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Abstract 

In this paper, a method of actuator fault accommodation for a 
class of nonlinear systems is proposed. It concerns the problem 
of progressive accommodation to actuator failure. This strategy is 
based on t he optimal nonlinear controller, and its objective to 
maintain the system closed loop stability. The authors show the 
interest of the proposed method even for a local analysis when a 
linear approximation is used. This work focuses on a solution to 
ensure stability while accommodating to actuator failure. An 
example is given to illustrate this approach. 
Keywords: Fault tolerant control, progressive accommodation, 
optimal control, actuator fault, nonlinear system. 

1. Introduction 

Modern technological systems rely on sophisticated 
control functions to meet increased performance 
requirements. For such systems, Fault Tolerant Control 
(FTC) needs to be developed. A FTC is a control that can 
accommodate system component faults and it able to 
maintain stability and acceptable degree of performance 
with respect to nominal system operation [1] and accept 
some graceful performance degradation [2] not only when 
the system is fault-free but also when there are component 
malfunctions. 
 
FTC can be classified into passive and active. A Passive 
FTC (PFTC) can tolerate a predefined set of faults while 
accomplishing its mission satisfactory without the need for 
control reconfiguration. Active FTC (AFTC), on the other 
hand, relies on a Fault Detection and Identification (FDI) 
process to monitor system performance, and to detect and 
isolate faults in the system. Accordingly, the control law is 
reconfigured on-line [3] [4]. 
 
Indeed, in the literature, a conventional strategy to solve a 
nonlinear reconfigurable control problem consists in 
designing a linear approximation of the model around 
operating points. Recent papers such as multiple model [5] 
[6] and sliding modes [7] have been presented. In order to 
handle nonlinear systems beyond using a linearized 
approximation, reconfigurable control methods have been 

proposed using backstepping [8] and nonlinear regulator 
[9]. 
 
Moreover, few papers concern the delays associated with 
computation times [10] [11] [12]. The former introduced 
the concept of progressive accommodation whose the 
objective is to minimize the effect of the accommodation 
delay. To this end, the reconfigurable control design 
method is based on a linear quadratic approach. 
 
The objective of this work is to study the validity of the 
linear approximation approach when the fault holds. More 
precisely, this paper proposes an analysis of the 
accommodation delay and its effects on the closed loop 
stability. This work considers a linear system as an 
approximation of a nonlinear one around an equilibrium 
point. The limitation of the linear approach is emphasized 
when the actuator fault occurs near the boundary of the 
validity domain of the linearization. In this case, an 
appropriate nonlinear approach which is valid on the 
whole physical domain can be helpful. 
 
The present paper is organized as follows: in section 2, the 
class of affine nonlinear systems is introduced and a 
necessary background is provided on the main idea of the 
actuator fault accommodation and optimal regulation 
problem. Section 3 presents the analysis of the closed loop 
system stabilization during the fault occurrence with the 
use of the domain of attraction and the linear 
approximation validity domain. Section 4 presents the 
proposed approach of nonlinear progressive 
accommodation. In section 5, simulation studies have been 
conducted in an example to illustrate the proposed 
approach. 

2. Preliminaries and Motivation 

In the present work, affine nonlinear continuous-time 
dynamic systems are considered with a s tate-space 
representation: 

( )x f x Bu= +                                            (1) 
( )y h x=                                                          (2) 
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where nx ∈ℜ the vector of state variables is, mu ∈ℜ  is 
the control vector and ly ∈ℜ  is the output vector. f  and 
h  are smooth functions with (0) 0f = . B  is a constant 
matrix of dimension ( )n m× . The infinite-time horizon 
nonlinear regulation problem is defined with the following 
quadratic performance index in u  : 
 

0( )
( ) min ( ( ) ( ) )T T

u t
V x x Q x x u R x u dt

∞
= +∫  (3)

    
in which ( ) 0Q x ≥  and ( ) 0R x >  for all x . Moreover, it 
is assumed that Q  and R  are sufficiently smooth so that 
the value function ( )V x  is continuously differentiable. In 
this case, the Hamilton-Jacobi Equation (HJE) is quadratic 
in ( )V

x x∂
∂  such that:  

 
11( )  0

4
                                            

T
T TV V Vf x BR B x Q x

x x x
−∂ ∂ ∂

− + =
∂ ∂ ∂    (4)   

 
and the optimal feedback control can be designed from: 
 

11 ( ) ( )
2

T
T

n
Vu R x B x
x

− ∂
= −

∂
                             (5) 

 
In this paper, we consider as defined in [11] a l inear 
representation, that one (or several) actuator fault(s) occur 
at time ft . The system can be described by:  
 

( ) ( )x f x B uθ= +                                            (6) 
 
where:  
 

[0 [
( )

( ) [ [
f

f f

Bu t t
B u

u t tθ β θ
, ∈ ,

=  , , ∈ ,+∞
              (7) 

 
The function ( )f uβ θ,  and the parameter θ  represent the 
contribution of the faulty actuator. The complex structure 
of the system (1) introduces difficulties in solving the 
optimal control problem.  
 
The calculation of an optimal nonlinear state feedback for 
nonlinear systems requires the development of numerical 
algorithms [13] [14], because the optimization problem 
needs a resolution of the Hamilton-Jacobi equation. 
Otherwise, the control problem makes mandatory an 
approximation by system with a simpler structure. Notice 
that in a local area, the linear system is given by:  
 

x Ax Bu= +                                            (8) 
 

where 0
f

xxA ∂
=∂=  is the Jacobian matrix of f  at point 

0x = . Therefore, the optimal regulation problem is 
characterized by an Algebraic Riccati Equation (ARE).  
 
As mentioned in [11], in the FTC problem, one has to 
consider four time periods in order to analyze the system 
behavior under actuator fault.  

1. [0 [ft t∈ ,  : nominal system and control nu .  
2. [ [f fdit t t∈ ,  : faulty system under the nominal 

control nu  and FDI algorithm in process for fault 
detection, isolation and estimation.  

3. [ [fdi ftct t t∈ ,  : faulty system under the nominal 
control nu  and the fault is detected, isolated and 
estimated.  

4. [ [ftct t∈ ,+∞ : faulty system under the 
accommodated control fu .  

These four time periods are presented in Fig.1.  
 

 

Fig. 1. Description of the fault tolerant control strategy 

In practical applications, even if the diagnosis is perfect 
that is not realistic, the system control is inappropriate on 
the interval [ [f ftct t,  since the faulty system is controlled by 

nu . The progressive accommodation presented in [10] 
[11], aims at minimizing the interval [ [fdi ftct t, . Therefore, 
thanks to an online control computation, the authors 
propose an improvement of the closed loop behavior of the 
fault system in a linear context.  
 
The present paper exposes the limitations of the linear 
approach and develops an extension of the actuator fault 
accommodation to a class of affine nonlinear system with 
unstable free dynamics.  

3. Closed loop stability and accommodation to 
the actuator fault 

Number of methods for determining the stability region of 
nonlinear systems has been proposed in the literature, for 
example Zubov’s method [15]. It computes the entire 
stability region via a Lyapunov function. Regardless an 
eventual actuator fault occurrence, the solution of the 
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Zubov’s partial differential equation is used to estimate the 
closed-loop stability region.  
Let the evolution of the nonlinear system be described by 
the equation (1). At any given point in time t , assume that 
it is always possible to integrate the dynamic equation (1) 
for all admissible input control ( )u t . An optimal control 
design is designed thanks to the optimization of the 
performance index (3). The problem of local output 
regulation involves the design of a f eedback controller 
which ensures that the closed loop system is locally 
asymptotically stable at the origin, and the regulated output 

( )y t  asymptotically decays to 0 as t → +∞ .  
 
In order to accomplish the above task, the problem of 
nonlinear control may be solved in a l ocal area using a 
linear approximation of the system.  
 
In this paper, the authors introduce the notion of the 
validity domain ν  of the linear approximation which 
allows to synthesizing an optimal controller by an 
Algebraic Riccati Equation. This study stands for an 
extension to the class of nonlinear system (1) of the linear 
approach proposed in [10] [11].  
 
As shown on Fig.2, starting from the initial condition 

0x ν∈ , the stability of the nonlinear system in closed loop 
is ensured in the domain of attraction ( )nB uβ ,  using the 
linear optimal controller. The system converges to the 
equilibrium point eqx . Dϕ  stands for the physical operating 
domain of the system.  
 
When an actuator fault occurs, the nominal model is 
changed at time ft  and the quadratic performance index 
(3) is modified. During the time interval [ [f ftct t, , the 
domain of attraction of the closed loop becomes 

( )f nB uβ , .  
 

 

Fig. 2. Description of the validity domain of the linear approximation 

If the system is tolerant to the fault, Staroswiecki et al. [10] 
proposed in a linear approach, an optimal way to 
progressively accommodate the fault such that the closed 
loop system is stable. The algorithm is based on the 
Newton-Raphson algorithm developed in a l inear context 

in [16]. It is considered here that the diagnostic algorithm 
is computed with no delay, no error that is not realistic. 
Consequently, as shown on Figure 1, the diagnostic 
strategy is characterized by the time delay ( )fdi ft t− .  
 
Therefore, depending on the nonlinearity of the system, the 
linear approach to the progressive accommodation may not 
be able to stabilize the closed loop. The system may leave 
the validity domain of the linear approximation and the 
domain of attraction ( )f nB uβ ,  as shown on Fig.3.  
 

 

Fig. 3. Evolution in the interval [ [f ftct t,  of the closed loop system 
under an actuator fault 

From Figure 3, px  stands for the initial condition, pt  is 
the time delay necessary to cross the boundary of ν  and 

( )p p f nt x B uϕ , , ,  is the solution of the system (1).  
 
From now, if the state corresponding to the solution 

( )p p f nt x B uϕ , , ,  belongs to the domain of 
attraction ( )f fB uβ , , the control is fault tolerant and the 
solution converges to the equilibrium point as shown on 
Fig.4.  
 

 

Fig. 4. Evolution in the interval [ [ftct t,  of the closed loop system with a 
fault tolerant control 

Nevertheless, if the state corresponding to the solution 
( )p p f nt x B uϕ , , ,  doesn’t belong to the domain of 

attraction ( )f fB uβ , , the closed loop system is unstable as 
presented on Fig.5 and the actuator fault is not 
accommodated.  
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In the following, the authors, argue the presented problem, 
propose an illustration and a solution for the actuator fault 
accommodation. 

 

Fig. 5. Evolution in the interval [ [ftct t,  of the closed loop system for a 
non accommodated fault 

Consider the class of nonlinear system defined in (1). Let 
( )B uβ ,  be the domain of attraction of the closed loop 

system defined from (8) with ( )B u, . The validity domain 
ν  is included in the domain of attraction ( )nB uβ ,  where 
( )nB u,  describes the nominal operating conditions and 
control. In other words, ( )nB uν β⊂ , . This means that the 
domain of attraction is at least equal to ν  since the validity 
domain of the linear model is ensured on the whole ν . 
 
However, the estimation of the domain of attraction 

( )nB uβ , , when it is possible must be done using the 
nonlinear model (1) as proposed in [15]. 
 
In the present paper, the authors consider the case of 
unstable free dynamics. 
 
In the interval [ [f ftct t,  for the closed loop system defined 
from (1) with ( )f nB uβ , , we have ( )f nB uν β∉ , . Otherwise, 
this means that the actuator fault doesn't affect the 
performances of the closed loop. 
 
For now, let define the following notations. ν∂ designates 
the boundary of ν . ( ),pd x ν∂  denotes the distance from 

px  to ν∂ . pt  is the time delay necessary to cross the 

boundary ν∂ . ( ), , ,p pt x B uϕ  stands for the solution of the 

closed loop system (1) defined by the pair ( )B u,  for pt  
with the initial condition px . 
 
Consequently, there exist two sequences ( )p p

x ν
∈ℵ
∈  and 

( )p p
t +

∈
∈ℜ


 with 1

pt
P

<  such that ( ) 1,pd x
p

ν∂ <  and 

( ), , ,p p f nt x B uϕ ν∉ . 
 

Finally, for any ftct , there exists an initial condition 
ftcx ν∈  such that ( ), , ,ftc

p f nt x B uϕ ν∉ , and it is not 

ensured that ( )( )lim , , , , , ,ftc
ftc f n ft

t t x B u B uϕ ϕ
→∞

for any 

used u  which is valid in the domain ν  in the interval 
[ [ftct , +∞ . 

4. Proposed approach: Nonlinear Progressive 
Accommodation (NPA) 

In practice, an actuator fault in a co ntrolled system 
generates changes in inputs/outputs signals and in the 
parameters of the differential system which describes the 
dynamics.  
 
The design of a passive fault tolerant controller is 
sufficient to ensure degraded dynamic performances when 
the changes in the parameters and signals are small. When 
the effects of the fault are significant, the global stability of 
the system may not be ensured, therefore the stabilization 
of the dynamic system with a f ixed controller may be 
impossible.  
 
In this paper, the authors consider an actuator fault 
occurrence under the constraint that the faulty actuator 
can’t be switched-off and replaced. This last strategy is 
usually called system reconfiguration. In this section, the 
authors focus their attention on the fault accommodation in 
a nonlinear context. They first refer to a fault tolerant 
control designed beforehand when failure is identified and 
secondly to an on-line accommodation scheme.  

4.1 Nonlinear Progressive Accommodation (NPA) 

In the nonlinear case, the infinite-time horizon nonlinear 
optimal control problem (1), (3), is characterized in 
terms of Hamilton-Jacobi Equation (4). The difficulty 
with finding the optimal control is that the HJB equation 
represents a nonlinear partial differential equation, which 
is difficult, and often impossible, to solve analytically. 
The complexity of the HJE prevents any solution 
excepted in some very simple systems. In order to make 
real-time implementation possible, one has to avoid 
solving any partial differential equation. With application 
to online progressive accommodation and in order to 
design a suboptimal control design, an alternative is to 
investigate the Successive Galerkin Approximation 
(SGA) algorithm to the Hamilton-Jacobi-Bellman 
Equation (HJBE) [13]. This approach approximates the 
solution to equation (4), if a stabilizing control to system 
(1) is known a priori, with the following iterative 
scheme:  
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0

1 1

( ) 0
( ) 1 ( ) 0

2

T
i T i

n

u x i
u x Vu R B x i

x
− −

, =
=  ∂

= − , > ∂

       (9) 

 
where 1iV −  is the performance index of 1iu −  as 
calculated from the solution of the Generalized-
Hamilton-Jacobi-Bellman (GHJB) equation: 

 
11

1 1 1( ( ) ) 0Ti
i i i

V f x Bu u TR u x Qx
x

−−
− − −

∂
+ + + =

∂
 (10) 

 
if the 0u  is stabilizing control, then iu  will be stabilizing 
for all 0i ≥ , iV V→  and iu u→  as i →∞ .  

5. Illustrative example  

Consider an affine nonlinear continuous-time dynamic 
system modeled by:  

 
2 2 x x x u= + +                                                (11) 

y x=                                                                 (12) 
 

The following problem is first to define an optimal 
control nu  with respect to a quadratic performance index 
(3), in nominal conditions given an initial value of the 
state 0x . Secondly, a fault tolerant control fu  must be 
synthesized given an acceptable actuator fault.  

5.1 Optimal control in nominal conditions  

If the problem is local, a linear approximation of the 
system around the operating point 0x =  is computed. 
The optimal control nu  is synthesized thanks to the LQ 
problem.  

 
Find the optimal control nu , such that the cost: 

 

0 0
( ) ( ( ) ( ) )T TJ u x x Q x x u R x u dt

∞
, = +∫            (13) 

 
is minimal.  

 
The optimal solution is known to be: 

 
1 T

n nu R B Px F x−= − = −                            (14) 
 

where 2B = , Q  and R  are symmetric positive definite 
matrices and P  is the solution to the Algebraic Riccati 
Equation (ARE).  
 

1 0T TPA A P Q PBR B P−+ + − =             (15) 
 

With the choice of 1Q R= = , one finds 1 618nu x= − . . 

5.2 Linear Progressive Accommodation (LPA) to 
actuator fault  

 As defined in (7), an actuator fault occurs at 0ft > . The 
state-space representation of the nonlinear faulty system 
becomes: 
 

2
fx x x B u= + +                                             (16) 

y x=                                                               (17) 
 
where 0 8fB = . . Staroswiecki et al. in [10] proposed a 
linear approach to the progressive fault accommodation. 
Given the local linearization of the faulty system (16) 
around the nominal operating point 0x = , if the loss of 
efficiency due the fault occurrence can be admitted, the 
linear accommodation problem has an admissible solution. 
Consequently, the linear feedback control law i iu F x= −  
(starting at the time fdit ) is applied on the interval 

1[ [i it t +, . The description of the linear progressive 
accommodation strategy is given on Fig.6. 
 

 

Fig. 6. Description of the progressive accommodation strategy 

Based on the linear approximation of the faulty 
system ( )f fA B, , the feedback control iu is computed 
thanks to the Newton-Raphson algorithm presented in [16]. 

iP is the unique solution of the Lyapunov equation:  
 

( ) ( )

1

1 1

1                                 
i

T
i f f i f f i i

T
i

P A B F A B F P

Q F RF
−

− −

−

− + − =

− −
          (18)  

 
The initial 0F  is given and for all 

11,..., ,  T
i f ii n F R B P−= = . Moreover, the optimal linear 

fault tolerant controller is defined by fP .  
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fP  is the unique positive definite solution of the Algebraic 
Riccati Equation (ARE):  
 

1 0T T
f f f f f f f fP A A P Q P B R B P−+ + − =             (19) 

 
and lim i fi

P P
→+∞

= , where iP  is the solution of (18). The 

optimal control of the faulty system gives 2 8508fu x= − . . 
As an illustration, one can choose the initial condition 

0 0.1x = . An actuator fault occurs at the time 0.2ft s= . 
According to the definition (7), the system is described by:  
 

2

2

2 0,

0.8 ,

f

f

x x u t t
x

x x u t t

  + + , ∈  = 
 + + , ∈ +∞  

                       (20) 

 
Let consider the sample computation time 1.7et s=  and 
one supposes that the time delay for the fault diagnosis 
( )fdi ft t−  is equal to et . Each iteration takes et . The time 

delay for the FTC computation ( )ftc fdit t−  is equal to et . 
 
Fig.7 presents an illustration of the linear progressive 
accommodation to the actuator failure. In the interval 

,f f et t t +  , the nonlinear faulty system is driven by the 

linear optimal nominal feedback control nu . At the time 

( )f et t+ , the closed-loop is stabilized using the iterative 

control iu  in green color line. The first fault tolerant 

control fu  is applied at the instant ( )ftc fdi et t t= + . The 

corresponding state ( )x t  is plotted in red color line.  
As expected, the state ( )x t  decreases to zero a l ittle bit 
faster with the progressive accommodation than with the 
FTC. 

 

 

Fig. 7. Illustration of the linear progressive accommodation on 
the example (11)  

 

Moreover, Table 1 shows the evolution of iF  when linear 
fault accommodation is applied. The convergence of the 
Newton-Raphson algorithm on the linear optimal fault 
tolerant control takes 5 iterations.  

Table 1: Evolution of the iterative state feedback gain 

Iteration i Fi 

0 1.6180 

1 4.9154 
2 3.4322 
3 2.9282 
4 2.8526 
5 2.8508 

 
By now, for the same actuator fault, there exists and initial 
condition (0)x  such that the nominal closed-loop system 
stays inside the domain of attraction and the state ( )x t  
doesn’t belong to the validity domain of the linear 
approximation. Therefore, from the instant of the fault 
occurrence, the closed-loop system leaves the domain of 
attraction and diverges despite the linear progressive 
accommodation.  
 
Fig.8 illustrates the divergence of the state ( )x t  with the 
linear progressive approach for the given initial condition 

(0)x =0.85.  
 

 

Fig. 8. Illustration of the linear progressive accommodation on 
the example (11) 

5.3 Proposed Nonlinear Progressive Accommodation 
(NLPA) to actuator fault  

The point of departure in the present study is an 
improvement of the linear approach to the progressive 
accommodation for the class of nonlinear systems defined 
in (1).  
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The time delay needed to begin the accommodation to the 
actuator fault is equal to ( )ftc ft t−  for a cl assical fault 

tolerant control strategy as resumed in Fig.1 and ( )0 ft t−  
for the linear progressive one whose the description is 
given in Fig.6. 0t  stands for the first instant of the 
correction with respect to the actuator fault. One can 
remark that 0 ftct t=  for the classical FTC. 
 
Let define ct , the first instant of correction for the active or 
passive fault tolerant control. Whatever ct , there exists an 
initial condition (0)x  such that the nonlinear faulty system 
in closed-loop leaves the domain of attraction and becomes 
unstable. 

An alternative to the linear approach of the progressive 
accommodation issue consists in computing a nonlinear 
optimal control which is able to accommodate the actuator 
fault through the minimization of the quadratic 
performance index (13). Consequently, the optimal control 
problem in the presence of actuator fault is to find a state 
feedback control fnlu  which minimizes the cost (13) for all 
possible initial conditions (0)x . 

To this end, the Hamilton-Jacobi Equation (4) must be 
solved. An analytic solution of such a problem is not 
accessible in general that’s why a numerical approximation 
is computed in order to produce a suboptimal control. In 
the literature, on can find methods to obtain a usable 
feedback control in [13][14][17].  
 
In the example (20), given the initial condition (0) 0.85x =  
one can find the nonlinear optimal control which 
accommodate the actuator fault. The feedback nonlinear 
control iu  is computed thanks to Successive Galerkin 
Approximation (SGA) algorithm: 
 

0

1 1

( ) 0
( ) 1 ( ) 0

2

T
i T i

n

u x i
u x Vu R B x i

x
− −

, =
=  ∂

= − , > ∂

     (21) 

 
1iV − is the solution of the Hamilton-Jacobi-Bellman 

Equation (HJBE): 
 

11
1 1 1( ( ) ) 0Ti

i i i
V f x Bu u TR u x Qx

x
−−

− − −

∂
+ + + =

∂
 (22) 

 
The convergence of the Successive Galerkin 
Approximation (SGA) algorithm to the nonlinear optimal 
fault tolerant control takes 3 iterations. 

The nonlinear optimal fault tolerant control is:  
 

2( ) 1.25 ( 1 2 1.64)fnlu x x x x x= − + + + +             (23) 
 
Fig.9 presents the nonlinear progressive accommodation in 
green color line. 
 

 

Fig. 9. Illustration of the nonlinear progressive accommodation on 
the example (11) 

 
The plot shows the improvement of the nonlinear approach 
for the accommodation. In a s ense of stability, the used 
nonlinear control at the instant of correction ct  ensures the 
decrease of the state ( )x t  to zero of the damaged system. 

6. Conclusions 

This paper underlines the importance of the analysis of the 
closed-loop system stabilization with the use of the domain 
of attraction and the linear approximation validity domain 
in the context of actuator fault accommodation.  
 
This work particulary considers the limitation of the linear 
progressive accommodation approach when the fault 
occurs next to the boundary of the validity domain of the 
linearized model. An example aims at illustrating the 
argued idea which is developed in the article.  
 
Finally, the nonlinear progressive accommodation is 
proved to be efficient thanks to an algorithm taking to 
account the nonlinearity in the active fault tolerant control 
synthesis.  
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