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Abstract 
This study presents a novel controller of magnetic levitation 
system by using new neuro-fuzzy structures which called flexible 
neuro-fuzzy systems. In this type of controller we use sliding 
mode control with neuro-fuzzy to eliminate the Jacobian of plant. 
At first, we control magnetic levitation system with Mamdani-
type neuro-fuzzy systems and logical-type neuro-fuzzy systems 
separately and then we use two types of flexible neuro-fuzzy 
systems as controllers. Basic flexible OR-type neuro-fuzzy 
inference system and basic compromise AND-type neuro-fuzzy 
inference system are two new flexible neuro-fuzzy controllers 
which structure of fuzzy inference system (Mamdani or logical) 
is determined in the learning process. We can investigate with 
these two types of controllers which of the Mamdani or logical 
type systems has better performance for control of this plant. 
Finally we compare performance of these controllers with sliding 
mode controller and RBF sliding mode controller. 
 
Keywords: Flexible neuro-fuzzy inference systems, Sliding 
mode, Mamdani approach, Logical approach and Magnetic 
levitation system. 

1. Introduction 

The objective of this study is to keep a metal ball 
suspended in mid-air via magnetic suspension. This system 
is magnetic levitation which has great practical importance 
in many engineering fields and industrial systems. 
Introducing nonlinearity and instability of magnetic 
levitation systems (MLS) make them quite complex to 
control. So we proposed a hybrid controller which 
composed of a flexible neuro-fuzzy inference system 
(FLEXNFIS) based on sliding mode to overcome the 
difficulties of magnetic levitation system. 

In recent years, various control strategies have been 
proposed in the literatures for MLS, Such as: feedback 
linearization technique [1, 2] and sliding mode control [3]. 
The input-output, input-state, and exact linearization 
techniques have been used [4, 5]. Intelligent control such 
as neural network techniques [6] and fuzzy control design 
[7] has also been used to control magnetic levitation 
systems.  
On the other hand, various neuro-fuzzy structures have 
been proposed so far in literatures [8-12]. They combine 
the natural language description of fuzzy systems and 
learning properties of neural networks for different 
applications. Most of neuro-fuzzy structures can be divided 
into two approaches based on the connection between the 
antecedents and consequents in the individual rules [13]. 
The first approach is Mamdani type reasoning that 
consequents and antecedents are connected by a  
t-norm, e.g. min or product operator. The second is logical 
type approach that consequents and antecedents are 
connected by fuzzy implication, e.g. an S-implication (see, 
e.g. [14, 15]). 
The idea of flexible neuro-fuzzy inference systems 
(FLEXNFIS) has been developed by Leszek Rutkowski 
and Krzysztof Cpalka [16-20]. FLEXNFIS is a type of new 
developed neuro-fuzzy systems. The connectives in the 
structure of such systems are flexible that is a major 
improvement in importance. It combines the logical 
approach and Mamdani type reasoning to construct a 
neuro-fuzzy system which exhibit simultaneous appearance 
of Mamdani and logical type inferences. The basic 
compromise AND-type neuro-fuzzy inference system is an 
example of such systems that we use them to control the 
MLS. Another important quality of FLEXNFIS is the 
automatic determination of fuzzy inference (Mamdani or 
logical) in the process of learning. The basic OR-type 
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neuro-fuzzy inference system is another example of such 
systems that type of the fuzzy inference system is 
determined at the end of learning process and we use it to 
control the MLS. Learning algorithm is gradient 
optimization with constraint that learns the extra 
parameters applied in the structure of systems.  
We use from sliding mode control strategies [21] to 
eliminate the Jacobian of plant. First of all we control 
magnetic levitation system with Mamdani and logical type 
neuro-fuzzy based on sliding mode separately and then two 
types of FLEXNFIS are used to control the MLS.  
The aim of this study is designing FLEXNFIS as a novel 
controller for MLS and researching its particulars. Then 
we compare performance of this controller with Mamdani 
and logical neuro-fuzzy systems and also investigate by 
using OR-type neuro-fuzzy inference system which of the 
Mamdani reasoning or logical approaches can be a better 
controller for MLS. Besides, we compare the performance 
of FLEXNFIS with sliding mode controller and RBF 
sliding mode controller [21]. Simulation results introduce 
FLEXNFIS comparatively powerful, feasible and effective 
for MLS. 

2. Dynamics of Magnetic Levitation System 

The dynamic equations of magnetic levitation system can 
be written as [2]: 

    (1) 
Where, p denotes the position of ball, v is the ball’s 
velocity, R is the coil’s resistance, i is the current through 
the electromagnet, e is the applied voltage, m is the mass 
of the levitated object, cg  denotes the gravity and C is the 
magnetic force constant. L is the coil’s inductance that is a 
nonlinear function of ball’s position (p) and 1L  is a 
parameter of system. It can be written as follow: 

                (2) 
We chose the states and control input as: x1 = p, x2 = v, 
x3=i and u=e. Thus, the state space equations of magnetic 
levitation system are as follows:   

   (3) 
 We use sliding mode control [21, 22] which is defined for 
structures with uncertainties. This technique tries to control 
system by using a sliding surface definition based on state-
space.  
Magnetic ball should be settled in the desired distance, dx1  
and only the vertical motion p is considered. The output 
error is defined as:  

                              (4) 
In this study the sliding surface on the phase plane can be 
defined as: 

             (5)   
In th3 -order systems, n=3: 

 

      (6)                   
In this way, the switching surface S  will be defined as: 

    (7)
 

 (8) 
where, 21 xx =  and 21 xx  = . These equations will be used 
in section 4.3 and are very important for Adaptive law. 
Derivation of Lyapunov function is used to learn the 
neuro-fuzzy system based on sliding mode. The 
description of our generalized learning method will be 
discussed in section 4.3. 
The overall block diagram of the system under control is 
shown in Fig. 1. The neuro-fuzzy systems will be two types 
of FLEXNFIS, Mamdani and logical type.  
 

 

Fig. 1  The overall block diagram of system. 
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3.  General Architecture of Neuro-Fuzzy 
Inference System 

This section defines a neuro-fuzzy system, which can 
presents two approaches of Mamdani-type and logical-type 
and calls neuro-fuzzy inference system (NFIS). It is, from 
the topology point of view, a fuzzy inference system uses 
learning techniques that is similar to standard back 
propagation in feed forward networks. So, we review fuzzy 
inference structure of NFIS briefly [20].  
In this study the fuzzy system of NFIS is like a multi-input 
single-output mapping U→V, which U⊂Rn is the input 
space and V⊂R is output space. The canonical form of 
fuzzy rule base can be defined as: 

Ru(l): If x1 is  A1
l and x2 is A2

l  and ... xn is An
l then 

y is Bl.                                            (9) 
 
where x=[x1,…, xn]∈U, y∈V. membership functions of 

fuzzy sets  are determined by )( iA xl
i

µ  that 

i=1,…,n are the number of inputs, l=1,…,M are the 
number of rules and membership functions of Bl are 
determined by μB

l(y). The firing strength of rules is 
defined by: 

    (10) 
Each of M rules in fuzzy rule base determines a fuzzy set 

UB l ⊂  given by compositional rule of inference: 
 

   (11) 

where . Membership functions of 
l

B can be determined by sup-star composition: 

                                           (12) 
that T comes from class of t-norms. So, for a singleton 
fuzzifier, i.e., a crisp input x∈U, formula (12) will be 
defined as: 

      (13) 
I(.) can be a t-norm (engineering implication [23]) in 
Mamdani approach or fuzzy implication [14, 15] in logical 
approach. So, we can write generally: 
 

     (14) 

Output of the fuzzy inference engine is the fuzzy set B' 
that is aggregation of M individual fuzzy sets UB l ⊂ . 
Type of the aggregation operator is different in two 
approaches too. In Mamdani approach, the aggregation can 
be any operator in class of s-norms and in logical approach 
it can be any operator in class of t-norms:   
Mamdani approach uses s-norms: 

 

     (15) 
Logical approach uses t-norms: 

 

   (16) 
The defuzzification technique is the centre of area (COA) 
[18] to define the output. So the discrete form of output is 
defined by: 

    (17) 
where Ӯr are the canters of membership functions μB

r(y) 
and r=1,…,M. 

   (18) 
There are two different models of NFIS with different 
definitions for implication operators Eq. (14) and 
aggregation operators (t-norms and s-norms). 
Consequently we will have two models for Mamdani and 
logical approaches (for details see e.g. [18-20]): 
 Mamdani neuro-fuzzy system: 
 

           (19) 
 
Logical neuro-fuzzy system: 
 

 (20)   
A generalized architecture of NFIS that supports both 
Mamdani and logical approaches is proposed by 
Rutkowski [18-20] and described by:  
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             (21)    

4.  Designing of Flexible NFIS 

Eq. (21) in previous section apply in both flexible and 
nonflexible systems with different definitions for 
agrr(x,ȳr), Il,r(x,ȳr) and τl(x) [18, 20]. In nonflexible 
systems agrr(x,ȳr), Il,r(x,ȳr)  and τl(x) are defined with 
traditional triangular norms [24-26] or fuzzy implications. 
But in flexible systems we use some important definitions 
to construct agrr(x,ȳr), Il,r(x,ȳr)  and τl(x) in Eq. (21) 
(for details see e.g. [18, 20]). These definitions are called 
adjustable triangular norms that contain compromise 
operator, H-function and adjustable quasi-implication 
which play an important role in construction of flexible 
NFIS [18, 20]. In the next section we define two types of 
flexible NFIS using these definitions.  

4.1. Basic flexible OR-type NFIS 

The basic neuro-fuzzy system of an OR-type is given as 
follows [20]: 

              (22)                                                                                                     
 

            (23)   
 

       (24) 
 
Parameter v is the type of Basic flexible OR-type NFIS 
which described by Eq. (22)-(24). According to (22)-(24) 
equations system is Mamdani-type for v=0. Its behaviour 
is “more Mamdani” for v𝛜(0,0.5), undetermined for 
v=0.5 and “more logical” for v𝛜(0.5,1). It is logical-type 
for v=1. 
It should be noticed that parameter v  can be learned and 
consequently, type of the system can be determined in the 
process of learning. 

4.2. Basic compromise AND-type NFIS 

Flexible compromise AND-type NFIS presents a 
combination of two basic fuzzy inference systems 

(Mamdani and logic) and uses “engineering implication” 
[23] and fuzzy implications [14] together [20]. The firing 
strength of rules is defined similar to Eq. (22). The 
implication and aggregation operators are defined as: 
 

 (25)
   

(26)
                                      
In this structure we learn compromise parameter λ. The 
value of it shows which of the fuzzy inference systems 
(Mamdani or logic) is more dominant in the learning 
process. 

4.3. Learning procedure 

 Adaptive neuro-fuzzy controller needs plant’s Jacobian. 
To solve the problem of FLEXNFIS on the subject of 
plant’s Jacobian, we use sliding mode controllers [21]. 
Block diagram of controller is shown in Fig. 1. So learning 
process of FLEXNFIS is based on derivation of Lyapunov 
function and called generalized learning. Based on the 
Lyapunov theorem, the sliding surface reaching condition 
is: 

   (27) 
The steepest descent rule is used to minimize the value of 

0<SS   by respecting to input-output membership 
function parameters. ry are centers of output membership 
functions that Mr ,...1=  and are trained by iterative 
procedure: 
 

     (28) 
 

   (29) 
By using Eq. (3), (7), (8) we can say: 
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     (30)  
So, the recursive equation can be defined as: 

              (31) 

To calculate ry
u

∂
∂ , we recall layered architecture of NFIS 

[20] and apply the back propagation method to train the 
system. By the use of chain rule we can say: 

 (32)  
                                             
On the other hand:  

(33)
                                      
Two other important parameters that we update are v and 
λ. We apply the gradient optimization with constraint to 
optimize the v parameter, which determines type of the 
system for OR-type NFIS, and also compromise parameter 
λ for AND-type NFIS. 
Learning process of v parameter for OR-type NFIS is 
given by:  

   (34) 

  (35) 
According to (22)-(24) equations we will say:  
 

 

 (36) 
 
Learning process of λ parameter for AND-type NFIS is 
given by:  

   (37)  

  (38) 
According to Equations (25), (26) we can say: 

 

     (39)
    

4.4. Designing Parallel OR-type FLEXNFIS Based 
Controller Design 

In basic flexible OR-type NFIS, parameter v represents the 
type of system (Mamdani or logical) in the process of 
learning. The best value of parameter v  in the process of 
learning is equal to zero or one. If parameter v=0, the 
fuzzy inference system will be Mamdani reasoning and for 
v=1 the fuzzy inference system desires to logical type.  
We use this property to construct a n ew structure for 
control of magnetic levitation system. Because updating 
the parameter v requires large computations which is time 
consuming. The overall block diagram of the system under 
control is shown in Fig. 2. Mamdani is an OR-type 
FLEXNFIS with v=0 and logic is an OR-type FLEXNFIS 
with v=1. Um and UL are the outputs of Mamdani and 
logic respectively that multiple in the proper coefficients 
Qm and QL that are selected respect to better performance. 
From Fig. 2, the input to the MLS (plant) is given by 
u=QmUm+QLUL. 
The neuro-fuzzy systems are trained on-line during the 
control process to give the controller ability of adapting 
with the changes. In this structure we don’t need to learn 
the parameter v  and we learn centers of the output 
membership functions μB

r(y). The adaptive law for 
Mamdani and logic are different as shown in Fig. 2 and 
they use Eq. (32) for learning process separately. The 
plant’s Jacobian is eliminated in both of the controllers.
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Fig. 2  The overall block diagram of Parallel OR-type FLEXNFIS. 

5.  Experiments and Results 

In this section, simulation results show the position versus 
time (millisecond) and the signal control (the applied 
voltage) versus time for system. After that we will discuss 
about results. 

5.1. Experiment Setup 

We can divide our simulation into five categories. In all 
experiments there are two inputs for controller: switching 
surface (S) and change of switching surface ( S ). U is the 
output of controller which is control variable of the MLS 
or applied voltage. We define two membership functions 
type Gaussian for each of inputs and four membership 
functions for output. So, the sliding mode inference rules 
are designed as: 
If S  is 1

1A  and S  is 1
2A  then u is 1B  

If S  is 1
1A  and S  is 2

2A  then u is 2B  
If S  is 2

1A  and S  is 1
2A  then u is 3B  

If S  is 2
1A  and S  is 2

2A  then u is 4B  
The parameters of the MLS are as follows [2, 21]. The 
coil’s resistance R=28.7Ω, mass of the ball m=11.87g, 
the gravity gRcR=9.81msec P

-2
P, the magnetic force constant 

C=1.24×10P

-4
P, the inductance LR1R=0.65H, and xR1dR=0.01 is 

the desired value of 1x . The parameters of sliding surface 
are chosen such that λR1 Rin sliding surface is set as 61, 
λR2R=930.  
 

• In the first experiment, we learn the parameters of 
the membership functions of the Mamdani-type 
system. Eq. (19) describes the appearance of such 

systems. We apply the product operator for 
engineering implication or t-norm [23]. The 
simulation results are shown in Fig. 3. 

• In the second experiment we learn the parameters 
of the membership functions of the logical-type 
system. Eq. (20) determines this type of neuro-
fuzzy system. We apply the Reichenbach operator 
for fuzzy implication [14, 15 a nd 20]. We also 
use product operator for aggregation. Fig. 1 
shows the overall block diagram of control 
system. The simulation results are represented in 
Fig. 4.  

• In the third experiment, we design Basic flexible 
OR-type NFIS, and learn the parameters of the 
membership functions and parameter v𝛜[0,1]. 
The learning parameters formulas are described 
by Eq. (28), (34). In this experiment adjustable 
Quasi-Implication is applied to define implication 
operator. H-function is generated by the product 
t-norm [18, 20]. The simulation results are 
depicted in Fig. 5.  

We considered a co nstraint for parameter v in Eq. (23), 
(24) to satisfy the range 0≤v ≤1. (For details see e.g. 
[18]). The learning of parameter v is replaced by: 

  (40) 
We suppose that pR1R=5, pR2R=2.5 and the initial value of 
v=0.5. The results are depicted in Fig. 6 which shows the 
learning of function with Eq. (40) versus time. As figure 
shows, the neuro-fuzzy system with Eq. (21) becomes 
Mamdani-type for v=0 at the end of learning process. 

• In the fourth experiment, we design basic 
compromise AND-type NFIS described by Eq. 
(25), (26) as controller. We learn the parameters 
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of the membership functions and the parameter 
 λ𝛜[0,1]. Learning of the parameter λ was 
described by Eq. (37). The implication and 
aggregation operators are generated similar to 
previous experiment. The simulation results are 
shown in Fig. 7. We also consider a constraint for 
parameter λ similar to Eq. (40). Learning of this 
function versus time is described in Fig. 8. 

• In the final experiment, we construct the Parallel 
OR-type FLEXNFIS based controller design and 
learn the parameters of the membership functions 
of Mamdani and logic systems separately. 
According to Fig. 2 Qm and QL, coefficients of 

Mamdani and logical systems respectively, are 
obtained considering better performance. Qm is 
equal to 0.9 and QL is equal to 0.1. These 
coefficients show that Mamdani has better 
performance compare with logical system. Fig. 9 
represents the simulation results. 

Finally we compare our results with sliding mode 
controller (without chattering) [3] and RBF sliding mode 
controller which are applied for control of MLS [21].   
Fig. 10 and Fig. 11 show the output and signal control of 
these controller. In the next section we’ll compare and 
analyze these Figures.   
  

 

Fig. 3  Mamdani neuro-fuzzy controller based on sliding mode (a) position of ball (b) control signal 

 

Fig. 4  Logical-type neuro-fuzzy controller based on sliding mode (a) position of ball (b) control signal 
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Fig. 5  Basic flexible OR-type NFIS based on sliding mode (a) position of ball (b) control signal 

 

Fig. 6  Depiction of the learning of parameter v 
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Fig. 7  Basic compromise AND-type NFIS based on sliding mode (a) position of ball (b) control signal 

Fig. 8  Description of the learning of parameter λ 

Fig. 9  Parallel OR-type FLEXNFIS Based sliding mode (a) position of ball (b) control signal 
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Fig. 10  Sliding mode without chattering (a) Position of ball and (b) control signal [3] 

Fig. 11  RBF-Sliding mode controller (a) Position of ball and (b) control signal [21] 

5.2. Analysis and Comparison of All Simulation 
Results 

In this section we comprise the results of simulations 
considering cost function and settling time (ts). The first 
criterion is minimum control effort [27] which depends on 
control signal (applied voltage). To minimum the control 
signal we consider this cost function: 

               (41) 
The other criterion is tracking problem: 

 

   (42) 
The final performance index is summation of above 
criterions and settling time considering some coefficients 
(K1=45, K2=6.25e-004, K3=10) to coordinate these 
criterions.   

 (43) 

Table 1: Comparison Results Summary  

Neuro-fuzzy Controller Based-on 
Sliding Mode Settling Time dttuJ ∫

∞

=
0

)(  IAE PE 

Mamdani-type 0.128 sec 1.0603e+004 0.5398 17.74 

Logical-type 0.135 sec 1.1563e+004 0.5235 18.5371 
Basic flexible OR-type NFIS 0.100 sec 9.1253e+003 0.5051 15.25 
Parallel OR-type FLEXNFIS 0.125 sec 9.1282e+003 0.5506 16.83 

Basic compromise AND-type NFIS 0.123 sec 9.0844e+003 0.5014 16.2269 
Sliding mode control [3] 0.159 sec 8.6118e+003 0.6420 18.9576 

RBF sliding mode control [21] 0.141 sec 9.1146e+003 0.5352 17.3937 
 

 According to table 1 and Fig. 3 to Fig. 11 we can say: 
• By respect to PE in table 1, Mamdani method as a 

controller is better than the logical method for 
magnetic levitation system. On the other hand, 

Fig. 3 and Fig. 4 show the voltage peaks of these 
two controllers are very high so these two 
controllers can’t be proper for MLS in practice 
applications.  
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• As we said, Flexible OR-type NFIS is a system 
that type of fuzzy inference (Mamdani or logic) is 
determined in learning process [20]. So parameter 
v determines the type of the system. As Fig. 6 
shows, parameter v has reached to zero at the end 
of learning process. It means that type of fuzzy 
inference system is Mamdani. In this way flexible 
OR-type NFIS shows if we control MLS with 
Mamdani neuro-fuzzy system given by Eq. (19) 
we will have better results as compare with 
logical method with Eq. (20) (see, e.g. [18]).  

• Fig. 6 and Fig. 8 show that parameter v and λ at 
the end of learning process takes the value of zero 
and doesn’t take a value between (0, 1). Because 
in learning process the best value of them are 
determined (zero or one) and for these values 
system is well defined. 

• With due attention to table 1 and Fig. 9, Parallel 
OR-type FLEXNFIS has reasonable results 
knowing that we don’t learn the parameter v. But 
because of better results in table 1 for flexible 
OR-type NFIS it is better to learn the parameter v 
in spite of the more computations.  

• Basic compromise AND-type NFIS has proper 
results comparing with Mamdani and logical 
neuro-fuzzy controllers separately. Fig. 8 shows 
that the value of parameter λ at the end of the 
learning is equal to zero and it means that 
Mamdani fuzzy model is dominated in system. It 
represents the same result as OR-type NFIS. 

• As table 1 show, flexible neuro-fuzzy systems 
have better performance index among of the other 
controllers. Besides, among of flexible systems, 
OR-type NFIS has the best performance.  

•  Finally we compare our results with RBF-Sliding 
mode controller. The control signal in Fig. 11 (b) 
has chattering and is not proper for voltage 
source. So it should be modified. But control 
signals of figures 5, 7 and 9 (flexible systems) are 
suitable and have no chattering.  

6.  Conclusions 

This paper introduced structure of flexible neuro-fuzzy 
systems briefly and proposed two new structures of 
flexible neuro-fuzzy systems as novel controllers for 
magnetic levitation system.  
In this research basic OR-type NFIS and basic compromise 
AND-type NFIS was designed based on sliding mode  for 
stabilization and control the magnetic levitation system to 
the desired point in the state space. At last Parallel OR-
type FLEXNFIS was proposed to overcome the 

computations of learning the parameter v. Simulation 
results indicated flexible systems based controller design 
worked well when applied to the magnetic levitation and 
had high performance. They also showed Mamdani-type 
neuro-fuzzy systems can be a better controller for magnetic 
levitation system as compared with logical type for 
magnetic levitation system.   
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