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Abstract 
In the market there is a wide amount of CASE tools for the 
design of relational databases. Object-relational database 
management system (ORDBMS) emerged at the end of the 
90’s to incorporate the object technology into the relational 
databases, allowing the treatment of more complex data and 
relationships than its predecessor. The design for this database 
model is not straightforward. Most of the works proposed in 
the literature fail because they do not provide consistent 
transformation formalization such that the mappings from the 
conceptual model to the logical schema can be automated to 
generate an ORDB design toolkit. This is one of the goals of 
this paper. For this purpose, UML class diagram metamodel 
for the conceptual design and SQL:2003 standard metamodel 
for logical schemas are considered.  A characterization of the 
components involved in the ORDB design is made in order to 
propose mapping rules that can be further automated. The 
architecture of a CASE tool prototype is presented. Model 
Driven Architecture for software design and XML for the 
model definitions and transformations are employed. 
Keywords: ORDBMS, SQL:2003, UML, database design, 
MDA, XML. 

1. Introduction 

Databases are a crucial component of information 
systems playing a strategic role in the support of the 
organization decisions; its design is essential to obtain 
an efficient and effective information system 
management. Database design process consists in 
defining the conceptual, logical and physical structure of 
the schema. The logical design of a database is obtained 
by transforming the conceptual one. For large projects 
conceptual database models are complex making its 
transformation a non-trivial task. In order to perform this 
work, it is important to count with a CASE tool based on 
a specific design methodology such that the designer can 
concentrate his work making decisions among different 
mapping possibilities the CASE tool has. 
Nowadays, the relational databases are the most widely 
used. In this model, the conversion from the conceptual 
to the logical representation is directly made following 
perfectly defined steps [7]. Because of this, in the market 
there is a wide amount of CASE tools for relational 
databases, such as ToadTM Data Modeler [26], DB 

Designer4 [8], DatabaseSpy [3], among others, which 
offer the possibility of drawing a conceptual model as an 
entity-relationship diagram and automatically 
transforming it into the logical schema.  
 
Object-relational database management system 
(ORDBMS) and its standards [18][19][12][13] emerged 
at the end of the 90’s to incorporate the object 
technology into the relational databases, allowing the 
treatment of more complex data and relationships than 
its predecessor. Till the moment, to the knowledge of 
these authors, there is not a CASE tool that performs the 
same task for an ORDBMS. The lack of software design 
tools in this particular database model is because  it does 
not exists a design method widely accepted in the IT 
community feasible to be automated in a CASE tool. 
Several works related to this matter can be found in the 
literature. Liu, Orlowska, and Li [15] have presented a 
proposal to implement object-relational databases using 
distributed database system architecture. Although the 
SQL:1999 standard was not complete at this time, their 
work was valuable in the sense they did some definitions 
to formalize the object-relational database (ORDB) 
design. Even though, Mok and Paper [20] showed the 
transformation of UML class diagrams into normalized 
nested tables and an algorithm to achieve this goal, they 
did not contribute to any formal procedure for the 
realization of more general mappings. Marcos, Vela, 
Cavero, and Caceres [17] have listed some guidelines 
about the transformation of UML class diagrams into 
objects of the SQL:1999 standard, and then in the Oracle 
8i ORDBMS. The authors provided a short explanation 
on these topics but they did not make a deep analysis. 
The same authors [16], in 2003, presented a design 
methodology for ORDB in which defined stereotypes for 
them and suggested some guidelines to transform a 
UML conceptual model into an object-relational schema. 
The guidelines were based on the SQL:1999 standard 
and Oracle 8i was employed as an example of 
commercial product, though they did not propose a way 
to automate the transformation. Arango, Gómez, and 
Zapata [4] performed the mapping of a class diagram 
into Oracle 9i and showed some mapping rules written 
in set theory. The authors used an Oracle 9i metamodel 
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instead of one based on SQL:2003 standard. Grissa-
Touzi and Sassi [11] have proposed a tool to help in the 
design and implementation of an ORDB called Navig-
tools from which the user can generate the modeling 
code in SQL3 language. The tool was based on the 
entity-relationship modeling. Most of the works 
presented in the literature fail because they do not 
provide consistent transformation formalization such 
that these mappings can be automated by a design 
process which can then be employed to generate a 
toolkit for ORDBMS design. 
 
In this paper, a characterization of the components 
involved in the design of an ORDBMS is made, and 
mapping rules between them have been proposed. The 
idea behind this strategy is to generate a design process 
which can be further automated into a CASE tool. UML 
class diagram metamodel for the conceptual design and 
SQL:2003 standard metamodel for logical schemas are 
considered in this work. The architecture of a CASE tool 
prototype is presented which applies these metamodels 
and mapping functions. MDA (Model Driven 
Architecture) for software design and XML (Extensible 
Markup Language) for the definition and transformation 
models that MDA requires are used. 

2. Object-Relational Design 

In the database design process different data models are 
used for the conceptual, logical and physical 
representation. At the conceptual design level a database 
independent model is generated identifying 
classes/entities, attributes and relationships which 
determine the semantic of data involved in the problem 
domain under study. In this work UML class diagrams 
are selected for this purpose.  For the logical design, the 
element definitions composing the database schema 
must be made, in this sense, the SQL:2003 standard 
specifications are chosen for this work. Since the scope 
of this article does not include the physical 
representation of a database, no model is selected for it.  
As a first step in the characterization, three mapping 
layers are identified (Fig. 1) in the process of 
transforming UML class diagrams to ORDB schema, 
where two mapping steps are involved [9].  
 

 

Fig. 1. Mapping layers involved in the ORDB design 

The mapping layers are characterized as follows: 
UML Class Diagram Layer: includes the conceptual 
model corresponding to the system requirements. It is 
composed of classes, associations, properties, 
association ends, etc. Different types of associations 
between classes can be established: aggregation, 
composition, association itself, hierarchy, association 
class. 
Object-Relational Layer: is composed by the elements 
proposed by SQL:2003 standard: user-defined types, 
structured types, references, row types and collections: 
arrays and multisets. The definitions made on this tier do 
not allow the persistence of any object or “data” until 
tables to store them are created. 
Object-Relational Persistent Layer: is composed by 
tables and typed tables of the objects defined in the 
previous layer.  Some other “relational” elements such 
as constraints, domains, etc., are also components of this 
layer.  
 
In Fig. 1 the mapping from a class diagram to a 
relational database was included in order to show the 
difference between the relational and the object-
relational design. Due to SQL:2003 is a superset of the 
previous SQL standards it has the ability to support pure 
relational transformations (1) or object-relational 
transformations (2 and 3). From Fig. 1 can be observed 
that transformation from UML class diagrams to 
relational designs (tables) involves just one mapping 
step, while the mapping from UML class diagrams to 
object-relational schemas (typed tables) involves two 
step because of the intermediate layer. 

2.1 Metamodels involved in the design 

UML Class Diagram Metamodel 

A metamodel is involved for each mapping layer to get a 
better comprehension of a data model because it 
describes the structure, relationships and semantic of the 
data. The one used on the first tier is depicted in Fig. 2. 
It is a proposal of the class diagram metamodel of UML 
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2.0, based on Object Management Group [23][24]. A 
simplified version with the parts of the metamodel that 
are of interest for this work is used. 
 
Class groups a set of objects with the same 
specifications of characteristics, restrictions and 
semantic. It has attributes represented by instances of 
Property that are owned by the class, and moreover, it 
has Operations. Properties are Structural Features 
which inherits from MultiplicityElement the capacity of 
defining inferior and superior multiplicity bounds 
indicating the cardinalities allowed for classes and 
associations. When a property is instantiated, the values 
of their attributes are related to the instance of a class 
and/or with the instance of an association type.  
 
An Association specifies a semantic relationship that can 
occur between typed instances (in general Class 
instances) and it has at least two ends called association 
ends that indicate the participation of the class in the 
association. The association ends can be navigables 
(Navigable_end) or not navigables 
(Non_navigable_end). 
 
When a property represents an association end 
connecting two classes its values are related with the 
instances of the other end. Association ends have a name 
(rolename) that identifies the function of the class in the 
association; when implemented it allows the navigation 
between objects. According to Rumbaugh, Jacobson, 
and Booch in [22] the rolename on the far side of the 
association is like a pseudoattribute of a class and have 
no independency apart from its association; it can be 
used as a term in an access expression to traverse the 
association. This concept is essential to represent 
associations and make its mappings, as it will be 

explained later. 
 
Finally, an AssociationClass is a statement of a semantic 
relationship between classifiers, with a set of 
characteristics that are owned by the relationship and not 
to the classifiers. The association class can be seen as an 
association that has class properties, or as a class that has 
association properties. 

SQL:2003 Data Type Metamodel 

Metamodels corresponding to the second and third layer 
were proposed by Baroni, Calero, Ruiz, and Abreu in 
[5]. The authors produced a SQL:2003 ontology based 
on the standard information and they separated their 
approach in two parts, one contains the aspects related to 
the data types (Fig. 3) and the other has information 
about the SQL:2003 schema objects: columns, domains, 
tables, constraints and other “relational” components 
corresponding to the persistent third layer (Fig. 4). These 
metamodels have been chosen because they are a state of 
the art representation containing all the elements needed 
for this work. Moreover, the data type metamodel is 
associated to the non-persistent second layer and the 
schema metamodel is related to the persistent third layer 
of the work presented in this paper.  
 
In Fig. 3, it can be seen that there are three different 
kinds of Data Types: Predefined, User Defined Types 
and Constructed Types.  
 
Predefined or simple data types are those such as 
integer, number, character, boolean or large objects 
(LOBs). User Defined Types can be Structured Types 
composed by Attributes; or Distinct Types which are 
defined over a predefined data type. Constructed types 

Fig. 2. First layer: UML class diagram metamodel 
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can be Reference Types that addresses the structured 
types; or Composite Types that are Collection Types 
which can be Arrays or Multisets composed by 
Elements. Row Types are another composite type which 
are in turn composed of Fields.   

SQL:2003 Schema Metamodel 

Fig. 4 shows that there are three different kinds of 
schema objects: Constraints, Domains and Tables. Table 
Constraints includes the definition of primary 
(PrimaryKey), unique (UniqueKey) and foreign keys 
(ReferentialConstraint). Tables can be Derived Tables 
which are those generated through the execution of SQL 
commands (Views generation) or Base Tables simply 
known as “tables”. The latter can be specialized in 
Typed Tables when they are generated from a Structured 
Type of the previous layer. Tables are composed by 
Columns that can be defined over a Domain and can 
have some of the referential constraints before defined. 
 
SQL:2003 introduced new datatypes to the relational 
model, enriching it. That is why the transition from the 
conceptual to the logical model can not be made 
directly, such as in the relational case, in which an 
entity-relationship diagram or a class diagram becomes 
base tables.  

3. Element Characterization 

3.1 UML Class Diagram Layer 

Fig. 5 shows UML class diagram representing the 
administration of purchase orders from a company. This 
model contains all the concepts needed to work out on 
this paper. 
 
In this example, the business has stores in different 
locations having stock of the products it commercializes. 
Business customers can be persons or companies, and 
can be grouped into associations in order to get 
advantage of promotions. Every customer issues 
purchase orders about products they need. 
Although the model is very simple, it contains different 
types of multiplicities and relationships needed to 
achieve the goals of this work. 
While UML class diagrams have several elements for 
modeling, the most commonly used in database schema 
designs are: Classes (C), Attributes (A), Operations (O) 
and Relationships (R) among classes: aggregation (Agg), 
composition (Cm), binary association (BAS), association 
class (AC) and generalization-specialization (GS). 

Fig. 3. Second layer: Data types of the SQL:2003 metamodel 
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The formalization of these elements in order to its 
subsequent transformation into object-relational schemas 
is specified below. 
 

Class 
According to the UML metamodel, a class can be 
characterized by the following expression: 
 
C = (name, isAbstract, properties, operations, 
superclass) 

(1) 

 

where isAbstract is a qualifier to indicate whether the 
class can be instantiated or not. Superclass corresponds 
to the name from which the class inherits properties and 
operations. Operations specify a set of methods the class 

can execute. Properties represent a set of class attributes 
and association ends. Attributes can be simple or 
multivalued. The difference between them is given by 
the multiplicity. A simple attribute has multiplicity of 1, 
while a multivalued can go from 1 to n.  
 
Taking this into account, an attribute can be formally 

Fig. 4. Third layer: SQL schema of the SQL:2003 metamodel 

Fig. 5. Class diagram for a purchase order application 
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defined as: 
 
A = (name, attributeType, multiplicity) (2) 
 
where name is the name assigned to the attribute; 
attributeType is a predefined datatype as: integer, real, 
character, boolean, etc.; and multiplicity is the set of 
possible values an attribute can take. 
 
As was mentioned before, classes are linked to the 
association ends in two different forms. By one side, 
they define the class participation into the association, 
and by the other, they correspond to a pseudoattribute of 
the class. [22] states the association ends have several 
attributes, including a name and navigability. The 
“navigability” indicates whether the association end can 
be used to cross the association from one object to an 
object of the class on the other end. If the association 
ends is navigable, the association defines a 
pseudoattribute of the class that is in the opposite end of 
the association end (rolename) – i.e., the rolename can 
be similarly used to an attribute of the class to get 
values. Therefore, an association end in a class can have 
two different forms: as association end itself or as 
pseudoattribute (Fig. 6). These concepts are essential to 
map relationships between classes. 

 

 

Fig. 6. Pseudoattributes and association ends 

Association ends are formally defined as: 
 (3) 
AEs = (name, isComposite, multiplicity, navigable, 
endType) 

(3) 

 
where name is the name assigned to the association end 
and is equal to the rolename; isComposite is a Boolean 
property that when true states that the association end is 
part of a composition relationship [24]; multiplicity is 
the set of possible values (0 to n) the association end can 
take; navigable is a property indicating whether is 
navigable or not; and endType is a property which can 
take 3 different values:  
i). Aggregate: the end is the “whole” of an aggregation 

relationship 
ii). Composite: the end is the “whole” of a composition 

relationship 
iii). None: the end is not an aggregate or composite 
 
In a similar way, when the association ends are class 
pseudoattributes are defined as follows: 

 

PA = (name, isComposite, multiplicity, 
navigable = ‘Yes’, endType)

(4) 

where name is the rolename assigned to the association 
end of the opposite side. The rest of the PA attributes are 
equal to the AEs. 
 
Taking the expressions 1, 2, 3 and 4 into account, the 
formal definition of a class is given by: 
 
C = (name, isAbstract, A, AEs, PA, O, 
superclass) 

(5) 

where name is the name assigned to the class; isAbstract 
indicates whether the class can be instantiated or not; A 
is the finite set of attributes; AEs is the finite set of the 
navigable association ends; PA is the finite set of the 
pseudoattributes; O is the finite set of operations; and 
superclass is an attribute to indicate the name of the 
superclass when the class participates of a 
generalization-specialization relationship.  
Using the Expression 5, the Purchaseorder class of Fig. 
5 is defined as: 
 
C = (name = ‘Purchaseorder’, isAbstract = ‘No’, A = 
(name = ‘order_number’, attributeType = ‘integer’, 
multiplicity = 1..1),  A = (name = ‘shipping_date’, 
attributeType = ‘date’, multiplicity = 1..1),  A = (name 
= ‘city’, attributeType = ‘string’, multiplicity = 1..1), A 
= (name = ‘street’, attributeType =‘string’, multiplicity 
= 1..1),  A = (name = ‘zip_code’, attributeType = 
‘string’, multiplicity = 1..1), AEs = (name = 
‘orders_mult’, multiplicity = 0..*, isComposite = ‘No’, 
navigable = ‘Yes',  endType = ‘none’), PA = (name = 
‘customer_ref’, multiplicity = 1..1, isComposite = ‘No’, 
navigable = ‘Yes’, endType = ‘none’), PA = (name = 
‘items_arr’, multiplicity = 1..20,  isComposite = ‘Yes’, 
navigable = ‘Yes’, endType = ‘none’), superclass = ‘’) 
 
Aggregation Relationship 
An Aggregation Relationship is a binary association that 
specifies a whole-part type relationship, and it can be 
defined by the following expression: 
 
Agg = (name, AEs) (6) 

where name is the name assigned to the aggregation; 
AEs are the association ends, navigables or not, that link 
the whole with the part. These association ends are 
defined like the Expression 3.  
 
In the aggregation a part may belong to more than a 
whole, and can exists independently of this. This feature 
is very important to distinguish the aggregation to the 
composition, which is a stronger whole-part relationship. 
Another aggregation feature is that it has no cycles, i.e. 
an object can not directly or indirectly be part of itself 
[22]. 
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Following the Expression 6, the aggregation relationship 
between Customer and CustomerAssociation can be 
defined as: 
 
Agg = (name = ‘Customer_Custassoc’, AEs = (name = 
‘custassoc_ref’, multiplicity = 1..1, isComposite = ‘No’, 
navigable = ‘Yes’, endType = ‘aggregate’), AEs = 
(name = ‘customers_arr’, multiplicity = 2..15, 
isComposite = ‘No’, navigable = ‘Yes’, endType = 
‘none’)) 
 
Composition Relationship 
A Composition Relationship is an association that 
specifies a whole-part type relationship, but this 
relationship is stronger than the aggregation due to the 
part life depends on the whole existence. The part must 
belong to a unique whole [22]. Furthermore, in a 
composition relationship the data flow generally in only 
one direction, from the whole to the part. 
Taking this into account, a composition relationship is 
formally expressed as: 
 
Cm = (name, AEs) (7) 
 
where name is the name assigned to the composition; 
AEs are the navigable association ends, corresponding to 
the part. These association ends are defined like the 
Expression 3. In respect of the multiplicity, the one of 
the whole will always be of 1, while the one of the part 
can take any value from 0 to n. 
 
In accordance with the formalized in the Expression 7, 
the composition relationship definition is: 
 
Cm = (name = ‘Purchaseorder_Orderlineitem’, AEs = 
(name = ‘items_arr’, multiplicity = 1..20, isComposite = 
‘Yes’, navigable = ‘Yes’, endType = ‘none’)) 
 
Binary Association Relationship 
Associations are links between two or more entities. A 
Binary Association is a special one having exactly two 
association ends. It is particularly useful in order to 
specify navigability path among objects [22]. 
A binary association can be formally defined as follows: 
 
BAs = (name, AEs) (8) 
 
where name is the name assigned to the association; AEs 
are the association ends, navigables or not,  linking 
classes which particpates in the association. The 
association ends are defined like the Expression 3.  
The definition of the Purchaseorder_Customer 
association is written as follows: 
 
BAs = (name = ‘Purchaseorder_Customer’, AEs = 
(name = ‘customer_ref’, multiplicity = 1..1, isComposite 
= ‘No’,  navigable = ‘Yes’, endType = ‘none’), AEs = 
(name = ‘orders_mult’, multiplicity = 0..*, isComposite 
= ‘No’,  navigable = ‘Yes’,  endType = ‘none’)) 

Association Class Relationship 
An Association Class has both association and class 
properties. Its instances have attributes values and also 
references to the class objects linked by the association. 
It is not possible to link an association class to more than 
one association, because it contains a set of specific 
properties of the association to which it belongs [6]. As a 
consequence, the association class never participates of 
generalization-specialization relationships and can not 
be an abstract class. The introduced concepts related 
with the association class are depicted in Fig. 7. 
 

 

Fig. 7. Association class 

[22] states that an association class can be seen as a class 
with extra references to the classes participating in the 
association to which it belongs. According to [23] the 
multiplicity of the extra references is 1. Those references 
to the objects of the other classes become the association 
class pseudoattributes. Due to association class has no 
key it can not be accessed directly but through the other 
classes participating in the association. These classes 
relate to each other by means of the association class. 
Due to these characteristics, it is necessary to rectify its 
representation in order to automate the mapping. Fig. 8 
shows the rectification, where stock_arr and stock_mult 
are now association ends of Stock and new association 
ends (product_ref and store_ref) are added to Product 
and Store to specify the extra references. With this 
representation the association class can be treated as a 
class having the particularities mentioned before. 
 

 

Fig. 8. Association class treatment 

In the rectified form, Product, Stock and Store have a 
complete set of association ends and pseudoattributes, 
which facilitate the mapping.  
Therefore, an association class is defined as follows: 

AC = (name, isAbstract = ‘No’, A, AEs, PA, O, 
superclass = ‘’) 

(9) 

 
where name is the name assigned to the association 
class; A is the finite set of simples and multivalued 
attributes, corresponding to the relationship itself; O is 
the finite set of operations for the association class; AEs 
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are the navigable association ends that link the 
association class with the classes participating in the 
association to which it belongs; and PA is the finite set 
of the pseudoattributes of the association class. 
According to Fig. 8 the association class is defined using 
the expressions 3, 4 and 9, as follows: 
 
AC = (name = ‘Stock’, isAbstract =‘No’ A = (name = 
‘quantity’, attributeType = ‘integer’, multiplicity = 1..1), 
A = (name = ‘date’, attributeType = ‘date’, multiplicity 
= 1..1), AEs = (name = ‘stock_arr’, multiplicity = 1..15, 
isComposite = ‘No’, navigable = ‘Yes’, endType = 
‘none’), AEs = (name = ‘stock_mult’, multiplicity = 
0..*, isComposite = ‘No’, navigable = ‘Yes’, endType = 
‘none’), PA = (name = ‘product_ ref’', multiplicity = 
1..1, navigable = ‘Yes’), PA = (name = ‘store_ref’, 
multiplicity = 1..1, navigable = ‘Yes’), superclass = ‘’) 
 
Generalization-Specialization Relationship 
A Generalization-Specialization Relationship is a 
taxonomic relationship between a more general element 
(called the superclass) and a more specific one (called 
the subclass). Subclasses inherit the properties from 
superclasses, but also have additional properties that are 
peculiar to it [22]. 
In order to specify a relationship of this type when the 
class is defined it must be specified the superclass from 
which it inherits (Expression 1).  

3.2 The Object-Relational Layer 

For the characterization of the SQL:2003 metamodel 
components the elements closely related to the mappings 
needed for this work are considered. These elements are: 
 Distinct type 
 Row type 
 Reference type 
 Collection types: Arrays and Multiset 
 Structured types 
The definitions made over this layer do not allow the 
persistence of any object until table creation. 

 
Distinct Type 
A Distinct Type is the simplest kind of user-defined 
type. It is defined over a predefined data type. 
 
DT = (name, type) (10) 
 
where name is the name assigned to the distinct type; 
and type is a predefined data type such as integer, real, 
character, LOB, etc., over which is defined. 
 
Row Type 
A Row Type is defined as a set of pairs: 
 
RT = (Fi : DTi) (11) 
 
where Fi = F1, F2;…, Fn is the name of a field in the row 
type; and DTi = DT1, DT2,…, DTn is a predefined data 

type such as integer, real, character, LOB, etc. 
 
Reference Type 
A Reference Type is a datatype that contains a value that 
reference an object corresponding to a structured type. 
This datatype is defined as: 
 
Ref = Ref(ST) (12) 
 
where ST indicates the referenced structured type. 
 
Collection Type 
Array 
An Array is an ordered collection of elements of any 
admissible type, except another array, and it has a 
maximum length. An array is defined as follows: 
 
Arr = (eType, MQ) (13) 
 
where eType is the type of element of the array and it 
can be a row type, a reference type, an structured type or 
a predefined type; and MQ is the maximum number of 
elements of the array. 
 
Multiset 
A Multiset is an unordered collection of elements of any 
admissible type. It has no a maximum length specified. 
A multiset is defined as: 
 
Mult = (eType) (14) 
 
where eType is the type of element the collection can 
have and it can be a row type, a reference type, an 
structured type or a predefined type. 
 
Structured Type 
The essential component of SQL:2003 that supports the 
object orientation is the Structured Type. The 
“structured” word distinguishes it from the distinct type 
that is also a user defined type, which is based on the 
predefined types and does not have an associated 
structure. 
 
Structured types have attributes of different types, 
behavior, and can be inherited by other structured types, 
between other characteristics.  
Note that SQL:2003 structured type is the equivalent 
concept of a UML class. 
The structured type can be defined as: 
 
ST = (name, A, M, P) (15) 
 
where name is the name assigned to the structured type; 
A is a finite set of attributes; M is a finite set of methods; 
and P is a finite set of properties. 
 
An attribute of a structured type (Expression 15) can be 
simple or a collection. If it is simple, it can be defined as 
follows: 
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A = (name, type) (16) 
 
where name is the name assigned to the attribute; and 
type can be any of the standard defined types: 
predefined, structured, distinct, row and/or reference 
types. 
If it is a collection type, it is defined like in the 
expressions 13 and 14. 
With respect to the properties of the Expression 15, they 
are formally defined as: 
 
P = (inheritFrom, isInstantiable, isFinal) (17) 
 
where inheritFrom is a property that indicates the name 
of the structured type corresponding to the supertype 
from which it inherits; isInstantiable specifies whether 
the type can have instances or not; and isFinal indicates 
whether the type can have subtypes or not. 

3.3 The Object-Relational Persistent Layer 

The object-relational persistent layer is not a physical 
layer but is a logical representation of how data are 
represented. It takes the form of a table in the object-
relational technology as well as in the relational system. 
Unlike the latter, in the object-relational databases the 
columns are not restricted to predefined data types. 
As was mentioned above, only the typed tables of the 
SQL:2003 metamodel are taken into account since they 
are employed to store objects of a specific structured 
type. 
 
Typed Tables 
A Typed Table can be defined as:  
 
TT = (name, ST, R) (18) 
 
where name is the name assigned to the table; ST is the 
structured type from which is created the table; and R is 
the finite set of restriction definitions such as primary, 
unique and/or foreign key, not null and/or check type 
restrictions. 
 
Typed tables provide persistence and identity to objects 
created from a structured type. Moreover, they 
automatically map structured type attributes into typed 
table columns. 
The primary and unique key definitions must be 
considered at this point because they 
define the access paths to the objects; the query 
optimizer can take advantage to execute a query from 
these definitions. 

4. Transformations to obtain Object-
Relational Schemas 

For object-relational databases there is not a consensus 
in a technique or methodology to transform conceptual 
model into a logical schema. This section propose all 

mappings needed to obtain an object-relational database 
schemas complying with SQL:2003 specifications. 
These are formalized such that they can be performed 
without ambiguity and in an automatic way.  For the 
sake of clarity, this section is split in 2 parts: 
 Mappings from the UML Class Diagram to Object-

Relational layer 
 Mappings from the Object-Relational to Object-

Relational Persistent layer 
 
Transformations between the layers are formalized by 
means of mapping functions of the f:AB form. A 
Mapping function f from A to B is a binary relationship 
between A and B. It can be seen as a transformation of 
the elements of A into elements of B. Therefore, every 
element of A becomes exactly one element in B. 

4.1 Mappings from the UML Class Diagram to 
Object-Relational Layer 

UML class formal definition contains all the elements 
required to be transformed into the middle layer (object-
relational layer). Having this concept in mind, mappings 
to transform components from UML class diagrams into 
object-relational layer are centered in the following 
elements: 
 Attributes 
 Pseudoattributes 
 Operations 
 Generalization-Specialization Relationships 
 Classes 
 Association Class 
 
Attribute Transformation 
Class attributes are transformed into structured type 
attributes by means of the following mapping function: 
 
f:AC(name, attributeType, multiplicity)  
AST(name, type) 

(19) 

 
For the sake of clarity in the previous mapping function, 
class attributes and the structured type attributes are 
indicated with the subscript “C” and “ST”, respectively. 
When the attribute multiplicity is 1, the attributeType of 
the class will match with the type of the structured type. 
SQL:2003 standard uses the collection types to represent 
attributes with multiplicity greater than 1, which may 
optionally have an upper and lower limit indicating the 
number of possible values. However, collection types 
can not be used arbitrarily, but they must fulfill some 
conditions to be correct. These restrictions apply not 
only to represent multivalued attributes, but also to 
extend to other kinds of transformations.  
 If the attribute multiplicity is 1 it is a single 

attribute, then, the mapping function is the 
following: 

 
f:AC(name, attributeType, 1..1)  
AST(name, type = eType) 

(20) 
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 If lower and upper limits are well known, then an 
array should be used with a specific length; it 
eventually it may grow if it is necessary. 
 
f:AC(name, attributeType, 1..n)  
AST(name, type = Arr(eType, n)) 

(21) 

 
In the previous expression Arr stands for array; 
eType represents the attribute type of the element 
composing the array and n its length. 
 

 If the upper and lower limits are not defined, a 
multiset must be used because this collection type 
does not limit the values to store. 

 
f:AC(name, attributeType, 1..*)  AST(name, 
type = Mult(eType)) 

(22
) 

 
In the previous expression Mult stands for multiset; 
eType corresponds to the element type composing it. 
 
In all the previous cases the type of eType matches the 
type of attributeType of the class. 
 
Pseudoattribute Transformation 
When a class participates in a relationship (association, 
aggregation, composition, association class) and it has 
navigable ends, these can be considered as 
pseudoattributes of the class presented in the opposite 
side of the relationship. These ends involve a 
multiplicity, a navigability and a type, among others 
properties.  
Pseudoattributes become crucial in the transformation of 
class relationships. Mapping functions are generated 
with the objective of preserving relationship semantic, as 
follows: 
 If the pseudoattribute is not composite (isComposite 

= ‘No’) and its endType property is “none” or 
“aggregate”, it is transformed using references, 
having into account its multiplicity. 
o If the multiplicity is 1, it is transformed into a 

reference type single attribute. 
 

f:PA(name, multiplicity = 1..1, 
isComposite = ‘No’, navigable = ‘Yes’, 
endType = ‘none’/‘aggregate’) 
AST(name, type = Ref(OST)) 

(23) 

 
where OST is the opposite structured type of the 
relationship. 

 
o If the multiplicity is defined and it has a 

maximum of n, it is transformed into an array 
of reference types of length n. 

 
f:PA(name, multiplicity = 1..n, 
isComposite = ‘No’, navigable = ‘Yes’, 
endType = ‘none’/‘aggregate’) 
AST(name, type = Arr(Ref(OST), n)) 

(24) 

o If the multiplicity is undefined (specified by an 
*) it is transformed into a multiset of reference 
types. 

 
f:PA(name, multiplicity = 1..*, 
isComposite = ‘No’, navigable = ‘Yes’, 
endType = ‘none’/‘aggregate’) 
AST(name, type = Mult(Ref(OST)))  

(25) 

 
 If the pseudoattribute is composite (isComposite = 

‘Yes’) and its endType property is “none”, then the 
pseudoattribute represents the association end 
corresponding to the part of a composition 
relationship, and it is transformed into a structured 
type embedded into the structured type of the 
whole. It must also be considered the multiplicity of 
the pseudoattribute, as follows: 

 
o If the multiplicity is of 1, the pseudoattribute is 

transformed as an attribute of the structured 
type corresponding to the part. 

 
f:PA(name, multiplicity = 1..1, 
isComposite = ‘Yes’, navigable = 
‘Yes’, endType = ‘none’) AST(name, 
type = OST)  

(26) 

 
o If the multiplicity has a maximum of n, it is 

transformed into an array of length n of the 
structured type of the part. 

 
f:PA(name, multiplicity = 1..n, 
isComposite = ‘Yes’, navigable = 
‘Yes’, endType = ‘none’) AST(name, 
type = Arr(OST, n))  

(27) 

 
o If the multiplicity is undefined (*), it is 

transformed into a multiset of structured types. 
 

f:PA(name, multiplicity = 1..*, 
isComposite = ‘Yes’, navigable = 
‘Yes’, endType = ‘none’) AST(name, 
type = Mult(OST))  

(28) 

 
For the previous cases, OST is the opposite structured 
type of the relationship corresponding to the part of the 
composition relationship. 

 
Pseudoattributes whose eType property is “composite” 
represent the whole of a composition relationship. In 
agreement with the definition the whole of a 
composition is not navigable. Therefore, 
pseudoattributes of type before mentioned are not 
converted into the object-relational layer. 
 
Operation Transformation 
The description of class operations and its subsequent 
mapping need to disaggregate their components and a 
more detailed study than the presented here. Its 
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treatment is performed in a simple manner because its 
analysis goes beyond the scope of this article. Having 
this issue into account, the UML operations are 
transformed into methods of the structured types by 
means of the following function: 
 
f:O  M (29) 
 
where O is a finite set of operations; and M is a finite set 
of methods. 
 
Generalization - Specialization Relationship 
Transformation 
In the UML class diagram as well as in the object-
relational layer generalization - specialization 
relationships are specified by means of qualifiers 
(isAbstract, superclass, inheritFrom, isInstantiable). The 
transformation of this relationship type is made using 
those ones. The mapping function defined to the 
generalization-specialization relationship is: 
 
f:C(name, isAbstract = ‘No’,… , superclass = 
‘superclass_name’)  ST(name,…, isInstantiable 
= ‘Yes’, inheritFrom = ‘supertype_name’)  

(30) 

 
Class Transformation 
Classes of the UML diagram of the conceptual design 
are mapped into a structured type the object-relational 
technology. 
 
f:C(name, isAbstract, A, AEs, PA, O, superclass) 
 ST(name, isInstantiable,  A, M, inheritFrom)  

(31) 

 
The transformation of each class component was 
previously described. Note that attributes and 
pseudoattributes of a class are transformed into attributes 
of the structured type. 
 
Association Class Transformation 
The mapping of an association class is similar to the one 
defined for a class. Hence, attributes, pseudoattributes 
and operations are transformed in the same way. The 
difference is on the fact that an association class can not 
participate of generalization-specialization relationships. 
 
f:AC(name, A, PA, O)  ST(name, A, M)  (32) 

4.2 Mappings from the Object-Relational to the 
Object-Relational Persistent Layer 

Once the object-relational elements are obtained typed 
tables must be defined in order to provide persistence to 
the objects. For this purpose, every structured type of the 
object-relational layer is transformed into a typed table 
of the object-relational persistence layer. This mapping 
function is defined as follows: 
 
f:ST  TT(name, ST) (33) 
 

where name indicates the name assigned to the typed 
table; and ST specifies the structured type which origins 
it. 
 
To complete the mapping of this layer, the designer must 
enter additional information which is not included in the 
metamodels of the previous ones. The first case is 
related with table restrictions (primary key, unique key, 
not null restrictions, check type restrictions, etc.), which 
do not have an equivalent neither UML class diagram 
nor object-relational layer. The other one corresponds to 
the transformation of generalization-specialization 
relationships from the object-relational layer to typed 
tables. In the latter, the user must choose the mapping 
from the three different possibilities that exist: 
 Flat Model: this model includes the definition of a 

single table for the whole hierarchy. It must create a 
typed table for the supertype, with the 
substitutability property that enables the storage of 
subtypes in the same supertype table. 

 Vertical Partition: in this mapping a typed table for 
every class in the hierarchy is created. The 
substitutability property is removed, so only the 
appropriated structured types can be stored in those 
tables. 

 Horizontal Partition: in this transformation typed 
tables for subtypes are created, translating all 
supertype attributes to them. The substitutability 
property is removed. 

5. Automation of Database Design Process 

The automation proposal presented in this paper is based 
on MDA and XML. The Model Driven Architecture [21] 
was originated in response to the new technology 
advances, diversity of system exploitation platforms and 
business model continuous changes. MDA decouples the 
functional specification from the implementation 
specification of that functionality for a specific platform. 
It proposes a development process based on the 
realization and transformation of the models. The 
principles on which MDA is based are abstraction, 
automation and standardization. Those are the main 
reasons to select MDA for the ORDB automation 
process. 
The models used by MDA are classified into: 
 Platform Independent Models (PIM): are models 

with a high level of abstraction, independents of any 
implementation technology. The UML class 
diagram metamodel is the PIM of this work. 

 Platform Specific Models (PSM): combine 
specifications of the platform independent model 
with the details of a specific platform. The PSM of 
this work is related with SQL:2003. 
  

The MDA framework allows the application 
development on any open or proprietary platform. To 
achieve this goal, the development process of MDA 
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starts from the requirements of an application (Platform 
Independent Model) which is then transformed into one 
or more Platform Specific Models which are finally 
converted into code (Fig. 9). 
 

 

Fig. 9. Development process in MDA 

On the other hand, XML has also a number of 
advantages for application development that justifies its 
use for the automation process of ORDB schemes. These 
are:  
 It is a formal and concise language, from the point 

of view of the data and the way of storing them. 
 It is extensible, which means that once the structure 

of a document was designed and put into 
production, it is possible to extend it with the 
addition of new tags, allowing the model evolution. 

 It is expressive, its files are easy to read and edit. If 
a third person chooses to use a 
document created in XML, it is easy to understand 
its structure and process it, which improves the 
compatibility among applications. 

 There are commercial and free tools that facilitate 
its implementation, programming and the 
production of different systems. 

 
The XML schema definition language [26] has become a 
dominant technology to describe the type and the 
structure of XML documents. This capability makes it 
appropriate for the definition of the metamodels used in 
this work. XML schemas provide the basic infrastructure 
for building interoperable systems because they provide 
a common language for the XML document description. 
The specification of the XML transformations (XSLT) 
defines a language for expressing rules which allows 
transforming an XML document into another. XSLT 
[14] has many of the traditional constructors of the 
programming languages, including variables, functions, 
iterators and conditional sentences, so XSLT can be 
thought as a programming language. Furthermore, 
XSLT documents are also useful as general purpose 
language to express transformations from an XML 
schema to another. In fact, the use of XSLT documents 
can be imagined as an XML translation engine, so this 
technology was selected for this, for the implementation 
of mapping rules. 

5.1 Transformation Methodology Architecture 

The architecture to perform the model transformation is 

depicted in Fig. 10. 
 

 

Fig. 10. Transformation methodology architecture 

The architecture is based on different abstraction levels 
[10]:  
 Metamodel Level:  contains XML schemas 

generated for the three metamodels used for the 
transformations:  UML class diagramas, SQL:2003 
Data Types and SQL:2003 Schema. Besides, XSLT 
transformation rules between the XML schemas are 
defined in this level. 

 Model Level: contains the XML documents 
fulfilling the XML Schemas defined in the 
metamodel level. The first XML document 
complying with the UML metamodel represents the 
hierarchical and structured information of the 
application. Mappings from one XML document to 
another are performed executing the XSLT rules 
defined in the metamodel level. 

 Data Level: this level contains the input and output 
of the model level. The UML class diagram 
corresponding to the application requirements is the 
input while the output is the code of the object-
relational database schema. 

 
The transformation method starts with the definition of 
the application UML class diagram which is converted 
into an XML document complying with the 
corresponding XML Schema after that. Mapping rules 
defined between the UML and the SQL:2003 data types 
metamodels are then executed.  The XML document of 
the SQL:2003 data type obtained in the previous step is 
converted into a XML document fulfilling the SQL:2003 
schema executing the XSLT rules defined between 
them. Finally, a Java code generates the object-relational 
database script having this last XML document as input.  
 
This architecture was implemented in a tool prototype 
employing the Altova XMLSpy tool [2]. It provides a 
flexible and efficient environment to create and edit 
XML schemas and XML files. For writing the rules in 
XSLT language a graphical interface of Altova 
MapForce [1] was used. MapForce has a complete set of 
graphic functions that allows an easy writing, 
modification and deletion of the rules, providing a great 
flexibility and modificability of the transformations. 
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6. Conclusions 

Nowadays, there are several commercial tools which 
automate relational database design (ToadTM Data 
Modeler, DB Designer4, DatabaseSpy), but it is not the 
case for object-relational ones. The reason for this 
situation is that does not exist a standard methodology 
accepted in the database community. This paper 
describes a method to overcome this gap. First, three 
mapping layers for the object-relational database design 
process were defined: UML class diagram layer, object-
relational layer and object-relational persistent layer. 
This is a novel aspect of this work because it represents 
a difference respect of other works proposed in the 
literature. A metamodel is used and adapted for each 
layer, for the conceptual design, the UML class diagram 
metamodel; for the logical design, the SQL:2003 
metamodel, split in two parts: datatypes and schema. A 
detailed description of the elements composing the 
metamodels was made superseding other works 
proposed in the open literature. A key issue in the 
characterization of the UML class diagram is the 
distinction of association ends participating as 
pseudoattributes of the classes. This concept facilitates 
the mapping definition for associations between classes.  
Mapping functions between metamodels were proposed 
and formalized by means of f:AB type expressions. In 
this article, the most common transformation set 
between the UML class diagrams and the object-
relational databases is presented. 
The automation of the ORDB design process is 
addressed with an architecture based on the MDA 
specification and the XML technology. MDA is selected 
because is the indicated technology for model-based 
software design. The platform independent model (PIM) 
is represented by the UML class diagram metamodel and 
platform specific models (PSM) are composed by the 
SQL:2003 metamodels. The architecture has different 
levels of abstraction: metamodels, models and data. 
These specifications separate the functionalities 
facilitating the transformation rule generation.  
The architecture implementation was made using XML 
technology: XML schemas for the metamodel 
definitions, XSLT rules for transforming the schemas, 
and XML documents that represent the structured 
information of the application complying with the XML 
schemas. The use of the XML technology facilitates the 
reading, understanding, modifying, testing and fixing the 
tool for ORDB design.   
For future work, properties and the impact that present 
the inclusion of the behavior in the first steps of the 
design, and its next mapping to the object-relational 
model, will be investigated with the objective of 
completing the design and the case tool implementation. 
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