
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 90

Neural Networks as Improving Tools for Agent Behavior

Alketa Hyso 1, Betim Çiço 2

 1 Department of Informatics, “Ismail Qemali” University,
Vlora, Albania

2 Computer Engineering Department, Polytechnic University
Tirana, Albania

Abstract
Current trends in software development show a move towards
supporting autonomous, rational components (agents). One of the
most interesting issues in agent technology has always been the
modeling and enhancement of agent behavior. In this paper we
are focused in the intersection of agent technology and machine
learning techniques for producing intelligent agents. Our
application shows that using neural network techniques we
improve the reasoning mechanism of our agent supplying to it a
new behavior which it did not possess from the beginning. The
learning process can be applied initially to train ‘dummy’ agent
to further improve agent reasoning. The machine learning
algorithms allow for an agent to adequately respond to
environment changes and improve the behavioral rules or acquire
intelligent behavior. A case study will be given to demonstrate
such enhancement. We simulate the behavior of a robot moving
in an environment with random obstacles. Learning techniques
that are added to the reasoning mechanism of this robot enrich
his behavior in the dynamic environment, displaying a rational
and intelligent behavior.
Keywords: Mobile robot, Intelligent Agent, Machine Learning
Techniques, Neural Network, Agent Behavior.

1. Introduction

Agent and multi-agent system technologies, methods and
theories are currently contributing in many diverse
domains. Applications range from small programs that
intelligently search the Web buying and selling goods via
electronic commerce, to autonomous space probes. This is
not only a very promising technology, it is emerging as a
new way of thinking a conceptual paradigm for analyzing
problems and for designing systems [1], for dealing with
complexity, distribution and interactivity [2], [3], [4] , and
perhaps a new perspective on computing and intelligence
[5]. Numerous approaches exists, attempting to optimally
reflect both the inner states as well as perceived
environment of an agent in order to provide it either with

reactivity or proactivity [6]. Learning is a crucial ability of
intelligent agents. Machine Learning tools and techniques
enable an agent to get knowledge from observations or
experiences [7][8][9][10]. Agent’s programming has a
specific. Agent works in an environment even if the
programmer does not provide him all the knowledge about
the environment. If the programmer or designer has
incomplete knowledge about the environment where the
agent operates, the only way the agent to work in this
environment is through learning the necessary knowledge.
Machine learning algorithms provide the agent with
additional autonomy, the result of his experience. Thus,
new agents exhibit behavior that does not possess before.
Agents ensure the presentation of knowledge, generation
of rules and strategies used in making decisions on their
part through inductive learning.
This paper aims to present how machine learning methods
can be integrated with agent technology in building more
intelligent agents. Simulation shows the behavior of a
mobile robot seen in that perspective. The objective of this
work is not to study the optimal decision-making
algorithm but to simulate the new rational behavior our
agent own because intersection of agent technology and
machine learning techniques.

2. Multilayer Perceptron Neural Network as
Function Approximation

The field of neural networks covers a very broad area. We
will concentrate on using neural network as function
approximation. Fig 1 presents a neural network as a
function approximator.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 91

Fig 1. Neural network as function approximator

Two-layer networks, with sigmoid transfer functions in
the hidden layer and linear transfer functions in the
output layer, are universal approximators. We could use
such networks to approximate almost any function, if
we had a sufficient number of neurons in the hidden
layer.

Fig 2. Example function approximation network

Hornik, Stinchcombe and White, [11] present a proof
that multilayer perceptron networks are universal
approximators. Pinkus, [12] gives a review of the
approximation capabilities of neural networks; Niyogi
and Girosi, [13] develop bounds on function
approximation error when the network is trained on
noisy data.

3. The Application

We will represent an application that simulate the new
intelligent rational behavior that our robot gains because
of the intersection of agent technology and machine
learning techniques. Our robot operates in an
environment with obstacles. Its goal is to find its way
out in this environment. The obstacles’ sensors help it to
memorize information about the world. Every time
those sensors feel an unknown obstacle, the robot acts
according to the reflections. We will supply a neural
network in robot’s reasoning mechanism. It will be
trained to learn to measure the distance during its

locomotion. So this new ability and information that
come from sensors help the robot to create a map, which
represents the environment partially. The robot shows
an intelligent rational behaviour – it makes its
movement plan based on knowledge provided by the
map.
The stages we have to follow to realize what we
previously mentioned are:
a) monitor the behaviour of the robot in the environment
with obstacles based only in the perceptions of the
sensors. b) Apply the machine learning technique -
MultilayerPerceptron, which is a neural network that
trains the robot using backpropagation to measure the
distance. c) Creating the map of the obstacles and
incorporating this knowledge model in the reasoning
mechanism of the agent. d) Monitor the new behavior of
the agent.

3.1 The Agent’s Reactive Behavior.

Let’s consider the behaviour of the robot in the
environment with obstacles based only in the
perceptions of the sensors. The obstacles are generated
randomly; i.e. in random numbers, sizes and distance
between them, and their shapes are rectangular.
For convenience, we assume that the mobile robot
enters on the left side and exits from the right side of the
environment. This robot will be equipped with
obstacle’s sensors to memorize information of the
world.
The robot percepts the environment through sensors and
acts on that based on these perceptions.

Figure 3. The agent’s reactive behavior in a unknown
environment

The environment is not completely accessible. The agent
should reason about the set of states it can pass, not just
for one single state. The agent knows that when the sensor
of obstacle gives a signal, it has reached an obstacle, but it
doesn’t know if the obstacle comes from the bottom or the
top. The agent will try the action ‘move straight forward’
as long as it doesn’t encounter an obstacle. When it
encounters an obstacle, it moves ‘one step downwards and
again straight forward’. The agent repeats this sequence

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 92

until it finds a free state or reaches the bottom bound. If it
finds a free state, it moves ‘straight forward’. The set of
actions ‘straight-downwards-straight’ or ‘straight-
upwards-straight’ will reach a free state, if it exists in the
environment generated randomly. This is the way our
agent acts to realize its goal. Figure 3 presents the reactive
behavior of the robot in a unknown environment.

The Agent Movement Algorithm 1
input: state (the map of the obstacles), origin of the agent, exit
destination, percept, rules (that will follow by the agent according to the
perception and state), g (goal, initially null), problem formulation, s - an
action sequence (the plan of movement).

state UPDATE-STATE (state, origin, exit)
//the goal is the first obstacle in the map.
g FORMULATE-GOAL (state)

//the environment is unknown by the agent
Problem FORMULATE-PROBLEM (state, g)

//solution that will be chosen by the agent.
actionPlan1 : While (agent does not achieve the exit) {

if (the agent percepts an obstacle) {
 state UPDATE-STATE (state, percept)

// The agent chooses the action based on perception and rules)
rule RULE-MATCH (state, percept, rules)

//the agent moves one step downwards and then straight forward’...
action RULE – ACTION [rules]

//the state is updated after the action
state UPDATE-STATE (state, action)
}

// the goal is the next obstacle of the map
g FORMULATE-GOAL (state)

}

The lack of a map of the environment forces it to act just
using its reflexes. The plan that our agent follows is not
rational. We would have a rational behavior of the robot if
its motion is based on a map of the environment created by
the robot.We have to improve the robot’s reasoning
mechanism to fulfill new requirements:
- the agent should build the path through the obstacles
before beginning its movement.
For this purpose, we equip the reasoning mechanism of the
robot with a neural network, and we train it to calculate
the distance of its locomotion, this based on learning
techniques.

3.2 Training the Robot to Measure its Locomotion
Distance

We shall take into consideration that our physical agent is
able to move and calculate the time. After getting the

signal from a given sensor, the agent moves through a
straight line without obstacles, starting from a position of
“rest”, to which corresponds a 0 moment of time. Its
moving accelerates with a given acceleration that our
agent is not able to calculate. We suppose that in equal
distances our agent must leave a trace. We should make
the agent learn the process of calculating the distance it
covers, only based on its capacity to calculate the time.
In order to solve the above mentioned problem, we use
sources of data extracted during the movement of the
agent. These sources include data about movement: time
intervals, the speed of movement in that starting moment,
acceleration and distance. Acceleration: 2 m/s2; Time in
seconds (0; 1; 2; 3; 4; 5; 6; 7) and distance in meters (0; 1;
4; 9; 16; 25; 36; 49).

Fig 4. Architecture of neural network

We apply machine learning method – multilayer
perceptron neural network, by means of which we can
find a model, which can be incorporated within our agent
in the next step. Fig 4 present the architecture of the neural
network. Our neural network has an input layer that
designate the values of the elements in the hidden layer
which has with 3 nodes with sigmoidal activation
function. Whereas, nodes in the hidden layer designate the
value for the output layer element with a linear activation
function.
Among the learning algorithm the one that gives the best
solution is the backpropagation algorithm (BP) of neural
networks which is supported by Multilayer Perceptron
method [14] [15].
BP learns the weights for a multilayer network. It employs
gradient descent in an attempt to reach the outputs.

Fig 5. Back-propagation

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 93

The learning process has two stages: Forward stage:
calculating of outputs based on an input pattern and
Backward stage: updating of weights by calculating the
errors. Fig 5 shows the stages of back-propagation
algorithm.
The back-propagation algorithm in a multilayer network
is presented here:
 Initialize all weights to small random numbers.

Initialize each iw
to 0.

 Until satisfied, Do
//after a fixed number of iterations (epochs) or once the
error falls below some thresholds
 For each training example Do

//(training example - a pair of the form ,, tx

// where x

 is the vector of input values,

 // and ,t

 is the vector of target output values.
1. Input the training example to the network and compute
the network outputs
2. For each output unit k

)()1(kkkkk otoo

//ok – output value, and tk – target output value
3. For each hidden unit h

outputsk

kkhhhh woo ,)1(

4. Update each network weight wi,j

jijiji www ,,,

 where
)1()(,,, nwxnw jijijji

// - learning rate, - momentum, (n)-iteration.

As input parameters we consider time and acceleration,
while, as an output we consider parameter the covered
distance. Number of iterations (for backpropagation), Nit
= 100. We perform the training of the agent according to
this algorithm by adjusting these parameters of algorithm
such as the number of training cycles, learning rate or
even the given model of the neural network. In the end,
the neural network adjusts the proper weights.

The model that we gain is a non-linear function of the
type:

12483.551599)-363.81504(t24967.10318

exp1

1
705.166631

exp1

1
335.640279

exp1

1
777221.20761

))(-2.6061840.335880t0.912341(

))(-1.1422650.378405t0.226480(

))(-7.592238-0.077077)(t3.983986(

a

d

a

a

a

In a second phase we incorporate the neural network
within the robot’s reasoning mechanism and monitor the
behavior of the agent. Now, our robot can measure the
distance of movement based on the law which it
discovered through the training process. Figure 6,
presents the traces that our robot leaves during his
movement, based on the covered distances every
second.
The upper traces (1) are left by our agent based on the
measurement according the knowledge it gained from
the training process (approximation function). They are
based on the distance that our agent thinks it covers
every second. The traces below are the actual values of
the distance covered– every second. We see that for the
first 50 m that correspond 7 seconds, the distance
measured by the agent is equal with the distance it
accomplishes. But, if the agent continues moving we
can see that there will be faults in the measurement it
does. This shows that the function of calculation of the
covered distance is valid only for the range of data
included in the training process of the agent. This
function is not valid for the uncovered data by the
training process.

Fig 6. The traces, that our agent leaves based on the distance that our
agent thinks it covers every second (1), and covered distances every

second (2).

We see that the agent displays a new behavior: it is able to
realize an approximate calculation of distance; by developing
an intelligent behavior of the agent.

3.3 The Process Of Mapping

We include in our robot the reasoning mechanism - a
software agent that creates and recreates, the environment
map the way the robot perceives the environment. The
map will present the distance between the obstacles
encountered during the agent’s motion, and the direction
of motion (up or down), which the robot will follow to
overcome the obstacles ahead. The distance measured by
the neural network at the moment it encounters the
obstacle, is recorded on the map. Robot moves up or
down to avoid the obstacle. When it moves down the
obstacle, it registers in a state variable the value (-1), but

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 94

when it moves up the obstacle, it registers in this state
variable the value (+1). The moment the robot passes this
barrier this value is stored in the map, attached to the
distance. The robot follows this procedure for every
obstacle it encounters until it exits. This way, it creates
the map of obstacles and recreates it each time it detects
changes in its environment;

 (a) (b)

Fig 7. The real environment a) , the environment according to robot
perception.

Table 1 the map that the agent creates

Fig 7 presents the real environment (a), the environment
according to robot perception (b), and Table1 presents the
map that it creates .

3.4 The Behavior of the Agent Based on the Map.

Since the agent has a map of its environment, it has
information about it. It acts based on a plan, made before
beginning to move. It follows the same trajectory of
motion as in the case of reflex motion, but when facing an
obstacle it follows the direction of motion that is stored
on the map. So another movement plan is included in the
navigation agent - part of the robot’s reasoning
mechanism. Let’s present the following robot’s
movement algorithm in the known environment with
obstacles, based on the map.

The Agent Movement Algorithm 2
actionPlan2: While (agent does not achieve the exit) {

//the agent moves in a known environment according to the map
 move to achieve the goal
if (the agent percepts an obstacle that is in the map) {
state UPDATE-STATE (state, percept, map)

//the agent moves upwards or downwards according to the map.
action RULE – ACTION [rules]

//the state is updated after the action
state UPDATE-STATE (state, action)
}

// the goal is the next obstacle of the map
g FORMULATE-GOAL (state)

}

In a dynamic environment it will show reflexive behavior
intertwined with pro-active behavior. The agent has one
plan for the unknown environment and another for the
known one. It will choose which plan to apply and
combines them autonomously according to the situation.
This way, the agent autonomously creates a movement
plan every time it is set in a dynamic environment.

4. Conclusions

This paper aims to present how machine learning methods
can be integrated with agent technology in building more
intelligent agents. Using machine learning techniques
makes it possible to develop agents able to learn from and
adapt to their environment. In this way, the performance
of these agent systems can be improved. We demonstrate
the use of learning techniques to provide a map, which
helps generate new behaviors. By using a neural network
as a reasoning mechanism and by analyzing input and
output, our agent will acquire a new intelligent behavior
which it did not possess from the beginning.
This paper is a brief summary of what we have done in the
practice of combining agents and machine learning
techniques. We will make more efforts to explore this new
trend of research. The agents are rational decision-making
system: they are able to show their reflexive and pro-
active behavior and intertwines these kinds of behavior
according to the situation by making the best decisions
offered at the moment.

References
[1] Sterling, L and Taveter, K. (2009), ‘The Art of Agent-

Oriented Modeling,’ MIT Press, p 27-112
[2] Buse, D. P., and . Wu, Q. H. (2004). “Mobile agents for

remote control of distributed systems,” IEEE Transactions on
Industrial Electronics, vol. 51, no. 6, pp. 1142–1149.

[3] Dimeas, A. L., and Hatziargyriou,N. D. (2005). “Operation of
a multiagent system for microgrid control,” IEEE
Transactions on Power Systems, vol. 20, no. 3, pp. 1447–
1455.

[4] Davidson,E. M., S McArthur,. D. J. J., McDonald,R. T.,
Cumming, and Watt,I. (2006) “Applying multi-agent system
technology in practice: automated management and analysis

obstacle distance direction
1 11 -1
2 37 +1
...

...

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 95

of SCADA and digital fault recorder data,” IEEE
Transactions on PowerSystems, vol. 21, no. 2, pp. 559–567.

[5] Poole, D., and Mackworth, A. (2010), ‘Artificial Intelligence:
Foundations of Computational Agents,’ Cambridge
University Press.

[6] Wooldridge, M., (2000), ‘Reasoning about Rational Agents, ’
MIT Press.

[7] Zhang. et al, 2005, Agents and Data Mining: Mutual
Enhancement by Integration, (Eds) Gorodetsky V, Liu J,
Skormin V.A, Autonomous Intelligent Systems: Agents and
Data Mining, p 50-61, Springer.

[8] Symeonidis, A. et al , 2005, Methodology for Predicting
Agent Behavior by the Use of Data Mining Techniques,
International Workshop AIS-ADM 2005 Russia, Proceedings.

[9] Remondino, M., et al, 2005, Data Mining Applied to Agent
Based Simulation, Proceedings 19th European Conference on
Modelling and Simulation Merkuryev Y, Zobel R,
Kerckhoffs E, ECMS.

[10]Russell, S.dhe Norvig, P.: “Artificial Inteligence: A Modern
Approach.” Prentice –Hall 1995, p 525-647.

[11] Hornik, K. et al 1989, ‘Multilayer feedforward networks are
universal approximators,’ Neural Networks, vol. 2, no. 5,
359–366.

[12] Pinkus A., 1999, ‘Approximation theory of the MLP model
in neural networks,’ Acta Numerica, p 143–195.

[13] Niyogi, P., et al, 1999, ‘Generalization bounds for function
approximation from scattered noisy data,’Adv. Comp. Math.,
vol. 10, 51–80.

[14] Werbos, P. J., ‘Beyond regression: New tools for prediction
and analysis in the behavioral sciences,’ Ph.D. Thesis,
Harvard University, Cambridge, MA, 1974. Also published
as The Roots of Backpropagation, John Wiley & Sons, New
York, 1994.

[15] Russell, S., et al, P., 1995, Artificial Intelligence A Modern
Approach, Prentice Hall, p 581.

First Author. Alketa Hyso: 1988-1993 Electronic Engineering -
Polytechnic University of Tirana, Electrical Engineering Faculty;
2003-2005 Master in Computer Engineering - Polytechnic
University of Tirana, Electrical Engineering Faculty, Computer
Engineering Branch; 2006-2011 PhD student Polytechnic
University of Tirana. Professional Experience: 1994-1995 teacher
in High Technical School in Vlora, 1996-1997 Vlora Hospital,
position Head of Technical Branch. 2001-to date Technological
University “Ismail Qemali” Vlore, Albania, position lector of
informatics. Head of Editorial Board EPICT Albania. Papers and
conferences: “Agents as Rational Decision-Making Systems”,
bci’07 - 3rd Balkan Conference in Informatics and Albanian Journal
of Natural and Technical Sciences , “Application of Machine
Learning Techniques and Data Mining to Agents”, 3rd Annual
South-East Europian Doctoral Student Conference; “Comparison
of Different Types of Intelligent Agents: A case study and a
simulation” , Albanian Journal of Natural and Technical Sciences ;
"Neural Networks as Improving Tools for Agent Behavior", IADIS
International Conference in Intelligent Systems and Agents 2009;
"Agents as Tools for Solving Complex Control Problems", 4th
Annual South-East Europian Doctoral Student Conference;
“Agents in the Control Domain Process” 5th Annual South-East
Europian Doctoral Student Conference;

Second Author. Betim Çiço: Prof. Dr. Betim CICO was
graduated as electronic engineer in Polytechnic University of
Tirana (PUT) in 1970 with excelent results. After one year of
working as electronic engineer in Shijak Radiostation, Albanian
Radio-Television, he worked for 26 years as scientific researcher
at the Institute of Nuclear Physics(INP), mainly in the field of
microprocessors and computers, computer based on-line systems,
Head of the Electronics Department, part time professor in PUT. In
1998 he moved as Head of Computer Engineering Section
Electronic Department, Faculty of Electrical Engineering at PUT.
During 1999-2011 member of the main governing body (Senate) at
PUT. Participated in 50 International Trainings, Workshops,
Conferences etc. Author of 40 Scientific Papers and 20 INP
Technical Reports. Supervisor of three PhD Theses. During
1999–2001 member of the Project Group, MOES, for the
implementation of the Education Management Information System
(EMIS) Component under the Transition Education Reform Project
In Albania. Designer of several LAN–s in Tirana.

