
A New Improved Particle Swarm Optimization Algorithm for
Multiprocessor Job Scheduling

K.Thanushkodi1, K.Deeba2

 1 Director, Akshaya College of Engineering and Technology
Coimbatore, Tamil nadu, India

2 Department of Computer Science, Kalaignar Karunanidhi Institute of Technology
Coimbatore, Tamil nadu, India

Abstract

Job Scheduling in a M ultiprocessor architecture is an
extremely difficult NP hard problem, because it requires
a large combinatorial search space and also precedence
constraints between the processes. For the effective
utilization of multiprocessor system, efficient assignment
and scheduling of jobs is more important. This paper
proposes a n ew improved Particle Swarm Optimization
(ImPSO) algorithm for the job scheduling in
multiprocessor architecture in order to reduce the
waiting time and finishing time of the process under
consideration. In the Improved PSO, the movement of a
particle is governed by three behaviors, namely, inertia,
cognitive, and social. The cognitive behavior helps the
particle to remember its previous visited best position.
This paper proposes to split the cognitive behavior into
two sections .This modification helps the particle to
search the target very effectively. The proposed ImPSO
algorithm is discussed in detail and results are shown
considering different number of processes and also the
performance results are compared with the conventional
techniques such as longest processing time, shortest
processing time and Particle Swarm Optimization.

Keywords: Multiprocessor job scheduling, finishing
time, waiting time, PSO, Improved PSO (ImPSO)
.

1. Introduction

Scheduling, in general, is concerned with allocation of
limited resources to certain tasks to optimize few
performance criterion, like the completion time, waiting
time or cost of production. Job scheduling problem is a
popular problem in scheduling area of this kind. The
importance of scheduling has increased in recent years
due to the extravagant development of new process and
technologies. Scheduling, in multiprocessor architecture,
can be defined as assigning the tasks of precedence
constrained task graph onto a s et of processors and
determine the sequence of execution of the tasks at each

processor. A major factor in the efficient utilization of
multiprocessor systems is the proper assignment and
scheduling of computational tasks among the processors.
This multiprocessor scheduling problem is known to be
Non-deterministic Polynomial (NP) complete except in
few cases [1].

Several research works has been carried out in the past
decades, in the heuristic algorithms for job scheduling
and generally, since scheduling problems are NP- hard
i.e., the time required to complete the problem to
optimality increases exponentially with increasing
problem size, the requirement of developing algorithms
to find solution to these problem is of highly important
and necessary. Some heuristic methods like branch and
bound and prime and search [2], have been proposed
earlier to solve this kind of problem. Also, the major set
of heuristics for job scheduling onto multiprocessor
architectures is based on list scheduling [3-9][16].
However the time complexity increases exponentially for
these conventional methods and becomes excessive for
large problems. T hen, the approximation schemes are
often utilized to find a optimal solution. It has been
reported in [3, 6] that the critical path list scheduling
heuristic is within 5 % of the optimal solution 90% of the
time when the communication cost is ignored, while in
the worst case any list scheduling is within 50% of the
optimal solution. The critical path list scheduling no
longer provides 50% performance guarantee in the
presence of non-negligible intertask communication
delays [3-6][16]. The greedy algorithm is also used for
solving problem of this kind. In this paper a new
Improved PSO (ImPSO) algorithm is used for solving
job scheduling in multiprocessor architecture with the
objective of minimizing the job finishing time and
waiting time.

 In the next section, the process of job scheduling in
multiprocessor architecture is discussed. Section 3 will
introduce the application of the existing optimization
algorithms and proposed Improved optimization
algorithm for the scheduling problem. Section 4 will
show simulation results, and the importance of proposed
ImPSO algorithm.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 230

2. Job Scheduling in Multiprocessor
architecture

Job scheduling, considered in this paper, is an
optimization problem in operating system in which the
ideal jobs are assigned to resources at particular times
which minimizes the total length of the schedule. Also,
multiprocessing is the use of two or more central
processing units within a single computer system. This
also refers to the ability of the system to support more
than one processor and/ or the ability to allocate tasks
between them. In multiprocessor scheduling, each
request is a job or process. A job scheduling policy uses
the information associated with requests to decide which
request should be serviced next. All requests waiting to
be serviced are kept in a list of pending requests.
Whenever scheduling is to be performed, the scheduler
examines the pending requests and selects one for
servicing. T his request is handled over to server. A
request leaves the server when it completes or when it is
preempted by the scheduler, in which case it is put back
into the list of pending requests. In either situation,
scheduler performs scheduling to select the next request
to be serviced. T he scheduler records the information
concerning each job in its data structure and maintains it
all through the life of the request in the system. T he
schematic of job scheduling in a multiprocessor
architecture is shown in figure.1.

Fig 1. A Schematic of Job scheduling

2.1 Problem Definition

The job scheduling problem of a multiprocessor
architecture is a scheduling problem to partition the jobs
between different processors by attaining minimum
finishing time and minimum waiting time
simultaneously. If N different processors and M different
jobs are considered, the search space is given by
equation (1),

Size of search space =
()
()MN

NM
!

!×
. (1)

Earlier, Longest Processing Time (LPT), and Shortest
Processing Time (SPT) and traditional optimization
algorithms was used for solving these type of scheduling
problems[10,18-21]. When all the jobs are in ready
queue and their respective time slice is determined, LPT
selects the longest job and SPT selects the shortest job,

thereby having shortest waiting time. Thus SPT is a
typical algorithm which minimizes the waiting time.
Basically, the total finishing time is defined as the total
time taken for the processor to completed its job and the
waiting time is defined as the average of time that each
job waits in ready queue. The objective function defined
for this problem using waiting time and finishing time is
given by equation (2),

Minimize ∑
=

nm

n
nn xf

1
)(ω (2)

3. Optimization Techniques

 Several heuristic traditional algorithms has been
used for solving the job scheduling in a
multiprocessor architecture. In this paper a n ew
improved PSO is suggested for the job scheduling
NP-hard problem and its ouput is validated against
the general particle swarm optimization. The
following sections discuss on t he application of
these techniques to the considered problem.

3.1 Particle Swarm Optimization for Scheduling

The particle swarm optimization (PSO)
technique appeared as a p romising algorithm for
handling the optimization problems. PSO is a
population-based stochastic optimization technique,
inspired by social behavior of bird flocking or fish
schooling [10-15, 17]. PSO is inspired by the ability of
flocks of birds, schools of fish, and herds of animals to
adapt to their environment, find rich sources of food, and
avoid predators by implementing an information sharing
approach. PSO technique was invented in the mid 1990s
while attempting to simulate the choreographed, graceful
motion of swarms of birds as part of a socio cognitive
study investigating the notion of collective intelligence
in biological populations [10-15, 17].

The basic idea of the PSO is the mathematical
modelling and simulation of the food searching activities
of a swarm of birds (particles).In the multi dimensional
space where the optimal solution is sought, each particle
in the swarm is moved towards the optimal point by
adding a velocity with its position. The velocity of a
particle is influenced by three components, namely,
inertial momentum, cognitive, and social. The inertial
component simulates the inertial behaviour of the bird to
fly in the previous direction. The cognitive component
models the memory of the bird about its previous best
position, and the social component models the memory
of the bird about the best position among the particles.

PSO procedures based on the above concept
can be described as follows. Namely, bird flocking
optimizes a certain objective function. Each agent knows
its best value so far (pbest) and its XY position.
Moreover, each agent knows the best value in the group
(gbest) among pbests. Each agent tries to modify its
position using the current velocity and the distance from

Server

Scheduler

Arriving
requests/
jobs

Pending
requests/ jobs

Scheduled jobs Completed
jobs

Pre - empted jobs

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 231

the pbest and gbest. Based on the above discussion, the
mathematical model for PSO is as follows,
Velocity update equation is given by

)()(2211 ibestibestii SgrCSPrCVwV
ii
−××+−××+×=

(3)

Using equation (3), a certain velocity that gradually gets
close to pbests and gbest can be calculated. The current
position (searching point in the solution space) can be
modified by the following equation:

iii VSS +==+1 (4)

Where, Vi : velocity of particle i, S i: current position of
the particle, w : inertia weight, C1: cognition
acceleration coefficient, C2 : social acceleration
coefficient, Pbest i : own best position of particle i,
gbest i : global best position among the group of
particles, r 1, r2 : uniformly distributed random
numbers in the range [0 to 1].
si : current position, s i + 1 : modified position, v i :
current velocity, v i +1 : modified velocity, vpbest :
velocity based on pbest, vgbest : velocity based on gbest .

Fig. 2 Flow diagram of PSO

Fig.2 shows the searching point modification of the
particles in PSO. The position of each agent is
represented by XY-axis position and the velocity
(displacement vector) is expressed by vx (the velocity of
X-axis) and vy (the velocity of Y-axis). Particle are
change their searching point from Si to S i +1 by adding
their updated velocity Vi with current position Si. Each
particle tries to modify its current position and velocity
according to the distance between its current position Si
and V pbest, and the distance between its current
position Si and V gbest .
The General particle swarm optimization was applied to
the same set of processors with the assigned number of
jobs, as done in case of genetic algorithm. The number
of particles-100, number of generations=250, the values
of c1=c2=1.5 and ω=0.5. Table 2 shows the completed
finishing time and waiting time for the respective number
of processors and jobs utilizing PSO.

Table 1: PSO for job scheduling

Processors 2 3 3 4 5
No. of jobs 20 20 40 30 45
Waiting time 30.10 45.92 42.09 30.65 34.91
Finishing
time

60.52 56.49 70.01 72.18 70.09

Fig. 3 Chart for job scheduling in multiprocessor with different
number of processors and different number of jobs using PSO

Figure 3 shows the variation in finishing time and
waiting time for the assigned number of jobs and
processors using particle swarm optimization.

4. Proposed Improved Particle Swarm
Optimization for Scheduling

In this new proposed Improved PSO (ImPSO)
having better optimization result compare to general
PSO by splitting the cognitive component of the general
PSO into two different component. The first component
can be called good experience component. This means
the bird has a memory about its previously visited best
position. This is similar to the general PSO method. The
second component is given the name by bad experience
component. The bad experience component helps the
particle to remember its previously visited worst
position. To calculate the new velocity, the bad
experience of the particle also taken into consideration.
On including the characteristics of Pbest and Pworst in
the velocity updation process along with the difference
between the present best particle and current particle
respectively, the convergence towards the solution is
found to be faster and an optimal solution is reached in
comparison with conventional PSO approaches. This
infers that including the good experience and bad
experience component in the velocity updation also
reduces the time taken for convergence.
The new velocity update equation is given by

Vi = w × Vi + C1g × r1 × (P best i – Si) × P best i +
C1b × r2 × (Si –P worst i) × P worst i
 + C2 × r3 × (Gbest i – Si) (5)

Where,
C1g : acceleration coefficient, which accelerate
the particle towards its best position;
C1b : acceleration coefficient, which
accelerate the particle away from its worst
position;
P worst i : worst position of the particle i;

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 232

r1, r2, r3 : uniformly distributed random numbers
in the range [0 to 1];

The positions are updated using (4). The inclusion of the
worst experience component in the behaviour of the
particle gives the additional exploration capacity to the
swarm. By using the bad experience component; the
particle can bypass its previous worst position and try to
occupy the better position. Figure 4 shows the concept of
ImPSO searching points.

Fig. 4 Concept of Improved Particle Swarm Optimization search point

The algorithmic steps for the Improved PSO is as
follows:

Step1: Select the number of particles, generations,

tuning accelerating coefficients C1g , C1b , and
C2 and random numbers r1, r2, r3 to start the
optimal solution searching

Step2: Initialize the particle position and velocity
Step3: Select particles individual best value for each

generation
Step 4: Select the particles global best value, i.e.

particle near to the target among all the
particles is obtained by
comparing all the individual best values.

Step 5: Select the particles individual worst value, i.e.
particle too away from the target

Step 6: Update particle individual best (p best), global
best (g best), particle worst (P worst) in the
velocity equation (5) and obtain the new
velocity

Step 7: Update new velocity value in the equation (5)
and obtain the position of the particle

Step 8: Find the optimal solution with minimum ISE by
the updated new velocity and position

The flowchart for the proposed model formulation
scheme is shown in Fig.5.
.

Fig. 5 Flowchart for job scheduling using Improved PSO

The proposed improved particle swarm optimization
approach was applied to this multiprocessor scheduling
problem. As in this case, the good experience component
and the bad experience component are included in the
process of velocity updation and the finishing time and
waiting time computed are shown in table 2.

Table 2: Proposed Improved PSO for Job scheduling

Processors 2 3 3 4 5
No. of jobs 20 20 40 30 45
Waiting
time

29.12 45.00 41.03 29.74 33.65

Finishing
time

57.34 54.01 69.04 70.97 69.04

The same number of particles and generations as in case
of general PSO is assigned for Improved PSO also. It is
observed in case of proposed improved PSO, the
finishing time and waiting time has been reduced in
comparison with PSO. This is been achieved by the
introduction of bad experience and good experience
component in the velocity updation process. Figure 6
shows the variation in finishing time and waiting time for

Initialize the population Input number of
processors, number of jobs and population size

Compute the objective function

 Invoke ImPSO

For each particle

If E < best ‘E’ (P
best) so far

For each generation Search is terminated
optimal solu reached

Current value = new p best

Choose the minimum ISE of all particles as the g best

Calculate particle velocity

Calculate particle position

Update memory of each particle

End

End

Return by using ImPSO

stop

start

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 233

the assigned number of jobs and processors using
improved particle swarm optimization.

Fig. 6 Chart for job scheduling in multiprocessor with different

number of processors and different number of jobs using ImPSO

5. Discussion

The growing heuristic optimization techniques have been
applied for job scheduling in multiprocessor architecture.
Table 3 shows the completed waiting time and finishing
time for PSO, proposed Improved PSO and conventional
longest processing time (LPT) and Shortest processing
time (SPT) algorithm.

Table 3: Comparison of job using LPT,SPT, PSO and proposed

Improved PSO

No
of
proc
e
ssors

No
of
job
s

LPT SPT PSO Improved
PSO

WT FT WT FT WT FT WT FT

2 20 52.4 60.9 30.21 70.41 30.10 60.52 29.12 57.34

3 20 47.1 56.7 28.31 69.56 45.92 56.49 45.00 54.01

3 40 56.5 70.9 44.96 80.21 42.09 70.01 41.03 69.04

4 30 48.2 62.7 32.64 75.36 30.65 72.18 29.74 70..9
7

5 45 50.7 66.2 38.91 73.12 34.91 70.09 33.65 69.04

 In LPT algorithm, it is noted that the waiting
time is drastically high in comparison with the heuristic
approached and in SPT with the heuristic approaches
and in SPT algorithm, the finishing time is drastically
high. Further the introduction of general PSO with the
number of particles 100 and within 250 g enerations
minimized the waiting time and finishing time in
comparison with LPT and SPT algorithms. The proposed
improved PSO with the good(pbest) and bad (pworst)
experience component involved with the same number of
particles and generations as in comparison with the
general PSO, minimized the waiting time and finishing
time of the processors with respect to the other
considered algorithms.
 Thus based on the results, it can be observed
that the proposed improved PSO gives better results than
the conventional methodologies LPT, SPT and other
heuristic optimization technique General PSO. This
work was carried out in Intel Pentium 2 core processors
with 1 GB RAM.
6. Conclusion

In this paper, a n ew improved particle swarm
optimization has been developed and applied to
multiprocessor job shop scheduling. The proposed
algorithm partitioned the jobs in the processors by
attaining minimum waiting time and finishing time in
comparison with the other algorithms, longest processing
time, shortest processing time, and particle swarm
optimization. The worst component being included along
with the best component, tends to minimize the waiting
time and finishing time, by its cognitive behaviour. Thus
the proposed algorithm, for the same number of
generations, has achieved better results.

References

[1] M .R.Garey and D.S. Johnson, Computers and
Intractability: A Guide to the theory of NP completeness, San
Francisco, CA, W.H. Freeman, 1979.
[2] L .Mitten, ‘Branch and Bound Method: general
formulation and pr operties’, operational Research, 18, P.P.
24-34, 1970.
[3] T.L.Adam , K .M. Chandy, and J.R. Dicson, “ A
Comparison of List Schedules for Parallel Processing
Systems”, Communication of the ACM , Vol.17,pp.685-690,
December 1974.
[4] C.Y. Lee, J.J. Hwang, Y. C. Chow, and F. D. Anger,”
Multiprocessor S cheduling with Interprocessor
Communication Delays,” Operations Research Letters, Vol. 7,
No.3,pp.141-147, June 1998.
[5] S.Selvakumar and C.S. R. Murthy, “ Scheduling
Precedence Constrained T ask Graphs with Non- Negligible
Intertask Communication onto Multiprocessors,” IEEE Trans.
On Parallel and Distributed Computing, V ol, 5.No.3, pp.
328-336, March 1994.
[6] T . Yang and A. Gerasoulis, “ List Scheduling with and
without Communication Delays,” Parallel Comuting, 19, pp.
1321-1344, 1993.
[7] J. Baxter and J.H. Patel, “ T he LAST Algorithm: A
Heuristic- Based Static Task Allocation Algorithm,” 1989
International Conference on parallel P rocessing, Vol.2,
pp.217-222, 1989.
[8] G.C. Sih and E.A. Lee, “ Scheduling to Account for
Interprocessor Communication Within Interconnection-
Constrained Processor Network,” 1990 I nternational
Conference on Parallel Processing, Vol.1, pp.9-17,1990.
[9] M.Y. Wu and D. D. Gajski, “ Hypertool: A Programming
Aid for Message_Passing Systems,” IEEE Trans on Parallel
and Distributed Computing, Vol.1, No.3, pp.330-343, July
1990.
 [10] K Deeba , K Thanushkodi, , “An Evolutionary Approach
for Job Scheduling in a Multiprocessor Architecture”,
CiiTInternational Journal of Artificial Intelligent Systems and
Machine Learning Vol 1, No 4, July 2009.
[11]. Kenedy, J., Eberhart R .C, “ P article Swarm
Optimization” proc. IEEE Int. Conf. Neural Networks.
Pistcataway, NJ(1995) pp. 1942-1948
[12] R.C. Eberhart and Y. Shi, Comparison between Genetic
Algorithm and Particle Swarm Optimization”, Evolutionary
Programming VII 919980, Lecture Notes in Computer Science
1447, pp 611-616, Spinger
[13] Y. Shi and R. Eberthart: “ Empirical study of particle
swarm optimization,” Proceeding of IEEE Congress on
Evolutionary Computation, 1999, pp 1945-1950.
[14] X.D. Zhang, H. S. Yan, “ Integrated optimization of
production planning and scheduling for a kind of job-shop”,
International Journal A dvanced Manufacture
Technology(Spiringer), 2005.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 234

[15] D.Y. Sha , Cheng-Yu Hsu, “ A new particle swarm
optimization for open shop scheduling problem “, Computers
& Operations Research(Elsevier), 2007.
[16] Gur Mosheiov, Daniel Oron, “ Open- shop batch
scheduling with identical jobs”, European Journal of
Operations Research(Elsevier), 2006.
[17]. A.P. Engelbrecht, “ Fundamentals of Computational
Swarm Intelligence”, John Wiley & Sons, 2005.
[18] Chen, B. A. Note on L PT scheduling , Operation
Research Letters 14(1993), 139-142.
[19] Morrison, J. F.., A note on LPT scheduling, Operations
Research Letters 7 (1998), 77-79.
[20] Dobson, G., Scheduling independent tasks on uniform
processors, SIAM Journal on Computing 13 (1984), 705-716.
[21] Friesen, D. K., Tighter bounds for LPT scheduling on
uniform processsors, SIAM Journal on C omputing 6(1987),
554-660.

K.Deeba, has completed B.E in Electronics and communication
in the year 1997, and c ompleted M.Tech (CSE) in National
Institute of Technology, Trichy. She is having 11 Years of
Teaching Experiencce. She has published 9 Papers in
International and National Conferences. Currently working as a
Associate Professor in Kalaignar Karunanidhi Institute of
Technology, Coimbatore.

Dr. K. Thanushkodi has got 30 ½ yrs of teaching experience in
Government Engineering Colleges Has published 45 papers in
International Journal and Conferences. Guided 1 Ph.D and 1
MS (by Research), Guiding 15 R esearch Scholars for Ph.D
Degree in the areas of Power System Engineering, Power
Electronics, Computer Networking & Virtual Instrumentation
and One Research Scholar for MS (Research). Principal in-
charge and Dean, Government College of Engineering, Bargur
Served as Senate Member, Periyar University, Salem. Served
as member, Research Board, Anna University, Chennai.
Served as Member, Academic Council, Anna University,
Chennai Serving as Member Board of Studies in Electrical
Engineering, Anna University, Chennai. Serving as Member,
Board of Studies in Electrical and E lectronics & Electronics
and Communication Engineering, Amritha Viswa Vidya
Peetham, Deemed University, Coimbatore. Serving as
Governing Council Member SACS MAVMM Engineering
College, Madurai. Served as Professor and Head of E&I, EEE,
CSE & IT Departments at Government College of Technology,
Coimbatore.Presently he is the Director of Akshaya College of
Engineering and Technology.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 235

http://www.kovaikalaimagal.org/CIET/index.asp

