
Dependence Analysis of Component Based Software through
Assumptions

Ratneshwer1, Anil Tripathi2

 1 Department of Computer Science(MMV), Banaras Hindu University
Varanasi, 221005, India

2 Department of Computer Engineering, Institute of Technology,
Banaras Hindu University

Varanasi, 221005, India

Abstract

This study presents a quantitative approach for dependency
analysis of Component Based Software (CBS) systems. Various
types of dependency, in a C BS, have been observed through
‘assumptions’ and based on these observations some derived
dependency relationships are proposed. The proposed
dependency relationships are validated theoretically and an
example illustration has been shown to demonstrate the proposal.
The result of the study suggests that these dependency
relationships may prove helpful in understanding CBS systems.

Keywords: Complexity measures, Software Component,
Component Based Software, Dependency Analysis

1. Introduction

In this paper, an approach has been given to analyze the
dependence problem in software components through a set
of ‘assumptions’ (that a software component may have
with respect to other software components). Software
developers during their day to day work are constantly
making assumptions about the interpretation of
requirements, design decisions, the operational domain,
the environment and the characteristics of input data
[1].These software assumptions can formally be analyzed
and documented and can be utilized in dependency
management. The gist is that by analyzing the set of
assumptions among software components in a quantitative
manner, dependence relationships among software
components can be estimated. Component dependence
analysis is a useful technique that has many applications in
software engineering activities including software
understanding, testing, debugging, maintenance, and
evolution [2]. The dependence problem is intensified
because [3] CBS can encompass both components
developed in-house and those made available by a third
party (e.g., COTS), normally deployed as a “black-box”
and often with deficient documentation.

 A software component can be defined as an
independent executable unit that performs certain
functionality when get plugged into an application
software system. One of the earliest definitions of software
component is given by Greedy Booch [4]: “A reusable
software component is a logically cohesive, loosely
coupled module that denotes a single abstraction”. Later,
Clement Szyperski presented his well known definition of
a software component at the 1996 European Conference
on Object Oriented Programming [5]: “A software
component is a unit of composition with contractually
specified interfaces and explicit context dependencies
only. A software component can be deployed
independently and is subject to composition by third
party.”
 Many research approaches tackled dependence
problem in CBS from different aspects. Most of them are
based on graph based approach i.e. to draw a graph among
software components based on their dependency
relationships and analyze dependencies based on graph
properties [6, 7, 8]. These approaches give idea of direct
dependency relationships but fail to describe the types and
complexity of the dependency relationships at software
component level. Li [2] has nicely categorized the
dependencies among software components in eight types
and represented the dependency relationships as
dependency graph and dependency matrix form. He has
considered the dependency relationships due to edge
complexity but do not cover effect on dependency due to
node complexity (software components in case of CBS)
which is also an important factor. He also suggested the
eight types of dependency matrixes which make analysis
tough. A weighted dependency graph approach has also
been proposed with additional parameters ‘Dependency
Strength’ and ‘Dependency Criticality’ [9] but these
computations also do not cover component’s internal
complexity. One approach is formalization of dependency

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 149

information in a C BS i.e. to describe dependency
relationships in some formal language [10, 11]. This
approach covers mathematical aspect and do not include
programming aspect of CBS. One approach is to represent
the component dependency relationships in form of regular
expression POMSET [3] and made a d ependency graph
CBDM based on these information. These above
approaches mainly cover the dependency edge
relationships among software components but do not cover
the effect on dependency due to implicit and explicit
properties of software components. These limitations will
become evident in big CBS systems. Merely stating that a
component is dependent on a nother component is not
sufficient. The type of that dependency, possible effects of
that dependency failure and critical factors of that
dependency also need to be explored. Dependency need to
be represented in some quantifiable manner as its possible
effects can be visualized effectively.
 In this study, an attempt has been made to correlate
assumptions with dependency analysis in a CBS. It is our
conjecture that if a software component has more number
of assumptions regarding its functionality and behavior, its
dependency on other components will be more complex in
nature. The likely benefit of this approach may be useful in
earlier identification and removal of design and
implementation level weaknesses and system can be made
more maintainable. We have taken four types of
dependency, (in a CBS) i.e. data dependency, control
dependency, interface dependency and real time
dependency. In the present work only software
assumptions are considered.
 The paper is organized as follows. In section 2,
we briefly mention some existing works related to the
dependency analysis in a CBS system. In section 3 a
correlation between dependency and ‘assumptions’ has
been demonstrated. In section 4 and following subsections,
the proposal of 'describing dependencies among software
components through assumptions' has been explained and
some dependency relationships have been derived. In
section 5, we evaluate the derived relationships by a
mathematical framework proposed by Briand et al. In
section 6, an example illustration of the dependency
relationships have been shown. In section 7, we discuss
some suppositions of dependency of CBS systems.
Finally we conclude in section 8.

2. Related Work

In Literature, dependence problem have been studied
widely in the context of CBS systems. Substantial work
has been reported regarding dependency analysis of CBS
systems. Some significant works related to the topic are as
follows. Li [2] has described eight types of dependency in
Component-based software (CBS) and given a matrix

model to analyze the dependencies in a CBS. Vieira and
Richardson [3] discussed an approach for describing
dependencies of an individual component by using a
declarative XML description. Kon and Campbell [12] have
given a method to analyze dependencies by prerequisite
specifications of software components. Bondrev et. al. [13]
observed the influence of input-parameter dependency on
the CBS system behavior and performance. Guo [14] has
addressed the interconnection dependency problem among
software components in a CBS by using category theory.
The software industry later discovered various techniques
that aim at identification of undocumented functional and
behavioral mismatches under the name of assumptions,
policy, operational profiles, check lists etc. Analysis
through ‘assumption’ is one of the approaches in this
direction. Some works observable in the software
engineering literature related to ‘assumption’ based
analysis are reported here. The idea of assumptions
management came out of an Independent Research and
Development project sponsored by the Software
Engineering Institute (SEI) in 2002-2003 in the area of
sustainment [15, 16].Lewis and Mahatham [17] developed
a prototype that demonstrates the application of
assumptions management, including the recording and
extraction of assumptions from Java source code into a
repository, and the Web-based management of these
assumptions. Tirumala et al [18] have considered
mismatched assumptions between software components
are a prime source of failures in CBS systems. In their
work, they introduced a framework to explicitly expose
assumptions in software components, and automatically
verify these assumptions during system integration.
Steingruebl and Peterson [19] argued that Undocumented
assumptions are often the cause of serious software system
failure. Thus, to reduce such failures, developers must
become better at discovering and documenting their
assumptions. Steingruebl and Peterson have mentioned the
common categories of assumptions in software, discuss
methods for recognizing when developers are making
them, and recommend techniques for documenting them,
which offers value in and of it-self. In the present work,
‘assumptions’ have been used to analyze dependence
among software components. The above contributions
demonstrate that although various approaches to analyzing
the dependencies are available in the literature but an
appropriate 'Quantified Dependency Estimation Model'
especially for a Component-based software system has not
yet been found. This serious concern raised by
practitioners and researchers turn easily into variety of
research issues still to be tackled and properly addressed.
This paper extends the above contributions further by
suggesting an approach to estimate the dependencies in a
quantifiable manner.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 150

3. Dependency versus Assumptions

Every time a d ecision is made- about how to design an
interface, how to implement an algorithm, if and how to
encapsulate an external dependency- assumptions are
made concerning how the software will be used, how it
will evolve, and what environment it will operate in [17].
A good simplifying assumption simplifies the design
problem significantly without changing the essential
character of the program which needs to be implemented
[20]. Developers don’t always recognize that they’re even
making assumptions, so we must focus on devising
techniques that focus on areas where assumptions can
occur and assisting developers so that they can
methodically examine them. Undocumented assumptions
are often the cause of serious software system failure.
Thus, to reduce such failures, developers must become
better at discovering and documenting their assumptions
[19]. These assumptions can be recorded and reviewed in
order to get information regarding incompatibilities due to
assumption mismatches. Software components depend on
each other by service providing/ receiving relationships. If
a component ‘X’ is providing some services to component
‘Y’, then ‘X’ will have some assumptions about ‘Y’ and
‘Y’ may also have some assumptions about ‘X’ in terms of
structure, behaviour and functionality. If there is some
service providing/receiving activity between ‘X’ and ‘Y’,
then ‘Y’ has to fulfil all the assumptions of ‘X’. Here, we
correlate these software assumptions with dependency
measure. If a component has more number of assumptions
regarding its use, its degree of dependency (on other
components) will be more. If the total number of
assumptions for a co mponent can be computed, this
information can be used to categorize software
components based on their dependency measure.

A CBS can be represented by a set of n components such
as:
C = (C1, C2, C3-------------------- CN)
We define two subsets of C, X and Y. The kth edge from a
vertex c(i) of X to a v ertex c(j) of Y represents a
relationship, R: XY, such that the ith component of X is
providing services to the jth component of Y i.e. xi R yj
meaning thereby xi of X is providing some services to yj
of Y. We can say that X is a s et of service providing
components and Y is a set of service receiving
components. A component may provide services to more
than one component. In this case, there will be edges
between c(i) of X to C(j1), c(i) to c(j2), ... of Y. The
dependency information among software components may
be obtained from component's meta-data.
 The assumption exposed by a software component
will form assumption set. The assumption set of a

component ‘P’ for a component ‘Q’ consists of a set of
assumptions exposed by ‘P’ that needs to be fulfilled by
‘Q’. Let Ai is the set of assumptions for a component Ci.
We consider here four types of dependency relationships:
data dependency, control dependency, interface
dependency and real time dependency.
 The set ADi is a s et of data transfer related
assumptions where each element of this set is an
assumption made by the component regarding its data
transfer.
ADi = {ad | ad is a data transfer related assumption}
 Similarly, ACi, AIi and ARTDi will be the set of
assumptions regarding control transfer, interface and real
time systems. Ai is the union of all four types of
assumptions.
 Ai = (ADi) U (ACi) U (AIi) U (ARTi)
 n(Ai) is the total number of assumptions for a component.
 Two software components, providing same
functionality, can be compared based on their n(Ai) values
and the component having lesser n(Ai) value may be
chosen. A component may not have to deal with all types
of assumptions. A component may have to deal with only
specific assumptions that may occur during that type of
dependency. Assumptions may be of two types. The one
that can be directly measured and quantified and the other
one that can not be directly measured but also play an
important role in that type of dependency.

4 An Approach towards ‘Dependency

Estimation’ Through Assumptions
In this section, we identify assumptions underlying among
software components, as we perceive them. Component’s
have opposing communication styles, data representation,
protocols, synchronization paradigms or processing
expectation [21]. In spite of listing all possible
assumptions, we concentrate on source of assumptions.
We try to find out some factors for different types of
dependency that requires special consideration (more
assumptions) in terms of its use and behavior. By counting
these factors (along with their possible assumptions) one
can get idea about the dependence complexity. The
required input data can be obtained from the design
description of the CBS and interface description of
software components.

In the following subsections, different types of dependence
analysis have been described.

4.1 Data Dependence

Data assumptions capture what is expected of input or
output data. Another use of a data assumption is to capture

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 151

the way of data internal processing and about the nature of
data [17]. Data assumptions capture what data the program
expects to input and output, including that data’s format
and type and who is checking it for correction [18].
The possible data transfer related assumptions are:

• The size and types of I/O parameters (of methods
) of a component,

• The size of meta data,
• The reference variables in a component,
• The shared variables in a component,
• The sequence of execution of data,
• The hardware interfaces and their capacities, and

A data dependence exists when one component provides a
value subsequently used by another component either
directly or indirectly. During data transfer, assumptions of
a component may conflict with the assumptions of another
component that leads to failure of service and poor
performance of the component. We made an attempt to
quantify some of the factors regarding data transfer
assumptions that may affect the performance of the
component. Some assumptions that could not be quantified
also need to be taken care of.
We propose a r elationship Weight of Data Dependence
(WDDi) that will give an estimate regarding data related
assumptions.
The following factors may influence WDD.

(A1) Number of Input Parameters
 Number of Input Parameters, of a component, will be the
sum of all its methods’ parameters. The higher number of
such assumptions decreases understandability and
modifiability.
If there are 'n' parameters in a method 'M1' and there are
‘m’ methods in a component then
 WDDi α ∑ ∑ 𝑁𝑖𝑗𝑛

𝑗=1
𝑚
𝑖=1

Where, Nij is the jth parameter of the ith method.
Weight of Data Dependence will be proportional to the
Total Size of input parameters (in a component).

 (B1) Number of Reference Variable
If a component has many reference (pointer type) variables
then data that passes through the component might be
misunderstood because the other component may not have
any idea regarding the data structure. Such variable
requires more number of assumptions. Weight of Data
Dependence will be proportional to the number of
reference variables (in a component).
 WDDi

 α Number of Reference Variables

(C1) Number of shared variables
If components are using some shared data then
modification of such data may affect those components.

Shared data may become a single point of failure. One has
to integrate explicit management of shared data. As the
number of shared variables, in a component, increases, the
number of data assumptions will also increase.
 WDDi

 α Number of Shared Variables

(IV) Number of Conditions
If a component has many pre-conditions and post-
conditions concerning the use of any data then it is tough
to understand and modify such data because one has to
check conditions every time when the component is going
to get plugged into. As the Number of conditions with a
component’s data increases, the number of data
assumptions will also increase.
 WDDi α Number of Conditions
The above said factors in terms of their effects on WDDi
can be summarized as follows:
 WDDi = Number of Input Parameters + Number of

Reference Variables + N umber of Shared
variables + Number of Conditions

A software organization that engages in development of a
CBS using software components may consider the values
of these factors for their normalization to work out WDDi
in a quantifiable form. The WDDi is data dependence
contributed by ith component. The total data dependence
weight contributed by all the components in a software
system can be expressed as the following:
DDCBS = ∑ 𝑊𝐷𝐷𝑖𝑐

𝑖=1
WDDi is the weight contributed by the ith out of ‘c’

components in a CBS.

4.2 Control Dependence

Control assumptions, for example, capture the expected
control flow, including function call ordering and
initialization requirements [18]. A software designer or
architect can evaluate control assumptions to make sure
they are consistent with the application flow [17]. A
component C1 is control dependent on component C2 if
C2 invokes C1. A control dependence [22] from
Component X to component Y means that C2 must be
verified if C1 changes. In a CBS, Software components
may raise a control for variety of reasons.

• In response to a change in the component's data
• The completion of a long running process in a

CBS
• An interruption in service of a component
• Components that represent user interface

elements usually raise controls in response to user
actions like a button click or menu selection

• When a time of a process expires
• When a counter exceeds its value

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 152

• When software or hardware failure occurs
• To notify about an event

In a CBS, during control transfer the two important things
are: to receive the control and to handle the control.
During a control transfer, assumption mismatches lead to
failure of control transfer between the components.
 Some possible control related assumptions are:

• The control transfer mechanism,
• The life time of the control,
• Order of the execution of the control
• Effect of the control,
• The number of exceptions with control, and
• The number of conditions with control.

 A component organizes its activities with causing of
events by it and responses that it furnishes in response to
events caused by other components. An interface of a
component defines events to send control messages to
other components. A component may (or may not) receive
responses of an event caused by other components. So, a
component has a set of native events (that it causes) and a
set of external responses (that it gets from other
components). Control dependence, of a component, mainly
depends on the native events, external responses and their
interactions. Native events may be of many types. For
example, a component may send control to another
component (1-1 mechanism), a component may send
control to a group of components (1-m mechanism), many
components may send control to a component (m-1
mechanism) or many components may send control to
many other components (m-m mechanism), and hence, the
control dependence is related to the types of these native
events. We define, Weight of Control Dependence (WCDi)
that will indicate an estimation of control assumptions.
These factors, as discussed below, are being considered to
express the Weight of Control Dependence of a
component.

(A2) Events Fan out
For a native event, in a component, one has to define the
event class definition, event parameters, and event name
and corresponding event exceptions (if any). As the
Number of Native Events, in a co mponent, increases the
control assumptions of the component will increase. For a
native event, we define “Event Fan-out” (Number of
component(s) receiving control messages by the event).
For example, In case of “1-1 event mechanism” the value
of Event Fan-out (EFO) will be '1' and in case of “1-m or
m-m event mechanism” the value of Event Fan-out will be
'm'.
If there are 'n' native events in a component then,
 Total Event Fan-out = ∑ 𝐸𝐹𝑂𝑖𝑛

𝑖=1

Where, EFOi is the Event Fan-out of ith event.
Weight of Control Dependence (for a component) will be
proportional to the Total Event Fan Out of the component.
 WCDi α Total Event Fan-out

(B2) Responses Fan in
A component may get responses caused by other
components. As the Number of External Responses
increases, the control assumptions will increase. We define
“Responses Fan-in (RFI)” (number of responses an event
receives from other components). I f there are 'n' native
events in a component then,
Total Response Fan In = ∑ 𝑅𝐹𝐼𝑗𝑛

𝑗=1
Where, RFIj is Responses Fan-in of the jth event.
Weight of Control Dependence (for a component) will be
proportional to the Total Response Fan-in of the
component.
 WCDi α Total Response Fan-in

(C2) Control Communication Weight
A component can send a control message in two ways;
either synchronously or asynchronously. Asynchronous
method calls [23] use multi-threading so one must be
aware of potential problems concerning thread
concurrency, state corruption, re-entrance etc. One can
count the number of shared variables, the number of states
and the number of re-entry points in a thread. As these
values increase, the control assumptions will increase.
If there are 't' threads in a component then
 Control Communication Weight= ∑ A(i) + B(i) + C(i)𝑡

𝑖=1
Where A, B and C are number of shared variables, number
of states and number of re-entry points respectively (in a
thread).
 WCDi α Control Communication Weight

(D2) Number of RPCs
Control dependence counts on the range of native events i.
e. whether the control will be sent to local component(s) or
remote component(s). If a component sends control to a
remote component then some remote procedure calls will
be needed that would increase the control assumptions
contributed by this component. One can measure the
number of RPCs (Remote procedure call) in a component
that can be counted from the internal code of a component.
Weight of Control Dependence, of a co mponent, will be
proportional to Number of RPCs.
 WCDi α Number of RPCs

(E2) Number of Exceptions
Another problem with a control transfer is that of
exceptions. When an exception is raised, execution stops
and a corresponding error handler are searched among the

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 153

handlers. Any un-handled exception [23] rose by the
subscriber will be propagated to the publisher. Some
subscribers may encounter an exception in their handling
of the control, not handle it, and cause the publisher to
crash. More number of exceptions with an event would
attract higher control assumptions.
 WCDi α Number of Exceptions
Weight of Control Dependence (for a component) may be
expressed as follows:

WCDi = Events Fan Out + Responses Fan In + Control
Communication Weight + Number of RPC +
Number of Exceptions

A software organization that engages in development of a
CBS using software components may consider the values
of these factors for their normalization to work out WCDi
in a quantifiable form. The WCDi is the weight of control
dependence contributed by a component. Suppose in a
CBS there are 'c' components then control dependence in a
CBS
CDCBS = ∑ WCDi𝑐

𝑖=0
WCDi is the weight contributed by the ith out of ‘c’

components in a CBS.

4.3 Interface Dependence

Li [2] has described that the interface - event dependence
is the main dependence form in CBSs. In practice [24],
many failures in a C BS arise because of interface
violations among components- where one party breaks the
contract. Any interface violation results in disturbances in
these interdependencies and consequently breaking of
contracts among them. As many interface dependencies,
and the interdependence complexities, would be there that
many possibilities of their violations and breakage of
contracts would be possible.
 If a component [25] has multiple access
points, each of which represents a different service offered
by the component, then the component is expected to have
multiple interfaces. If one substitutes a co mponent with
another component (having more than one interface), then
one has to substitute all its interfaces and one has to take
care that replaced interfaces are providing identical
services as earlier interfaces.
 The possible interface related assumptions are as follows.

• Interface signature matching
• Semantic properties matching
• Hidden interfaces (may be in some cases) in a

component
• Multiple versions of an interface
• Multiple interfaces of a component
• Visibility of interfaces
• Wrapper code (if needed)
• Business case of components

• Publishing the properties of an interface

One can consider the total interface assumptions in a CBS
in terms of interface dependencies contributed by the
individual components. We made an attempt to quantify
some of the assumptions regarding interface(s) of a
component and some assumptions that could not be
quantified also need to be taken care of. These factors, as
discussed below, are being considered to estimate the
Weight of Interface Dependence (WID) of a component in
a CBS.

(A3) Number of Interfaces in a Component
More Number of Interfaces, per component, would attract
more interface dependence because failure of any interface
functionality may affect the functionality of the component
and more effort would be needed to understand and
modify the component. As the Number of Interfaces per
Component increases, the interface assumptions will
increase.
 WIDi α Number of Interfaces in a Component

 (B3) Number of Hidden Interfaces
Another worrisome problem facing a CBS is the issue of
“hidden interfaces”. “Hidden interfaces” are typically
channels through which application or component
software is able to induce an operating system to execute
undesirable tasks or to launch undesirable processes. [26].
A component can be used by a s oftware system, a
hardware, another component or network. There are
interfaces defined for all these. In spite of that, there are
some possibilities of 'hidden interfaces', through which a
component can be accessed. 'Hidden interfaces' may be
helpful to make components integrable but it m ight be
possible that a u ser can access the component through
'hidden interfaces' and can modify the component's
attributes and consequently its state. As the Number of
Hidden Interfaces, in a component, increases the
possibility of failure of component's functionality will
increase and it will contribute the complexity that makes
understanding and modification difficult.
 WIDi α Number of Hidden Interfaces

(C3) Number of Ambiguous Statements in an Interface
Specification
Poorly documented interfaces may create ambiguity in
understanding them. Ambiguities get created when a
statement, in an interface specification, has more than one
interpretation. Ambiguity may be derived as follows.
Un-ambiguity = A / B
Where A is the Total number of statements and B is the
Total number of possible interpretations of all statements.
Ambiguity = 1- Un-ambiguity

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 154

More number of ambiguous statements would make the
understandability of a component poor.
 WIDi α Number of ambiguous statements in an interface
specification

Weight of Interface dependence of a co mponent can be
expressed as follows.
WIDi= Number of Interfaces + N umber of Hidden

Interfaces + Number of Ambiguous
Statements

A software organization that engages in development of a
CBS using software components may consider the values
of these factors for their normalization to work out WIDi in
a quantifiable form. The WIDi is Interface dependence
contributed by a component. Suppose in a CBS there are
'c' components, and then Interface dependence in a CBS
IDCBS=∑ 𝑊𝐼𝐷𝑖𝑐

𝑖=0
WIDi is the weight contributed by the ith out of ‘c’

components in a CBS.

4.4 Real Time Dependence

Real time systems [27] are computer systems in which the
correctness of a s ystem depends not only on the logical
correctness of the computations performed but also on
time factors. Real time system requirements impose some
extra constraints for Component-based development like
execution time, memory consumption etc. Worst case
execution time [28] can be estimated using information
about the code that was generated by the compiler.
The possible real time related assumptions are:

• Timing analysis at component level,
• Timing analysis at CBS level,
• Worst case execution time of a component,
• Memory consumption by a component,
• Dependence relations of a c omponent in a

CBS,
• Hardware platform of the CBS,
• Bounded communication time between

remote components,
• Priority of components,
• Deadline of components,
• Concurrency and synchronization issues in a

CBS,
• Composite components in a CBS, and
• Resource uses by a component.

The total real time constraints in a CBS have been
considered as accumulative sum of constraints contributed
by individual components. We made an attempt to
quantify some of the assumptions regarding real time
services and some assumptions that could not be
quantified also need to be taken care of. Weight of Real

time Dependence (WRTD) contributed by a component can
be estimated as follows.
(A4) Number of Real Time Constraints
The interface of a co mponent needs some additional
constraints (synchronization calls, scheduling,
communication calls, timing and memory constraints etc)
to fulfil real time requirements. These constraints help
components to get composed and function efficiently in a
real time CBS. But the other side these constraints may
increase the assumptions required to understand and
modify the components.
WRTDi α Number of Real Time Constraints

(B4) Number of Non Periodic Events
In CBS, there are two types of events. One is Periodic
events, for which the execution time and other properties
can be estimated earlier. The other one is non-periodic
events that generate due to responses of events. Non-
periodic events cannot be estimated earlier. Components
[26] may have different time characteristics in different
platforms. They can only be predicted earlier. These non-
periodic events, in a real time CBS, may affect the
execution time guarantee and memory consumption
property. If a component has many non-periodic events
then its performance would be unpredictable in real time
systems and hence understandability and modifiability of
such a component would be hard.
WRTDi α Number of Non Periodic Events

(C4) Number of Resources a Component Uses
Resources that can be used [28] by a real time application
are usually scarce. Available processor time and memory
are limited due to hardware costs. Thus a component can
easily influence others simply by consuming too many
resources. Resources from different operating systems also
make the problem worse. Many resources consumed by a
component would attract poor understandability and
modifiability.
WRTDi α Number of Resources consumed
Weight of Real Time Dependence (of a component) can be
estimated by sum up all the above outcomes.
WRTDi = Number of Real Time Constraints + Number of

Non-periodic events+ Number of Resources a
Component use

A software organization that engages in development of a
CBS using software components may consider the values
of these factors for their normalization to work out WRTDi
in a q uantifiable form. The WRTDi is Real Time
Dependence contributed by a component. Suppose in a
CBS there are 'c' components, then Real Time Dependence
in a CBS
RTDCBS = ∑ 𝑊𝑅𝑇𝐷𝑖𝑐

𝑖=1

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 155

WRTDi is the weight contributed by the ith out of ‘c’
components in a CBS.

The proposed dependency relationships are

summarized as follows:

S.
N
o.

Name of
Reelationship

Derived Relationship

1 Weight of Data
Dependency

WDDi = Number of Input
Parameters + Number of
Reference Variables + Number of
Shared variables + Number of
Conditions

2 Weight of
Control
Dependency

WCDi = Events Fan Out +
Responses Fan In + Control
Communication Weight +
Number of RPC + Number of
Exceptions

3 Weight of
Interface
Dependency

WIDi= Number of Interfaces +
Number of Hidden Interfaces +
Number of Ambiguous
Statements

4 Weight of Real
Time
Dependency

WRTDi = Number of Real Time
Constraints + Number of Non-
periodic events+ Number of
Resources a Component
use

 Table 1: Proposed Dependency Relationships

5 Validation of Derived Dependency
Relationships by Briand et al
Framework

Briand et al [29] have proposed an axiomatic framework
for evaluating complexity measures. Their properties have
been widely applied to software engineering practices and
have been thoroughly discussed in literature [30, 31, 32].
The five criteria proposed in the framework evaluate
software metric properties using a formal theoretical basis.
The properties are intended to validate complexity
measures as a system property. Complexity and
dependency both are system properties and based on inter-
module relationships. Since there is a strong similarity
between complexity measures and dependency measures,
so we choose this framework to validate the proposed
dependency relationships (given in Table 1).

We have taken some assumptions here for applying the
Briand’s framework for a CBS. We use following
notations: here a CBS system ‘S’ will be represented as a
pair <C,R>, where C represents the set of components and
R is set of dependency relation on E (R ≤ CxC). The
Briand’s axioms are applied to derived dependency
relationships in the following paragraphs.

P1: Non-negativity
 The dependency of a system S = < C, R > is non-negative.

• If data transfer takes place between two
components, the number of input parameters can
not be zero. Rest of the values may be zero but
will not be negative. So, WDD will always be
positive value i.e. non-negative value.

• If control transfer takes place between two
components, the events fan out/responses fan in
value can not be zero. Rest of the values may be
zero but will not be negative. So, WCD will
always be positive value i.e. non-negative value.

• In a s imilar analogy, one can say that WID and
WRTD will also be non-negative value.

P2: Null Value
The dependency of a system S = < C, R > is null if R is
empty.

• If R is empty means there are no data transfer
take place between any two components and they
will be treated as independent (in terms of data
dependency), so WDD will be null.

• In a similar analogy, one can say that WCD, WID
and WRTD will be null if R is empty.

P3: Symmetry
The dependency of a system S = < C, R > does not depend
on the convention chosen to represent the relationships
between its components. S = < C, R > and S-1 = < C, R-1 >
=> d ependency (S) =dependency (S-1). Dependency
should not be sensitive to representation conventions with
respect to the direction of arcs representing system
relationships.

• Data dependency between two components, say
C1 and C2, is sensitive to the direction because a
data receiving component is more dependence
prone as compare to data providing component.
So, this property does not hold for data
dependency.

• In a similar analogy, one can say that this
property does not hold for WCD, WID and WRTD
also.

P4: Module Monotonicity

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 156

The dependency of a system S= <C, R> is no less than the
sum of the dependencies of any two components with no
relationship in common.
S = <C, R> and m1= <C1, R1> and m2=<C2, R2> and (m1
U m2) ≤ C & R1 ∩ R2=ǿ =>
Dependency (S) ≥ dependency (C1) + dependency (C2)

• If two components say C1 and C2 do not
participate in data transfer activities i.e. they are
not related to each other in terms of data
dependency, then WDD will be zero. But some
indirect dependencies (relationships) may exist
between two components. So, data dependency of
the component based system will always greater
than the sum of the dependence of any two of its
components with no relationship in common.

• In a similar analogy, one can say that this
property holds for WCD, WID and WRTD also.

P5: Disjoint Module Additivity
The dependency of a system S = <C, R> composed of two
disjoint modules m1, m2 is equal to the sum of the
complexities of the two modules.
 S = <C , R> & S=C1 U C2 and C1 ∩ C2=ǿ =>
dependency (S) = dependency (C1) + dependency (C2)

• If two components are put together in the same
CBS, but they are not providing/ receiving any
services to/from each other then they will be
treated as two disjoint components in the CBS
system and no additional dependency are
generated from the internals of one component to
the internals of the other. This will be true for all
types of dependency. So, WDD, WCD, WID and
WRTD will hold this property.

We summarize our findings:

We summarize the results in the table, which shows that
all the proposed dependency relationships satisfy property
1, 2, 4 and 5 but they fail to satisfy symmetry property.

6. Example Illustration of Dependency
Relationships

The objective of this example illustration is to obtain
quantitative characteristics of these dependency
relationships and understand the ways in which these
dependencies can be managed/ minimized. We develop
some components and a CBS in which the components are
providing/receiving the services. The one main problem
that we have encountered during the work is lack of some
good experimental data from real time environment that
may help to verify the above suggested metrics. Thus, we
made a co mponent-based software environment 'CIG
Information Extraction Tool (CIGIET)' for the proposed
experiment [description of the tool is given in the annexure
1]. The tool developed for the purpose takes CIG attributes
as an input and give various information, complexity
measures, as output. This ‘CIGIET’ does not covers real
time aspects so we did not included real time dependency
in the example illustration. Here we have included WDD ,
WCD and WID only.
We assign a C omponent Id to each component for ease
and main program has been assigned an Id '0'. 3.1, 15.1 etc
are updated version of corresponding components.

Table 4: Component List with their IDs

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 157

Table 5: Outcomes of WDD, WCD , WID and n(Ai)

One can consider the basic guiding principles for
designing a CBS based on understandings regarding the
derived dependency relationships that make the software
system and the overall complexity of the structure of the
given CBS. One may choose a design that has less
interdependency edges among components.

7. Discussion

Assumptions may vary in different software environments.
Number of assumptions may be an important measure to
prioritize different types of dependencies. A survey shown
in [18] indicates that algorithmic defects in software occur
less frequently than the defects that are related to
integration issue. In real time systems, integration defects
are caused by assumption mismatches between software
components and environmental assumptions which may be
invalid. Several catastrophic failures in large scale real
time systems can be attributed to the inadequacy of
existing interfaces and the inability to track implicit
assumptions of components [18]. When a control
assumption mismatch occurs, software components have
integration conflicts that prohibit them from
communicating properly in the system. Hence, control
assumptions should given priority.
The dependency would be considered “good” if it is there
for extending its services to other components. Similarly
the dependency would be considered bad if it appears
because of the fact that a component requires help of some
other components to construct services provided by it. It is
assumed that by reducing the dependencies of a
component-based system one can make it more
maintainable. Reduced complexity will result in ease in
understanding and modification. It is possible to have
multiple design blueprints of a CBS with varying presence

of dependencies. One or more of these (blue-prints)
designs may have minimum values of dependence
compared to others, and hence, smaller requirement of the
effort required for understanding and modifications for the
purpose of maintenance. Here, it is observable that the
dependencies can be reduced retaining its full
functionality. It is therefore concluded that the designs of a
CBS must strive to propose a design and refine and revise
it for reducing the complexity of the software and its full
functionality to be able to ensure better maintainability.

8. Conclusion

This work explores the concepts related to the various
dependencies in the context of CBSE. It proposes
inclusion of assumptions in various dependencies in a
quantifiable manner. Some meaningful conclusions have
been drawn conceptually. It further shares possibilities of
quantification of these dependencies in terms of factors
that have been identified herein. We understand that the
suggested method of quantification of dependencies can be
helpful in working out suitable metrics in this context.
The suggested quantifiable dependencies can purposefully
indicate the maintenance effort required. This initial
proposition of such a model may be purposefully
employed by the professionals and the corresponding
useful feedback may be analyzed. It calls for further
extensive research oriented studies, by all concerned, for
perfection of details of the model.

References
[1] D . Parnas, “Information Distribution Aspects of Design

Methodology”, in proceedings of 1971 IFIP Congress.
New York, NY.

[2] B. Li, “Managing Dependences in Component Based Systems
Based on Matrix Mode,” in Net. Object days (NODE)
conference, 2003, Erfurt, Germany.

[3] M. Vieira and D. J. Richardson, “Analyzing Dependencies in
Large Component Based S ystems,” in Proceedings of the
17th IEEE International Conference on ‘Automated Software
Engineering, 2002, Edinburgh, UK.

[4] G. B ooch, Software Components with Ada: Structures,
Tools, and Subsystems, 3rd Edition. Reading, MA:
Addition-Wesley, 1993.

 [5] C. Szyperski, Component Software- Beyond Object Oriented
Programming, Reading, MA: Addition-Weslay, 1999.

[6] S. Alhazbi and A. Jantan, “Dependencies Management in
Dynamically Updateable Component-Based System”,
Journal of Computer Science, 3(7):499-505, 2007.

[7] M. Larsson, “Applying Configuration Management
Techniques to Component Based System”. MRTC Re-port,
IT Licentiate thesis, Uppsala University, Sweden, 2007.

[8] Ratneshwer and A K Tripathi, Interdependence Analysis in
Component Based Software, Journal of Information
Science and Technology”, volume 6, issue 2, 2009.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 158

[9] S. Alda, M. Won, and A. B. Cremers, “M anaging
Dependencies in Component-Based Distributed
Applications”, In: Proceeding of the 2nd F IDJI
International Workshop on scientific Engineering of
Distributed Java Applications. Luxembourg-City, 2002.

[10] M. Belguidoum and F. Dagnat, “Dependency Management
in Software Component Deployment”, Journal of
Electronic Notes in Theoretical Computer Science
(ENTCS), Volume 182, June, 2007.

[11] L. Yu, A. Mishra, S. Ramaswamy, “Component co-
evolution and component dependency: speculations and
verifications”. IET Software 4(4): 252-267, 2010.

[12] F. Kon. and R.H. Campbell, “Dependence Management
in Component-Based Distributed Systems,” IEEE
Concurrency, Volume 8, Number 1, pp. 26-36,
January 2000 .

[13] E., Bondarev, P. D. With, M. Chaudron and J. Muskens,
“Modelling of Input-Parameter Dependency for
Performance Predictions of Component-based embedded
systems,”, in Proceedings of 31 EUROMICRO conference
on Software Engineering and Advance Applications, Porto,
Purtgal, 2005, Aug 30-sept 3.

[14] J. Guo, “Using Category Theory to Model Software
Component Dependencies.”, in proceedings of 9th Annual
IEEE International Conference and Workshop on the
Engineering of Computer Based Systems(ECBS 2002),
Lund University, Lund, SWEDEN, April 8-11, 2002.

[15] F. Bachmann. et. al. 2003. SEI Independent Research and
Development Projects (CMU/SEI-2003-TR-019
ADA418398). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2003.
<http://www.sei.cmu.edu/publications/documents/03.report
s/03tr019.html>.

[16] Seacord, R. (2003). Assumption Management.” news@sei
interactive 6, 1,First Quarter
2003.<http://interactive.sei.cmu.edu/news@sei./columns/
the_cots_spot/2003/1q03/cots-spot 1q03.htm>.

[17] Lewis, G. A.,Mahatham,T and Wrage, L. (2004).
Assumptions Management in Software Development,
Technical Note CMU/SEI-2004-TN-021, Carnegie Mellon
University, 2004.

[18] A. Tirumala, et al. “Prevention of failures due to
assumptions made by software components in real-time
systems”, SIGBED Review - Special issue: The second
workshop on high performance, fault adaptive, large scale
embedded real-time systems (FALSE-II), Volume 2 Issue
3, 2005, pp. 36-39.

[19] Steingruebl, A and Peterson, G. (2009). Software
Assumptions Lead to Preventable Errors, Journal of
IEEE Security and Privacy , Volume 7 I ssue 4, July
2009.

[20] C . Rich, C. and R. C. Waters, The Disciplined Use of
Simplifying Assumptions. ACM SIGSOFT Software
Engineering Notes- Special Issue on R apid Prototyping,
Volume 7, Issue 5, December 1982.

[21] H apner et al., “Patterns of Conflict among Software
Components.”, Volume 79, 2006, pp. 537-551.

[22] R. Leitch & E. Stroulia, Accessing the Maintainability
Benefits of Design Restructuring Using Dependency
Analysis. In Proceedings of Ninth International Software

Metrics Symposium, Sydney, Australia, 2003, 3-5 Sept
2003.

[23] J. Lowy, Programming .Net Components. O'Reilly Media,
Inc. Sebastopol, CA. pp. 75. Chapter in an edited book, 2005.

[24] Edwards, S. H., Shakir, G., Sitaraman, M., Weide, B. W. and
Hollingsworth, J. (1998). A Framework for Detecting
Interface Violations in Component Based Software. In
Proceedings of the 5th International Conference on S oftware
Reuse, Victoria, British Coulmbia, Canada.

[25] Heineinnan, G. T. and Councill, W, T. (2001). Definition of
Software Component and its Elements”. Component Based
Software Engineering- Putting the Pieces Together. In G. T.
Heineinnan and W. T. Councill (Ed.), Addison Weslay,
Bostan, MA, pp. 9-10.

[26] Voas, J. (2001). Predicting System Trustworthiness. In
Building Reliable Component Based Systems. I. Crnkovic,
and M. Larsson, (eds), A rtech House, Inc. Norwod, MA,
USA.

[27] Norstorm, C. and I sovic, D. (2001). Components in Real
Time Systems. In Building Reliable Component Based
Systems, I. Crnkovic and M. Larsson (Ed)., Artech House,
Inc. Norwod, MA, USA, 2001.

[28] Rastofer, U and Bellosa, F. (2001). An Approach to
Component Based Software Engineering for Distributed
Embedded Real Time Systems. IEE Software. 148(3), pp. 99-
103.

[29] L. C. Briand, and S. Morasca, Property based Software
Engineering Measurement. IEEE Transactions of Software
Engineering, 22(1), pp. 68-86.

[30] L. C. Briand, J. W. Daly, and J. Wüst, “A Unified
Framework for Cohesion Measurement in Object-
OrientedSystems”, Empirical Software. Engineering. 3, 1
(Jul. 1998), 65-117.

[31] B. Xu, Z. Chen, Z., and J. Zhao, “Measuring cohesion of
packages in Ada95”, In Proceedings of the 2003 Annual
ACM Sigada international Conference on A da: the
Engineering of Correct and Reliable Software For Real-Time
& Distributed Systems Using Ada and Related Technologies
(San Diego, CA, USA, December 07 - 11, 2003).

[32] F. Dandashi, “A method for assessing the reusability of
object-oriented code using a v alidated set of automated
measurements”, In Proceedings of the 2002 ACM Symposium
on Applied Computing (Madrid, Spain, March 11 - 14, 2002).
SAC '02. ACM, New York, NY, 997-1003.

Ratneshwer is working as an Assistant Professor in
Department of Computer Science (MMV), Banaras Hindu
University, Varanasi (India). He has done his Ph.D. in Component
Based Software Engineering at Department of Computer
Engineering, Institute of Technology, Banaras Hindu University,
Varanasi (India). He is currently working on software process,
interdependence and composability aspect of component based
software engineering. He has eight research papers in international
journals and 1 1 research papers in international/national
conference proceedings in his credit.

A K Tripathi is serving as Professor at Computer Engineering
Department, Institute of Technology, Banaras Hindu University,
India. He has 23 years of teaching and research experience. His
research areas are parallel/ distributing computing and S oftware
Engineering. He has supervised more that 10 doctoral thesis. He
has two book chapters, and several research papers in
international journals and conference proceedings.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 159

