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Abstract 
Current trends in software development show a move towards 
supporting autonomous, rational components (agents). One of the 
most interesting issues in agent technology has always been the 
modeling and enhancement of agent behavior. In this paper we 
are focused in the intersection of agent technology and machine 
learning techniques for producing intelligent agents. Our 
application shows that using neural network techniques we 
improve the reasoning mechanism of our agent supplying to it a 
new behavior which it did not possess from the beginning. The 
learning process can be applied initially to train ‘dummy’ agent 
to further improve agent reasoning. The machine learning 
algorithms allow for an agent to adequately respond to 
environment changes and improve the behavioral rules or acquire 
intelligent behavior. A case study will be given to demonstrate 
such enhancement. We simulate the behavior of a robot moving 
in an environment with random obstacles. Learning techniques 
that are added to the reasoning mechanism of this robot enrich 
his behavior in the dynamic environment, displaying a rational 
and intelligent behavior. 
Keywords: Mobile robot, Intelligent Agent, Machine Learning 
Techniques, Neural Network, Agent Behavior. 

1. Introduction 

Agent and multi-agent system technologies, methods and 
theories are currently contributing in many diverse 
domains. Applications range from small programs that 
intelligently search the Web buying and selling goods via 
electronic commerce, to autonomous space probes. This is 
not only a very promising technology, it is emerging as a 
new way of thinking a conceptual paradigm for analyzing 
problems and for designing systems [1], for dealing with 
complexity, distribution and interactivity [2], [3], [4] , and 
perhaps a new perspective on computing and intelligence 
[5]. Numerous approaches exists, attempting to optimally 
reflect both the inner states as well as perceived 
environment of an agent in order to provide it either with  

 
 
reactivity or proactivity [6]. Learning is a crucial ability of 
intelligent agents. Machine Learning tools and techniques 
enable an agent to get knowledge from observations or 
experiences [7][8][9][10]. Agent’s programming has a 
specific. Agent works in an environment even if the 
programmer does not provide him all the knowledge about 
the environment. If the programmer or designer has 
incomplete knowledge about the environment where the 
agent operates, the only way the agent to work in this 
environment is through learning the necessary knowledge. 
Machine learning algorithms provide the agent with 
additional autonomy, the result of his experience. Thus, 
new agents exhibit behavior that does not possess before. 
Agents ensure the presentation of knowledge, generation 
of rules and strategies used in making decisions on their 
part through inductive learning. 
This paper aims to present how machine learning methods 
can be integrated with agent technology in building more 
intelligent agents. Simulation shows the behavior of a 
mobile robot seen in that perspective. The objective of this 
work is not to study the optimal decision-making 
algorithm but to simulate the new rational behavior our 
agent own because intersection of agent technology and 
machine learning techniques.  

2. Multilayer Perceptron Neural Network as 
Function Approximation  

The field of neural networks covers a very broad area. We 
will concentrate on using neural network as function 
approximation. Fig 1 presents a neural network as a  
function approximator. 
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Fig 1. Neural network as function approximator 

Two-layer networks, with sigmoid transfer functions in 
the hidden layer and linear transfer functions in the 
output layer, are universal approximators. We could use 
such networks to approximate almost any function, if 
we had a sufficient number of neurons in the hidden 
layer. 

 

Fig 2. Example function approximation network 

Hornik, Stinchcombe and White, [11] present a proof 
that multilayer perceptron networks are universal 
approximators. Pinkus, [12] gives a review of the 
approximation capabilities of neural networks; Niyogi 
and Girosi, [13] develop bounds on function 
approximation error when the network is trained on 
noisy data. 

3. The Application 

We will represent an application that simulate the new 
intelligent rational behavior that our robot gains because 
of the intersection of agent technology and machine 
learning techniques. Our robot operates in an 
environment with obstacles. Its goal is to find its way 
out in this environment. The obstacles’ sensors help it to 
memorize information about the world. Every time 
those sensors feel an unknown obstacle, the robot acts 
according to the reflections. We will supply a neural 
network in robot’s reasoning mechanism. It will be 
trained to learn to measure the distance during its 

locomotion. So this new ability and information that 
come from sensors help the robot to create a map, which 
represents the environment partially. The robot shows 
an intelligent rational behaviour – it makes its 
movement plan based on knowledge provided by the 
map.  
The stages we have to follow to realize what we 
previously mentioned are:  
a) monitor the behaviour of the robot in the environment 
with obstacles based only in the perceptions of the 
sensors. b) Apply the machine learning technique - 
MultilayerPerceptron, which is a neural network that 
trains the robot using backpropagation to measure the 
distance. c) Creating the map of the obstacles and 
incorporating this knowledge model in the reasoning 
mechanism of the agent. d) Monitor the new behavior of 
the agent. 

3.1 The Agent’s Reactive Behavior.  

Let’s consider the behaviour of the robot in the 
environment with obstacles based only in the 
perceptions of the sensors. The obstacles are generated 
randomly; i.e. in random numbers, sizes and distance 
between them, and their shapes are rectangular. 
For convenience, we assume that the mobile robot 
enters on the left side and exits from the right side of the 
environment. This robot will be equipped with 
obstacle’s sensors to memorize information of the 
world.  
The robot percepts the environment through sensors and 
acts on that based on these perceptions.  

 

 

Figure 3. The agent’s reactive behavior in a unknown 
environment 

The environment is not completely accessible. The agent 
should reason about the set of states it can pass, not just 
for one single state. The agent knows that when the sensor 
of obstacle gives a signal, it has reached an obstacle, but it 
doesn’t know if the obstacle comes from the bottom or the 
top. The agent will try the action ‘move straight forward’ 
as long as it doesn’t encounter an obstacle. When it 
encounters an obstacle, it moves ‘one step downwards and 
again straight forward’. The agent repeats this sequence 
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until it finds a free state or reaches the bottom bound. If it 
finds a free state, it moves ‘straight forward’. The set of 
actions ‘straight-downwards-straight’ or ‘straight-
upwards-straight’ will reach a free state, if it exists in the 
environment generated randomly. This is the way our 
agent acts to realize its goal. Figure 3 presents the reactive 
behavior of the robot in a unknown environment. 

 
The Agent Movement Algorithm 1 
input: state (the map of the obstacles), origin of the agent, exit 
destination, percept, rules (that will follow by the agent according to the 
perception and state), g (goal, initially null), problem formulation, s - an 
action sequence (the plan of movement).  
 
state  UPDATE-STATE (state, origin, exit) 
//the goal is the first obstacle in the map. 
g  FORMULATE-GOAL (state) 
     
//the environment is unknown by the agent 
Problem FORMULATE-PROBLEM (state, g) 
 
//solution that  will  be chosen by the agent.       
actionPlan1 :   While ( agent does not achieve the exit ) { 
   

if (the agent percepts an obstacle)  {  
 state UPDATE-STATE (state, percept)  
 
// The agent chooses the action based on perception and rules) 
rule  RULE-MATCH (state, percept,  rules)   
 
//the agent moves one step downwards and then straight forward’... 
action  RULE – ACTION [rules]  
             
//the state is updated after the action  
state  UPDATE-STATE (state, action)  
} 
 
// the goal is the next obstacle of the map 
g  FORMULATE-GOAL (state) 
 
} 

 
The lack of a map of the environment forces it to act just 
using its reflexes.  The plan that our agent follows is not 
rational. We would have a rational behavior of the robot if 
its motion is based on a map of the environment created by 
the robot.We have to improve the robot’s reasoning 
mechanism to fulfill new requirements: 
-  the agent should build the path through the obstacles 
before beginning its movement. 
For this purpose, we equip the reasoning mechanism of the 
robot with a neural network, and we train it to calculate 
the distance of its locomotion, this based on learning 
techniques.  

3.2 Training the Robot to Measure its Locomotion 
Distance 

We shall take into consideration that our physical agent is 
able to move and calculate the time. After getting the 

signal from a given sensor, the agent moves through a 
straight line without obstacles, starting from a position of 
“rest”, to which corresponds a 0 moment of time. Its 
moving accelerates with a given acceleration that our 
agent is not able to calculate. We suppose that in equal 
distances our agent must leave a trace. We should make 
the agent learn the process of calculating the distance it 
covers, only based on its capacity to calculate the time.  
In order to solve the above mentioned problem, we use 
sources of data extracted during the movement of the 
agent. These sources include data about movement: time 
intervals, the speed of movement in that starting moment, 
acceleration and distance.  Acceleration: 2 m/s2; Time in 
seconds (0; 1; 2; 3; 4; 5; 6; 7) and distance in meters (0; 1; 
4; 9; 16; 25; 36; 49).  

 

Fig 4. Architecture of neural network 

We apply machine learning method – multilayer 
perceptron neural network, by means of which we can  
find a model, which can be incorporated within our agent 
in the next step. Fig 4 present the architecture of the neural 
network. Our neural network has an input layer that 
designate the values of the elements in the hidden layer 
which has with 3 nodes with sigmoidal activation 
function. Whereas, nodes in the hidden layer designate the 
value for the output layer element with a linear activation 
function.  
Among the learning algorithm the one that gives the best 
solution is the backpropagation algorithm (BP) of neural 
networks which is supported by Multilayer Perceptron 
method [14] [15].  
BP learns the weights for a multilayer network. It employs 
gradient descent in an attempt to reach the outputs.  
 

 

Fig 5. Back-propagation 
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The learning process has two stages: Forward stage: 
calculating of outputs based on an input pattern and 
Backward stage: updating of weights by calculating the 
errors. Fig 5 shows the stages of back-propagation 
algorithm. 
The back-propagation algorithm in a multilayer network 
is presented here: 
 Initialize all weights to small random numbers. 

Initialize each iw
to 0. 

 Until satisfied, Do   
//after a fixed number of iterations (epochs) or once the 
error falls below some thresholds 
 For each training example Do   

//(training example -  a pair of the form ,,  tx


 

// where x


 is the vector of input values, 

 // and ,t


 is the vector of target output values. 
1. Input the training example to the network and compute 
the network outputs 
2. For each output unit k 

)()1( kkkkk otoo   

//ok – output value, and tk – target output value 
3. For each hidden unit h  





outputsk

kkhhhh woo  ,)1(  

4. Update each network weight wi,j 

jijiji www ,,, 
 

 where  
)1()( ,,,  nwxnw jijijji   

 
// - learning rate,  - momentum, (n)-iteration. 

As input parameters we consider time and acceleration, 
while, as an output we consider parameter the covered 
distance. Number of iterations (for backpropagation), Nit 
= 100. We perform the training of the agent according to 
this algorithm by adjusting these parameters of algorithm 
such as the number of training cycles, learning rate or 
even the given model of the neural network. In the end, 
the neural network adjusts the proper weights. 
 

The model that we gain is a non-linear function of the 
type: 
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In a second phase we incorporate the neural network 
within the robot’s reasoning mechanism and monitor the 
behavior of the agent. Now, our robot can measure the 
distance of movement based on the law which it 
discovered through the training process. Figure 6, 
presents the traces that our robot leaves during his 
movement, based on the covered distances every 
second.  
The upper traces (1) are left by our agent based on the 
measurement according the knowledge it gained from 
the training process (approximation function). They are 
based on the distance that our agent thinks it covers 
every second. The traces below are the actual values of 
the distance covered– every second. We see that for the 
first 50 m that correspond 7 seconds, the distance 
measured by the agent is equal with the distance it 
accomplishes. But, if the agent continues moving we 
can see that there will be faults in the measurement it 
does. This shows that the function of calculation of the 
covered distance is valid only for the range of data 
included in the training process of the agent. This 
function is not valid for the uncovered data by the 
training process.  
 

 
Fig 6. The traces, that our agent leaves based on the distance that our 
agent thinks it covers every second (1), and covered distances every 

second (2). 
 

We see that the agent displays a new behavior: it is able to 
realize an approximate calculation of distance; by developing 
an intelligent behavior of the agent. 
 

3.3  The Process Of Mapping 

We include in our robot the reasoning mechanism - a 
software agent that creates and recreates, the environment 
map the way the robot perceives the environment. The 
map will present the distance between the obstacles 
encountered during the agent’s motion, and the direction 
of motion (up or down), which the robot will follow to 
overcome the obstacles ahead. The distance measured by 
the neural network at the moment it encounters the 
obstacle, is recorded on the map. Robot moves up or 
down to avoid the obstacle. When it moves down the 
obstacle, it registers in a state variable the value (-1), but 
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when it moves up the obstacle, it registers in this state 
variable the value (+1). The moment the robot passes this 
barrier this value is stored in the map, attached to the 
distance. The robot follows this procedure for every 
obstacle it encounters until it exits. This way, it creates 
the map of obstacles and recreates it each time it detects 
changes in its environment;  

 

 
              (a)                                                 (b)  

Fig 7. The real environment a) , the environment according to robot 
perception. 

Table 1 the map that the agent creates 
 
 
 
 
 

 
 
Fig 7 presents the real environment (a), the environment 
according to robot perception (b), and Table1 presents the 
map that it creates . 
 

3.4 The Behavior of the Agent Based on the Map. 

Since the agent has a map of its environment, it has 
information about it. It acts based on a plan, made before 
beginning to move. It follows the same trajectory of 
motion as in the case of reflex motion, but when facing an 
obstacle it follows the direction of motion that is stored 
on the map. So another movement plan is included in the 
navigation agent - part of the robot’s reasoning 
mechanism. Let’s present the following robot’s 
movement algorithm in the known environment with 
obstacles, based on the map. 
 
The Agent Movement Algorithm 2      
actionPlan2:   While ( agent does not achieve the exit ) { 
   
//the agent moves in a known environment according to the map  
  move to achieve the goal   
if (the agent percepts an obstacle that is in the map)  {  
state UPDATE-STATE (state, percept, map)  

 

//the agent moves upwards or downwards according to the map. 
action  RULE – ACTION [rules]  
             
//the state is updated after the action  
state  UPDATE-STATE (state, action)  
} 
 
// the goal is the next obstacle of the map 
g  FORMULATE-GOAL (state) 
 
} 

 
In a dynamic environment it will show reflexive behavior 
intertwined with pro-active behavior. The agent has one 
plan for the unknown environment and another for the 
known one. It will choose which plan to apply and 
combines them autonomously according to the situation. 
This way, the agent autonomously creates a movement 
plan every time it is set in a dynamic environment.  

4. Conclusions 

This paper aims to present how machine learning methods 
can be integrated with agent technology in building more 
intelligent agents. Using machine learning techniques 
makes it possible to develop agents able to learn from and 
adapt to their environment. In this way, the performance 
of these agent systems can be improved. We demonstrate 
the use of learning techniques to provide a map, which 
helps generate new behaviors. By using a neural network 
as a reasoning mechanism and by analyzing input and 
output, our agent will acquire a new intelligent behavior 
which it did not possess from the beginning.  
This paper is a brief summary of what we have done in the 
practice of combining agents and machine learning 
techniques. We will make more efforts to explore this new 
trend of research. The agents are rational decision-making 
system: they are able to show their reflexive and pro-
active behavior and intertwines these kinds of behavior 
according to the situation by making the best decisions 
offered at the moment.  
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