
A Novel Approach of Query Optimization for Distributed 
Database Systems 

 
Deepak Sukheja 1, Umesh Kumar Singh2 

1: Priyatam Institute of Technology and Management 
 Indore 452009, India 

 
. 

             2: Institute of Computer Science, Vikram University 
Ujjain, India 

 
 
Abstract 
Query optimization in distributed databases 
explicitly needed in many aspects of the 
optimization process, often making it imperative 
for the optimizer to consult underlying data 
sources while doing cost based optimization. This 
is not only increases the cost of optimization, but 
also changes the trade-offs involved in the 
optimization process significantly. The leading cost 
in this optimization process is the “cost of costing” 
that traditionally has been considered 
insignificant.  The optimizer can only afford a few 
rounds of messages to the under- lying data 
sources and he nce the optimization techniques in 
this environment must be geared toward gathering 
all the required cost information with minimal 
communication. 
In this paper, we explore the design and s earch 
space for a que ry optimizer in distributed 
environment and de monstrate the need for this 
optimization approach in various aspects of the 
optimization process. This work present minimum-
communication cost query cost variants of various 
query optimization techniques, and di scuss trade- 
offs in their performance in the present 
development. We have implemented a nov el 
optimization approach in the distributed database 
environment, somewhat unexpectedly, indicate that 
a simple two-phase optimization scheme performs 
fairly well as long as the physical database design 
is known to the optimizer, though more determined 
algorithms are required. 

Keyword: Query Optimization, Query Optimization 
approach, Query processing in DDBMS 
 
Introduction  
The need for distributed database services has 
increased dramatically in present working 
environment. Within enterprises, IT infrastructures 
are often decentralized as a result of mergers, 
acquisitions, and specialized corporate 
applications, resulting in deployment of large 
distributed databases. Possibly more significantly, 
the Internet and intranet have enabled new 
enterprise ventures including Business-to-Business 
Net Markets (or Hubs) [1, 2], who’s business 
hinges on federating thousands of decentralized 
catalogs and other databases. 
In general, distributed database technology has 
been the subject of multiple research thrusts, 
including schema integration [3, 4], data 
transformation [2], as well as distributed query 
processing and optimization. The query 
optimization work goes back as far as the early 
distributed database systems (R*, SDD-1, 
Distributed Ingres [5, 7]), and the lot of research’s 
recently has been focused on l inking data sources 
of various capabilities and cost models [8]. 
However, query optimization in the broad 
distributed environment presents peculiarities that 
change the trade-offs in the optimization process 
quite significantly. Distributed query processors 
need to consider three basic requirements: 
Need of Query Processing:  I n a large scale 
distributed system, both data access and 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 307



computation can be carried out at various sites.   
For global efficiency, it is beneficial to consider 
assigning portions of a query plan in arbitrary 
distributed ways. In fact, this has been one of the 
major motivations for development of distributed 
database systems. 
Need of Cost Factors: In a c entralized DBMS, 
query execution “cost” is a single dimensional 
factor measured in conceptual units. In a 
distributed database, costs must be dividing into 
multiple dimensions under the control of single 
logical database. One proposal for a universal cost 
metric is hard currency, but typically there are 
other costs that are valuable to expose 
orthogonally, including response time, data 
freshness, and accuracy of computations [9, 10]. 
Need of Cost Estimation: This work is motivated 
by the necessity of the cost estimation in the part of 
the query optimizer from the optimization process. 
Apart from of the number of cost dimensions 
factor, a c entralized optimizer cannot accurately 
estimate the costs of operations at many 
autonomous sites. Z. G. Ives and A. Tomasic perposed 
middleware systems in [8, 11] address this problem 
by involving site specific wrappers in the 
optimization process, but they do not  consider the 
cost of communicating with these wrappers. This 
cost is not significant in these systems because the 
wrappers typically reside in the same address space 
as the optimizer. But in general, the execution costs 
may also depend on transient system issues 
including inter communication cost between two 
sites [9]. Therefore  co st estimation process must 
be distributed in a manner reflective of the query 
processing, with cost estimates being provided by 
the sites that would be doing the work. However, to 
the best of our knowledge, complete cost 
estimation, which requires the optimizer to 
communicate with the sites merely to find the cost 
of an operation, has not been studied before. In 
such a scenario, communication may become the 
dominant cost in the query optimization process. 
The high cost of costing raises a number of new 
design challenges, and adds additional factors to 
the complexity of distributed query optimization. 
 
 
Contributions of the Paper 

In this paper, consider a large space of distributed 
query optimizer design alternatives and argu the 
need for taking into consideration the high “cost of 
optimization” in heterogeneous environment.  
Accordingly, its present minimum communication 
cost factors of various well-known optimization 
approaches and presents an effective algorithms for 
query optimization in the distributed database 
environments. 
2. Architecture and Problem Definition 
For query optimization purposes, the most relevant 
parts of the system are the query optimizer in the 
middleware, and the bidders at the fundamental 
sites (Figure 1). As in a cen tralized database 
system, the query optimizer could use a variety of 
different optimization algorithms, but the 
heterogeneous and distributed database system 
requires that the cost estimates be made by the 
original data sources or by the bidders.   T he 
optimizer and the bidder communicate through use 
of two mechanisms: (1) Request for Bid (RFB) that 
the optimizer uses to request cost of an operation, 
and (2) Bid through which a bidder makes cost 
estimates. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig1. System Architecture 
The Distributed Query Optimization Problem 
 
The distributed query optimization problem is to 
find an execution plan for a user specified query 
that satisfies an optimization goal provided by the 
user, this goal may be a function of many variables, 
including response time, total execution cost, 
accuracy and staleness of the data.  For simplicity, 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 308



we concentrate on t wo of these factors, response 
time and total execution cost , though it is  fairly 
easy to extend these to include other factors, 
assuming they can be easily estimated. Since we 
assume that the only information we have about the 
costs of operations is through the interface to the 
bidders, the optimization problem has to be 
restated as optimizing over the cost information 
exported by the bidders. Before describing the 
adaptations of the known query optimization 
algorithms to take into account the high cost of 
optimization, we will discuss two important issues 
that affect the optimization cost in this framework 
significantly. 
Query Optimization Approach 
To discuss the optimization technique and 
algorithm in this paper, it will make the following 
assumptions: Accurate Statistics: We assume 
that statistics regarding the cardinalities and the 
selectivity are available. This information can be 
collected through standard protocols that allow 
querying the host database about statistics, or by 
caching statistics from before query executions. 
Communication Costs:  We assume that 
communication costs remain roughly constant for 
the duration of optimization and execution of the 
query, and that the optimizer can estimate the 
communication costs incurred in data transfer 
between any two sites involved in the query. No 
Pipelining Across Sites:  We assume that there is 
no pipelining of data among query operators across 
sites.  
In general, all optimization algorithms break into 
three steps: 
Step 1: Choose subplans that require cost estimates 
and prepare the requests for bids. 
Step 2: Send messages to the bidders requesting 
costs. 
Step 3: Calculate the costs for plans/subplans. If 
possible, decide on an execution plan for the query, 
other- wise, repeat steps 2 and 3. 
Clearly we should try to minimize the number of 
repetitions of steps 2 a nd 3, s ince step 2 i nvolves 
expensive communication. 
The proposed algorithm has tried to minimize the 
retrieval of large datasets. The cost measure that 
we have considered is the size of the retrieved 
result sets. The proposed algorithm searches all 
possible plans for the query, using top – down 

approach and the principle of optimality to cut 
subplans as early as possible. However the 
algorithm is finish it w orks in reasonable time in 
exponential nature and it is guaranteed to find the 
optimal plan for executing the query. Proposed 
optimization algorithms break into foure steps and 
these steps are as follows: 
Step 1: Catalog all feasible joins and multi-joins.  
(A feasible relation is defined as either a b ase 
relation or an intermediate relation that can be 
generated without Cartesian product; a feasible join 
is defined to be a join of two or more feasible 
relations that does not involve a Cartesian product). 
Step 2: Create bid requests for the joins and 
compute step 1 for scans on the base tables. 
Step 3: Request costs from the bidders for these 
join and scan operations. If input relations are 
intermediate table in that case for each join, only 
request the cost of performing that individual join 
and assuming that the input relations have already 
been computed.  
Step 4: Calculate the costs for plans/subplans 
recursively using classical dynamic programming 
(partial order dynamic programming if 
multidimensional costs are desired) and find the 
optimal plan for the query. 
Consider a banking enterprise (given in the text 
book) having the following relation schemas: 
branch (branch_name,branch_city,assets) 
customer ( customer_name, customer_street, 
customer_city) 
loan (loan_number,branch_name,amount) 
borrower (customer_name,loan_number) 
account (account_number, branch_name, balance) 
depositor (customer_name,account_number) 
We could distribute the tables among 3 sites: 
Site 1: branch 
Site 2: customer, borrower, depositor 
Site 3: loan, account 
There will be a central data dictionary which will 
contain the information regarding which tables are 
in which sites and the schema definition of the 
tables. 
Now consider a query: 
select  customer_name, loan_number, amount 
from borrower , loanl 
where borrower.loan_number = 
Loan..loan_number and 
branch_name = ‘Perryridge’ and amount > 1200; 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 309



 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig 2. 
 
Step 1: Look at the From clause and refer catalog 
for the central data dictionary to determine which 
sites are to be considered for this particular query. 
Create ‘n’ number of SubSelect, SubFrom and 
SubWhere lists where n: no. of sites Distribute the 
SelectItems into the SubSelect(n) lists, FromItems 
into the SubFrom(n) lists. 
 
 
 
 
 
 
 
 
 
 
 
      
      
      
      
      
      
      

      
     
 
 
 
 
 
 
 
 R1       R2 

Fig 3. 
 
 
 
 
 
 
 
 
 
 
 
 
Step 2: Pick each item from the Where-Items list. 
If that clause belongs completely to a site, then 
include that clause into the corresponding 
SubWhere list. If a clause does not belong 
completely to one site then put that clause into a 
new list Final Where. Parse that clause to get the 
operands. Look for attributes of tables in individual 
operands. Find the sites to which these attributes 
belong to. If these attributes are not included in the 
respective Sub Select then include them. This step 
is one of the key steps in this algorithm. It is not 
intuitive and the example would help us understand 
it. 
 
 
      
      
      
      
   
 
 
 
 
 
 

Middle layer 

Site 3 Site 2 

Select  customer_name, 
borrower.loan_number 
from  borrower 

Select  
customer_name, 
borrower.loan number 

  

Compute R1 X  R2 

Site 3 Site 2 

customer  borrower  loan  account 

Result set 1 Result set 2 

Compute R1 X  R2 

Reslt set 1 Result set 2 

select  customer_name, 
borrower.loan_number,amount from  borrower,loan 
where borrower.loan_number = loan.loan_number  
and branch_name = ‘Perryridge’ and amount > 
1200; 

Middle layer 

Site 3 

Site 2 
Site 1  

customer, 
borrower, 
depositor 

branch loan, 
account 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 310



 
 
 
 
 
 

Fig 4. 
 
Step 3: Using the SubSelect, SubFrom and 
SubWhere lists’ generate the subquery.  
FinalSelect = SelectItems 
FinalFrom = {R1,R2…..,Rn) where n :  no of  sites 
and rn stands for the result set obtained from the 
nth site. Generate the final query from the 
FinalSelect, FinalFrom and FinalWhere lists. 
Execuation Plan: 
SUBQUERY[1] =NIL 
SUBQUERY[2] : 
SELECT 
CUSTOMER_NAME,B.LOAN_NUMBER 
FROM BORROWER ; 
 
SUBQUERY[3] : 
SELECT AMOUNT, L.LOAN_NUMBER 
FROM LOAN L 
WHERE BRANCH_NAME = ‘PERRYRIDGE’ 
AND AMOUNT>1200; 
 
FINALQUERY : 
SELECT 
CUSTOMER_NAME,B.LOAN_NUMBER, 
AMOUNT 
FROM R2,R3 
WHERE  
B.LOAN_NUMBER = LOAN.LOAN_NUMBER 
 
Where R1, R2 are result sets obtained from sites 2 
and 3 respectively. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 5. 
 
Step 4: Execute the sub queries at the respective 
sites parallel (intra-query parallelism) and the final 
query at the middle layer. 
 
Conclusion 
A presented approach of query optimization is very 
useful for distributed database systems. To 
computations of cost from the optimization 
process, the optimizer must consult the data 
sources involved in an operation to find the cost of 
that operation. The mentioned analytical process 
indicate that, in many cases, especially when the 
physical database design is known to the optimizer, 
this query optimization algorithm works very well. 
In absence of such information, more aggressive 
optimization techniques must be used. 
 
 
 
 
 
 
 
 
 
 
 
 
References 
 
[1]Net market makers inc. http://www.netmarketmakers.com, 
     1999. 
 
[2] L. Knight. “the e-market maker revolution”, dataquest inc. 
www.netmarketmakers.com/documents/perspective1.pdf, 
1999. 
 
[3] M. Lenzerini, and S.B. Navathe. A comparative analysis 
of methodologies for database scheme integration. ACM 
Computing Surveys, 15(4):323–. 364 
 
[4R. J. Miller, L. M. Haas, and M . Hernández, “Schema 
Mapping as Query. Discovery,” in VLDB, 2000, pp. 77–88. 
 

select  customer_name, 
borrower.loan_number,amount from  borrower,loan 
where borrower.loan_number = loan.loan_number  
and branch_name = ‘Perryridge’ and amount > 
1200; 

Compute R1 X  R2 

Result set 1 Result set 2 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 311



[5] L. M. Haas, P. G. Selinger, E. Bertino, D. Daniels, B. G. 
Lindsay, G. M.. Lohman, Y. Masunaga, C. Mohan, P. Ng, P. 
F. Wilms, and R. A. Yost. R*: A research project on 
distributed relational dbms. IEEE Database Eng. Bull.,. 
5(4):28–32. 
 
[7] P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and 
J. B. R. . Jr., “Query processing in a s ystem for distributed 
databases (SDD-1),”. TODS, vol. 6, no. 4, 1981. [15] R. S. 
Epstein, M. Stonebraker, ... Databases Where Relations Are 
Hash Partitioned”,” TODS, vol. 16, no. 2, pp. 279–308. 
 
 
[8] Z. G. Ives, D. Florescu, M. Friedman, A. Y. Levy, and D. 
S.Weld. An adaptive query execution system for data 
integration.In SIGMOD, 1999. 
 
[9] R. Avnur, J.M. Hellerstein, B. Lo, C. Olston, B. Raman, 
V. Raman, T. Roth,  and K. Wylie,  "CONTROL: Continuous 
Output and Navigation Technology with Refinement On-
Line",  in Proc. SIGMOD Conference, 1998, pp.567-569. 
 
[10] C.Olston and J. Widom. Offering a precision-
performance tradeoff for aggregation queries over replicated 
data. vldb.org/conf /2000/pp. 144. 
 
[11] A. Tomasic, R. Amouroux, P. Bonnet, O. Kapitskaia, H. 
Naacke, and L. Raschid. The distributed information search 
component (DISCO) and the world wide web. In IEEE 1998, 
Volume: 10 Issue: 5 pp. 808-823. 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 312




