory and restoring it in the
processor's registers and (3) returning to the location
indicated by the program counter (i.e., returning to the line
of code at which the process was interrupted) in order to
resume the process.

 A context switch is sometimes described as the
kernel suspending execution of one process on the CPU
and resuming execution of some other process that had
previously been suspended. Although this wording can
help clarify the concept, it can be confusing in itself
because a process is, by definition, an executing instance

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 339

http://www.linfo.org/cpu.html
http://www.linfo.org/process.html
http://www.linfo.org/instance.html
http://www.linfo.org/program.html
http://www.linfo.org/linuxdef.html
http://www.linfo.org/memory.html
http://www.linfo.org/kernel.html
http://www.linfo.org/operating_systems_list.html
http://www.linfo.org/operating_systems_list.html

of a program. Thus the wording suspending progression of
a process might be preferable.

 A context switching processor although increases
the flexibility by providing a multi-programmed
environment but the context switching is also a burden for
the processor as during the time which the processor is
busy in performing a context switch, it is not doing any
effective work. This flexibility may cost a heavy price in a
real time environment where hard time deadline and
precision is required [8]. The basic intent of creating a
multi FPGA architecture is to minimize context switching.
Since we have dedicated functional units, predefined for
each of the tasks at the compile time, there are no chances
of synchronization or a collision problem. The only two
possibilities when a context switch would be required in a
multi FPGA architecture where there is a r eal time
constraint and one of the mapped hardware functional unit
fails. In this particular case, the contents of the registers
would have to be saved and loaded to the new functional
backup unit predefined at the compile time. The mapping
for the backup units can be done using a normalized many
to many function.

 The second case for the context switching arises
when a number of copies of the same process are waiting
to be executed. In this scenario, the application developer
will have a ch oice while compiling the code for a
multithreaded program. If the system is hard real time, a
separate hardware unit will be allocated for each copy of
the thread, while if the system is soft real time, developer
has a choice of marking the thread as a software intensive
thread with higher priority as compared to the normal
software intensive threads. This works fine for a system
which has a soft real time constraint.

 The GPP component performs the activity of
context switch whenever a fault is detected in any of the
hardware functional units. The activity of context
switching has been mapped to the GPP because the context
switch requires saving the content of the registers and then
loading the registers with the new values. This process
would be better executed if it is mapped for software
execution. However, taking into consideration the
importance of the process of context switching, a
dedicated processing unit in RPU1 is provided as a backup
unit for context switching. In case a problem occurs in the
GPU portion, the context switching processing is mapped
to the hardware on a high priority bases to prevent any
errors and delay in the mechanism for context switching.

Thus, with the fixed mapping done at the compile time for
software threads to hardware functional units, although we
have decreased the flexibility but the performance is
enhanced as there is no time wasted for continuous context
switching which is a common scenario in the general
purpose processors and other processors used in non real
time environment.

V. Conclusion:

 The use of reconfigurable processors is fast
moving into the real time domain, as the technologies used
in designing these processors has developed at a very fast
pace and reduced the delay that use to occur while the
signals were transmitted through inbuilt busses. The use of
reconfigurable processors is being made in systems where
a processing failure is not tolerable as the cost of the entire
system is very high. The use of multi reconfigurable
processors in the architecture would further give the
opportunity to increase the throughput and make use of
such architecture in a strict hard real time environment.

 The increase in throughput in our proposed
architecture has been due to two major factors. One being
of mapping the threads to be executed at compile time to a
dedicated hardware functional unit and separation of
threads as software based and hardware based at compile
time. This eliminates the need of deciding at the run-time
the type of service (hardware intensive or software
intensive) a task would be requiring and if hardware
intensive then to which particular functional unit it should
be mapped.

 The second factor which contributes to faster
performance is the limiting the number of context switches
required. This decision to limit the number of context
switches is based on the strong reason that our architecture
has dedicated functional unit for each of the hardware
intensive task decided at the run-time. Thus there is no
chance of a collision or synchronization problem. For
situations when even a high priority task needs to execute,
there would be no need of a context switch as there would
be a dedicated functional unit for that particular task.

 The extended operating system proposed also
takes into account various other factors like time (T1)
when a hardware functional unit was used last time. The
mapping of tasks to hardware functional units is done such
that all the units are used evenly and the distribution of
usage is such that the heat generated is even which helps in
decreasing the capacity and cost of cooling solutions
required to keep the temperature of the processing units
under control.

 Thus the proposed architecture provides a
considerable increase in performance and reliability of the
system, reducing the chances of failure of the complete
systems and proving to be of immense use in high cost
systems whose repair or maintenance is not possible as
there is very little human interference possible after the
systems have been deployed.

References

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 340

[1] B. W. Kernighan and D M. Ritchie, 1988, The C
Programming Language, Second Edition, Prentice Hall,
Inc., ISBN 0-13-110370-9.

[2] D. Andrews, D. Niehaus and P. Ashenden,2008,
Programming models for hybrid cpu/fpga chips, IEEE
Computer, 37(1):118-120, January 2004.Systems, IEEE
Transaction on, 16(1), page 34-44.

[3] F. Hanchek and S. Dutt, 1998, Methodologies for
tolerating cell and interconnect faults in FPGAs,
Computers, IEEE Transactions on, Volume 47, Issue 1,
Page 15 - 33.

[4] G. Stitt et al., 2004, Energy Savings and Speedups
from Partitioning Critical Software Loops to Hardware in
Embedded Systems, in ACM Trans. on Embedded
Computing Systems (TECS), vol.3, no.1, pp. 218-
232.

[5] I. G. Harris, P. R. Menon, R. Tessier, 2001, BIST-
based delay path testing in FPGA architectures, Test
International Conference, Proceedings ,Page 932 - 938.

[6] M. Sonza Reorda, L. Sterpone and M. Violante, 2005,
Multiple errors produced by single upsets in FPGA
configuration memory: a possible solution, IEEE
European Test Symposium, page 136-141.

[7] M. Violante and L. Sterpone, 2006, Hardening FPGA-
based systems against SEUs: A new design methodology,
JOURNAL OF COMPUTERS, VOL. 1, NO. 1.

[8] M. Song, S. H. Hong and Y.Chung, 2007, Reducing
the overhead of real-time operating system through
reconfigurable hardware, Digital System Design
Architectures, Methods and Tools, 10th Euromicro
Conference in 2007.

[9] N. Campregher, 2005, FPGA interconnect fault
tolerance, Field Programmable Logic and Applications,
International Conference on, Volume, Issue, 24-26, Page
725 - 726.

[10] R. Scrofano, M. B . Gokhale, F. Trouw and V. K.
Prasanna, 2006, Accelerating Molecular Dynamics
Simulations with Reconfigurable Computers, IEEE
transactions on parallel and distributed systems, Vol. 19.
No. 06.

[11] Sunil Kr. Singh, Ratnakar Madan, Nitisha Jain, 2011,
"Reconfigurable Hybrid Architectures for High
performance, Reliable embedded system" proceeding of
International conference on FTICT, RKGIT,
Ghaziabad, India.

[12] The standard ANSI C language: http://www.open-
std.org/jtc1/sc22/wg14/.

[13] The standard XML language:
http://www.w3.org/XML/.

[14] Y. Shu-Yi and E. J. McCluskey, 2001, Permanent
fault repair for FPGAs with limited redundant area, Defect
and Fault Tolerance in VLSI Systems, Proceedings
2001 IEEE International Symposium, Page 125 - 133.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 341

