
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 9

Fundamentals for the Automation of

Object-Relational Database Design

María Fernanda Golobisky1 and Aldo Vecchietti1

 1 INGAR – UTN, Facultad Regional Santa Fe
Santa Fe, S3002GJC, Argentina.

Abstract
In the market there is a wide amount of CASE tools for the
design of relational databases. Object-relational database
management system (ORDBMS) emerged at the end of the
90’s to incorporate the object technology into the relational
databases, allowing the treatment of more complex data and
relationships than its predecessor. The design for this database
model is not straightforward. Most of the works proposed in
the literature fail because they do not provide consistent
transformation formalization such that the mappings from the
conceptual model to the logical schema can be automated to
generate an ORDB design toolkit. This is one of the goals of
this paper. For this purpose, UML class diagram metamodel
for the conceptual design and SQL:2003 standard metamodel
for logical schemas are considered. A characterization of the
components involved in the ORDB design is made in order to
propose mapping rules that can be further automated. The
architecture of a CASE tool prototype is presented. Model
Driven Architecture for software design and XML for the
model definitions and transformations are employed.
Keywords: ORDBMS, SQL:2003, UML, database design,
MDA, XML.

1. Introduction

Databases are a crucial component of information
systems playing a strategic role in the support of the
organization decisions; its design is essential to obtain
an efficient and effective information system
management. Database design process consists in
defining the conceptual, logical and physical structure of
the schema. The logical design of a database is obtained
by transforming the conceptual one. For large projects
conceptual database models are complex making its
transformation a non-trivial task. In order to perform this
work, it is important to count with a CASE tool based on
a specific design methodology such that the designer can
concentrate his work making decisions among different
mapping possibilities the CASE tool has.
Nowadays, the relational databases are the most widely
used. In this model, the conversion from the conceptual
to the logical representation is directly made following
perfectly defined steps [7]. Because of this, in the market
there is a wide amount of CASE tools for relational
databases, such as ToadTM Data Modeler [26], DB

Designer4 [8], DatabaseSpy [3], among others, which
offer the possibility of drawing a conceptual model as an
entity-relationship diagram and automatically
transforming it into the logical schema.

Object-relational database management system
(ORDBMS) and its standards [18][19][12][13] emerged
at the end of the 90’s to incorporate the object
technology into the relational databases, allowing the
treatment of more complex data and relationships than
its predecessor. Till the moment, to the knowledge of
these authors, there is not a CASE tool that performs the
same task for an ORDBMS. The lack of software design
tools in this particular database model is because it does
not exists a design method widely accepted in the IT
community feasible to be automated in a CASE tool.
Several works related to this matter can be found in the
literature. Liu, Orlowska, and Li [15] have presented a
proposal to implement object-relational databases using
distributed database system architecture. Although the
SQL:1999 standard was not complete at this time, their
work was valuable in the sense they did some definitions
to formalize the object-relational database (ORDB)
design. Even though, Mok and Paper [20] showed the
transformation of UML class diagrams into normalized
nested tables and an algorithm to achieve this goal, they
did not contribute to any formal procedure for the
realization of more general mappings. Marcos, Vela,
Cavero, and Caceres [17] have listed some guidelines
about the transformation of UML class diagrams into
objects of the SQL:1999 standard, and then in the Oracle
8i ORDBMS. The authors provided a short explanation
on these topics but they did not make a deep analysis.
The same authors [16], in 2003, presented a design
methodology for ORDB in which defined stereotypes for
them and suggested some guidelines to transform a
UML conceptual model into an object-relational schema.
The guidelines were based on the SQL:1999 standard
and Oracle 8i was employed as an example of
commercial product, though they did not propose a way
to automate the transformation. Arango, Gómez, and
Zapata [4] performed the mapping of a class diagram
into Oracle 9i and showed some mapping rules written
in set theory. The authors used an Oracle 9i metamodel

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 10

instead of one based on SQL:2003 standard. Grissa-
Touzi and Sassi [11] have proposed a tool to help in the
design and implementation of an ORDB called Navig-
tools from which the user can generate the modeling
code in SQL3 language. The tool was based on the
entity-relationship modeling. Most of the works
presented in the literature fail because they do not
provide consistent transformation formalization such
that these mappings can be automated by a design
process which can then be employed to generate a
toolkit for ORDBMS design.

In this paper, a characterization of the components
involved in the design of an ORDBMS is made, and
mapping rules between them have been proposed. The
idea behind this strategy is to generate a design process
which can be further automated into a CASE tool. UML
class diagram metamodel for the conceptual design and
SQL:2003 standard metamodel for logical schemas are
considered in this work. The architecture of a CASE tool
prototype is presented which applies these metamodels
and mapping functions. MDA (Model Driven
Architecture) for software design and XML (Extensible
Markup Language) for the definition and transformation
models that MDA requires are used.

2. Object-Relational Design

In the database design process different data models are
used for the conceptual, logical and physical
representation. At the conceptual design level a database
independent model is generated identifying
classes/entities, attributes and relationships which
determine the semantic of data involved in the problem
domain under study. In this work UML class diagrams
are selected for this purpose. For the logical design, the
element definitions composing the database schema
must be made, in this sense, the SQL:2003 standard
specifications are chosen for this work. Since the scope
of this article does not include the physical
representation of a database, no model is selected for it.
As a first step in the characterization, three mapping
layers are identified (Fig. 1) in the process of
transforming UML class diagrams to ORDB schema,
where two mapping steps are involved [9].

Fig. 1. Mapping layers involved in the ORDB design

The mapping layers are characterized as follows:
UML Class Diagram Layer: includes the conceptual
model corresponding to the system requirements. It is
composed of classes, associations, properties,
association ends, etc. Different types of associations
between classes can be established: aggregation,
composition, association itself, hierarchy, association
class.
Object-Relational Layer: is composed by the elements
proposed by SQL:2003 standard: user-defined types,
structured types, references, row types and collections:
arrays and multisets. The definitions made on this tier do
not allow the persistence of any object or “data” until
tables to store them are created.
Object-Relational Persistent Layer: is composed by
tables and typed tables of the objects defined in the
previous layer. Some other “relational” elements such
as constraints, domains, etc., are also components of this
layer.

In Fig. 1 the mapping from a class diagram to a
relational database was included in order to show the
difference between the relational and the object-
relational design. Due to SQL:2003 is a superset of the
previous SQL standards it has the ability to support pure
relational transformations (1) or object-relational
transformations (2 and 3). From Fig. 1 can be observed
that transformation from UML class diagrams to
relational designs (tables) involves just one mapping
step, while the mapping from UML class diagrams to
object-relational schemas (typed tables) involves two
step because of the intermediate layer.

2.1 Metamodels involved in the design

UML Class Diagram Metamodel

A metamodel is involved for each mapping layer to get a
better comprehension of a data model because it
describes the structure, relationships and semantic of the
data. The one used on the first tier is depicted in Fig. 2.
It is a proposal of the class diagram metamodel of UML

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 11

2.0, based on Object Management Group [23][24]. A
simplified version with the parts of the metamodel that
are of interest for this work is used.

Class groups a set of objects with the same
specifications of characteristics, restrictions and
semantic. It has attributes represented by instances of
Property that are owned by the class, and moreover, it
has Operations. Properties are Structural Features
which inherits from MultiplicityElement the capacity of
defining inferior and superior multiplicity bounds
indicating the cardinalities allowed for classes and
associations. When a property is instantiated, the values
of their attributes are related to the instance of a class
and/or with the instance of an association type.

An Association specifies a semantic relationship that can
occur between typed instances (in general Class
instances) and it has at least two ends called association
ends that indicate the participation of the class in the
association. The association ends can be navigables
(Navigable_end) or not navigables
(Non_navigable_end).

When a property represents an association end
connecting two classes its values are related with the
instances of the other end. Association ends have a name
(rolename) that identifies the function of the class in the
association; when implemented it allows the navigation
between objects. According to Rumbaugh, Jacobson,
and Booch in [22] the rolename on the far side of the
association is like a pseudoattribute of a class and have
no independency apart from its association; it can be
used as a term in an access expression to traverse the
association. This concept is essential to represent
associations and make its mappings, as it will be

explained later.

Finally, an AssociationClass is a statement of a semantic
relationship between classifiers, with a set of
characteristics that are owned by the relationship and not
to the classifiers. The association class can be seen as an
association that has class properties, or as a class that has
association properties.

SQL:2003 Data Type Metamodel

Metamodels corresponding to the second and third layer
were proposed by Baroni, Calero, Ruiz, and Abreu in
[5]. The authors produced a SQL:2003 ontology based
on the standard information and they separated their
approach in two parts, one contains the aspects related to
the data types (Fig. 3) and the other has information
about the SQL:2003 schema objects: columns, domains,
tables, constraints and other “relational” components
corresponding to the persistent third layer (Fig. 4). These
metamodels have been chosen because they are a state of
the art representation containing all the elements needed
for this work. Moreover, the data type metamodel is
associated to the non-persistent second layer and the
schema metamodel is related to the persistent third layer
of the work presented in this paper.

In Fig. 3, it can be seen that there are three different
kinds of Data Types: Predefined, User Defined Types
and Constructed Types.

Predefined or simple data types are those such as
integer, number, character, boolean or large objects
(LOBs). User Defined Types can be Structured Types
composed by Attributes; or Distinct Types which are
defined over a predefined data type. Constructed types

Fig. 2. First layer: UML class diagram metamodel

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 12

can be Reference Types that addresses the structured
types; or Composite Types that are Collection Types
which can be Arrays or Multisets composed by
Elements. Row Types are another composite type which
are in turn composed of Fields.

SQL:2003 Schema Metamodel

Fig. 4 shows that there are three different kinds of
schema objects: Constraints, Domains and Tables. Table
Constraints includes the definition of primary
(PrimaryKey), unique (UniqueKey) and foreign keys
(ReferentialConstraint). Tables can be Derived Tables
which are those generated through the execution of SQL
commands (Views generation) or Base Tables simply
known as “tables”. The latter can be specialized in
Typed Tables when they are generated from a Structured
Type of the previous layer. Tables are composed by
Columns that can be defined over a Domain and can
have some of the referential constraints before defined.

SQL:2003 introduced new datatypes to the relational
model, enriching it. That is why the transition from the
conceptual to the logical model can not be made
directly, such as in the relational case, in which an
entity-relationship diagram or a class diagram becomes
base tables.

3. Element Characterization

3.1 UML Class Diagram Layer

Fig. 5 shows UML class diagram representing the
administration of purchase orders from a company. This
model contains all the concepts needed to work out on
this paper.

In this example, the business has stores in different
locations having stock of the products it commercializes.
Business customers can be persons or companies, and
can be grouped into associations in order to get
advantage of promotions. Every customer issues
purchase orders about products they need.
Although the model is very simple, it contains different
types of multiplicities and relationships needed to
achieve the goals of this work.
While UML class diagrams have several elements for
modeling, the most commonly used in database schema
designs are: Classes (C), Attributes (A), Operations (O)
and Relationships (R) among classes: aggregation (Agg),
composition (Cm), binary association (BAS), association
class (AC) and generalization-specialization (GS).

Fig. 3. Second layer: Data types of the SQL:2003 metamodel

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 13

The formalization of these elements in order to its
subsequent transformation into object-relational schemas
is specified below.

Class
According to the UML metamodel, a class can be
characterized by the following expression:

C = (name, isAbstract, properties, operations,
superclass)

(1)

where isAbstract is a qualifier to indicate whether the
class can be instantiated or not. Superclass corresponds
to the name from which the class inherits properties and
operations. Operations specify a set of methods the class

can execute. Properties represent a set of class attributes
and association ends. Attributes can be simple or
multivalued. The difference between them is given by
the multiplicity. A simple attribute has multiplicity of 1,
while a multivalued can go from 1 to n.

Taking this into account, an attribute can be formally

Fig. 4. Third layer: SQL schema of the SQL:2003 metamodel

Fig. 5. Class diagram for a purchase order application

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 14

defined as:

A = (name, attributeType, multiplicity) (2)

where name is the name assigned to the attribute;
attributeType is a predefined datatype as: integer, real,
character, boolean, etc.; and multiplicity is the set of
possible values an attribute can take.

As was mentioned before, classes are linked to the
association ends in two different forms. By one side,
they define the class participation into the association,
and by the other, they correspond to a pseudoattribute of
the class. [22] states the association ends have several
attributes, including a name and navigability. The
“navigability” indicates whether the association end can
be used to cross the association from one object to an
object of the class on the other end. If the association
ends is navigable, the association defines a
pseudoattribute of the class that is in the opposite end of
the association end (rolename) – i.e., the rolename can
be similarly used to an attribute of the class to get
values. Therefore, an association end in a class can have
two different forms: as association end itself or as
pseudoattribute (Fig. 6). These concepts are essential to
map relationships between classes.

Fig. 6. Pseudoattributes and association ends

Association ends are formally defined as:
 (3)
AEs = (name, isComposite, multiplicity, navigable,
endType)

(3)

where name is the name assigned to the association end
and is equal to the rolename; isComposite is a Boolean
property that when true states that the association end is
part of a composition relationship [24]; multiplicity is
the set of possible values (0 to n) the association end can
take; navigable is a property indicating whether is
navigable or not; and endType is a property which can
take 3 different values:
i). Aggregate: the end is the “whole” of an aggregation

relationship
ii). Composite: the end is the “whole” of a composition

relationship
iii). None: the end is not an aggregate or composite

In a similar way, when the association ends are class
pseudoattributes are defined as follows:

PA = (name, isComposite, multiplicity,
navigable = ‘Yes’, endType)

(4)

where name is the rolename assigned to the association
end of the opposite side. The rest of the PA attributes are
equal to the AEs.

Taking the expressions 1, 2, 3 and 4 into account, the
formal definition of a class is given by:

C = (name, isAbstract, A, AEs, PA, O,
superclass)

(5)

where name is the name assigned to the class; isAbstract
indicates whether the class can be instantiated or not; A
is the finite set of attributes; AEs is the finite set of the
navigable association ends; PA is the finite set of the
pseudoattributes; O is the finite set of operations; and
superclass is an attribute to indicate the name of the
superclass when the class participates of a
generalization-specialization relationship.
Using the Expression 5, the Purchaseorder class of Fig.
5 is defined as:

C = (name = ‘Purchaseorder’, isAbstract = ‘No’, A =
(name = ‘order_number’, attributeType = ‘integer’,
multiplicity = 1..1), A = (name = ‘shipping_date’,
attributeType = ‘date’, multiplicity = 1..1), A = (name
= ‘city’, attributeType = ‘string’, multiplicity = 1..1), A
= (name = ‘street’, attributeType =‘string’, multiplicity
= 1..1), A = (name = ‘zip_code’, attributeType =
‘string’, multiplicity = 1..1), AEs = (name =
‘orders_mult’, multiplicity = 0..*, isComposite = ‘No’,
navigable = ‘Yes', endType = ‘none’), PA = (name =
‘customer_ref’, multiplicity = 1..1, isComposite = ‘No’,
navigable = ‘Yes’, endType = ‘none’), PA = (name =
‘items_arr’, multiplicity = 1..20, isComposite = ‘Yes’,
navigable = ‘Yes’, endType = ‘none’), superclass = ‘’)

Aggregation Relationship
An Aggregation Relationship is a binary association that
specifies a whole-part type relationship, and it can be
defined by the following expression:

Agg = (name, AEs) (6)

where name is the name assigned to the aggregation;
AEs are the association ends, navigables or not, that link
the whole with the part. These association ends are
defined like the Expression 3.

In the aggregation a part may belong to more than a
whole, and can exists independently of this. This feature
is very important to distinguish the aggregation to the
composition, which is a stronger whole-part relationship.
Another aggregation feature is that it has no cycles, i.e.
an object can not directly or indirectly be part of itself
[22].

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 15

Following the Expression 6, the aggregation relationship
between Customer and CustomerAssociation can be
defined as:

Agg = (name = ‘Customer_Custassoc’, AEs = (name =
‘custassoc_ref’, multiplicity = 1..1, isComposite = ‘No’,
navigable = ‘Yes’, endType = ‘aggregate’), AEs =
(name = ‘customers_arr’, multiplicity = 2..15,
isComposite = ‘No’, navigable = ‘Yes’, endType =
‘none’))

Composition Relationship
A Composition Relationship is an association that
specifies a whole-part type relationship, but this
relationship is stronger than the aggregation due to the
part life depends on the whole existence. The part must
belong to a unique whole [22]. Furthermore, in a
composition relationship the data flow generally in only
one direction, from the whole to the part.
Taking this into account, a composition relationship is
formally expressed as:

Cm = (name, AEs) (7)

where name is the name assigned to the composition;
AEs are the navigable association ends, corresponding to
the part. These association ends are defined like the
Expression 3. In respect of the multiplicity, the one of
the whole will always be of 1, while the one of the part
can take any value from 0 to n.

In accordance with the formalized in the Expression 7,
the composition relationship definition is:

Cm = (name = ‘Purchaseorder_Orderlineitem’, AEs =
(name = ‘items_arr’, multiplicity = 1..20, isComposite =
‘Yes’, navigable = ‘Yes’, endType = ‘none’))

Binary Association Relationship
Associations are links between two or more entities. A
Binary Association is a special one having exactly two
association ends. It is particularly useful in order to
specify navigability path among objects [22].
A binary association can be formally defined as follows:

BAs = (name, AEs) (8)

where name is the name assigned to the association; AEs
are the association ends, navigables or not, linking
classes which particpates in the association. The
association ends are defined like the Expression 3.
The definition of the Purchaseorder_Customer
association is written as follows:

BAs = (name = ‘Purchaseorder_Customer’, AEs =
(name = ‘customer_ref’, multiplicity = 1..1, isComposite
= ‘No’, navigable = ‘Yes’, endType = ‘none’), AEs =
(name = ‘orders_mult’, multiplicity = 0..*, isComposite
= ‘No’, navigable = ‘Yes’, endType = ‘none’))

Association Class Relationship
An Association Class has both association and class
properties. Its instances have attributes values and also
references to the class objects linked by the association.
It is not possible to link an association class to more than
one association, because it contains a set of specific
properties of the association to which it belongs [6]. As a
consequence, the association class never participates of
generalization-specialization relationships and can not
be an abstract class. The introduced concepts related
with the association class are depicted in Fig. 7.

Fig. 7. Association class

[22] states that an association class can be seen as a class
with extra references to the classes participating in the
association to which it belongs. According to [23] the
multiplicity of the extra references is 1. Those references
to the objects of the other classes become the association
class pseudoattributes. Due to association class has no
key it can not be accessed directly but through the other
classes participating in the association. These classes
relate to each other by means of the association class.
Due to these characteristics, it is necessary to rectify its
representation in order to automate the mapping. Fig. 8
shows the rectification, where stock_arr and stock_mult
are now association ends of Stock and new association
ends (product_ref and store_ref) are added to Product
and Store to specify the extra references. With this
representation the association class can be treated as a
class having the particularities mentioned before.

Fig. 8. Association class treatment

In the rectified form, Product, Stock and Store have a
complete set of association ends and pseudoattributes,
which facilitate the mapping.
Therefore, an association class is defined as follows:

AC = (name, isAbstract = ‘No’, A, AEs, PA, O,
superclass = ‘’)

(9)

where name is the name assigned to the association
class; A is the finite set of simples and multivalued
attributes, corresponding to the relationship itself; O is
the finite set of operations for the association class; AEs

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 16

are the navigable association ends that link the
association class with the classes participating in the
association to which it belongs; and PA is the finite set
of the pseudoattributes of the association class.
According to Fig. 8 the association class is defined using
the expressions 3, 4 and 9, as follows:

AC = (name = ‘Stock’, isAbstract =‘No’ A = (name =
‘quantity’, attributeType = ‘integer’, multiplicity = 1..1),
A = (name = ‘date’, attributeType = ‘date’, multiplicity
= 1..1), AEs = (name = ‘stock_arr’, multiplicity = 1..15,
isComposite = ‘No’, navigable = ‘Yes’, endType =
‘none’), AEs = (name = ‘stock_mult’, multiplicity =
0..*, isComposite = ‘No’, navigable = ‘Yes’, endType =
‘none’), PA = (name = ‘product_ ref’', multiplicity =
1..1, navigable = ‘Yes’), PA = (name = ‘store_ref’,
multiplicity = 1..1, navigable = ‘Yes’), superclass = ‘’)

Generalization-Specialization Relationship
A Generalization-Specialization Relationship is a
taxonomic relationship between a more general element
(called the superclass) and a more specific one (called
the subclass). Subclasses inherit the properties from
superclasses, but also have additional properties that are
peculiar to it [22].
In order to specify a relationship of this type when the
class is defined it must be specified the superclass from
which it inherits (Expression 1).

3.2 The Object-Relational Layer

For the characterization of the SQL:2003 metamodel
components the elements closely related to the mappings
needed for this work are considered. These elements are:
 Distinct type
 Row type
 Reference type
 Collection types: Arrays and Multiset
 Structured types
The definitions made over this layer do not allow the
persistence of any object until table creation.

Distinct Type
A Distinct Type is the simplest kind of user-defined
type. It is defined over a predefined data type.

DT = (name, type) (10)

where name is the name assigned to the distinct type;
and type is a predefined data type such as integer, real,
character, LOB, etc., over which is defined.

Row Type
A Row Type is defined as a set of pairs:

RT = (Fi : DTi) (11)

where Fi = F1, F2;…, Fn is the name of a field in the row
type; and DTi = DT1, DT2,…, DTn is a predefined data

type such as integer, real, character, LOB, etc.

Reference Type
A Reference Type is a datatype that contains a value that
reference an object corresponding to a structured type.
This datatype is defined as:

Ref = Ref(ST) (12)

where ST indicates the referenced structured type.

Collection Type
Array
An Array is an ordered collection of elements of any
admissible type, except another array, and it has a
maximum length. An array is defined as follows:

Arr = (eType, MQ) (13)

where eType is the type of element of the array and it
can be a row type, a reference type, an structured type or
a predefined type; and MQ is the maximum number of
elements of the array.

Multiset
A Multiset is an unordered collection of elements of any
admissible type. It has no a maximum length specified.
A multiset is defined as:

Mult = (eType) (14)

where eType is the type of element the collection can
have and it can be a row type, a reference type, an
structured type or a predefined type.

Structured Type
The essential component of SQL:2003 that supports the
object orientation is the Structured Type. The
“structured” word distinguishes it from the distinct type
that is also a user defined type, which is based on the
predefined types and does not have an associated
structure.

Structured types have attributes of different types,
behavior, and can be inherited by other structured types,
between other characteristics.
Note that SQL:2003 structured type is the equivalent
concept of a UML class.
The structured type can be defined as:

ST = (name, A, M, P) (15)

where name is the name assigned to the structured type;
A is a finite set of attributes; M is a finite set of methods;
and P is a finite set of properties.

An attribute of a structured type (Expression 15) can be
simple or a collection. If it is simple, it can be defined as
follows:

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 17

A = (name, type) (16)

where name is the name assigned to the attribute; and
type can be any of the standard defined types:
predefined, structured, distinct, row and/or reference
types.
If it is a collection type, it is defined like in the
expressions 13 and 14.
With respect to the properties of the Expression 15, they
are formally defined as:

P = (inheritFrom, isInstantiable, isFinal) (17)

where inheritFrom is a property that indicates the name
of the structured type corresponding to the supertype
from which it inherits; isInstantiable specifies whether
the type can have instances or not; and isFinal indicates
whether the type can have subtypes or not.

3.3 The Object-Relational Persistent Layer

The object-relational persistent layer is not a physical
layer but is a logical representation of how data are
represented. It takes the form of a table in the object-
relational technology as well as in the relational system.
Unlike the latter, in the object-relational databases the
columns are not restricted to predefined data types.
As was mentioned above, only the typed tables of the
SQL:2003 metamodel are taken into account since they
are employed to store objects of a specific structured
type.

Typed Tables
A Typed Table can be defined as:

TT = (name, ST, R) (18)

where name is the name assigned to the table; ST is the
structured type from which is created the table; and R is
the finite set of restriction definitions such as primary,
unique and/or foreign key, not null and/or check type
restrictions.

Typed tables provide persistence and identity to objects
created from a structured type. Moreover, they
automatically map structured type attributes into typed
table columns.
The primary and unique key definitions must be
considered at this point because they
define the access paths to the objects; the query
optimizer can take advantage to execute a query from
these definitions.

4. Transformations to obtain Object-
Relational Schemas

For object-relational databases there is not a consensus
in a technique or methodology to transform conceptual
model into a logical schema. This section propose all

mappings needed to obtain an object-relational database
schemas complying with SQL:2003 specifications.
These are formalized such that they can be performed
without ambiguity and in an automatic way. For the
sake of clarity, this section is split in 2 parts:
 Mappings from the UML Class Diagram to Object-

Relational layer
 Mappings from the Object-Relational to Object-

Relational Persistent layer

Transformations between the layers are formalized by
means of mapping functions of the f:AB form. A
Mapping function f from A to B is a binary relationship
between A and B. It can be seen as a transformation of
the elements of A into elements of B. Therefore, every
element of A becomes exactly one element in B.

4.1 Mappings from the UML Class Diagram to
Object-Relational Layer

UML class formal definition contains all the elements
required to be transformed into the middle layer (object-
relational layer). Having this concept in mind, mappings
to transform components from UML class diagrams into
object-relational layer are centered in the following
elements:
 Attributes
 Pseudoattributes
 Operations
 Generalization-Specialization Relationships
 Classes
 Association Class

Attribute Transformation
Class attributes are transformed into structured type
attributes by means of the following mapping function:

f:AC(name, attributeType, multiplicity)
AST(name, type)

(19)

For the sake of clarity in the previous mapping function,
class attributes and the structured type attributes are
indicated with the subscript “C” and “ST”, respectively.
When the attribute multiplicity is 1, the attributeType of
the class will match with the type of the structured type.
SQL:2003 standard uses the collection types to represent
attributes with multiplicity greater than 1, which may
optionally have an upper and lower limit indicating the
number of possible values. However, collection types
can not be used arbitrarily, but they must fulfill some
conditions to be correct. These restrictions apply not
only to represent multivalued attributes, but also to
extend to other kinds of transformations.
 If the attribute multiplicity is 1 it is a single

attribute, then, the mapping function is the
following:

f:AC(name, attributeType, 1..1)
AST(name, type = eType)

(20)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 18

 If lower and upper limits are well known, then an
array should be used with a specific length; it
eventually it may grow if it is necessary.

f:AC(name, attributeType, 1..n)
AST(name, type = Arr(eType, n))

(21)

In the previous expression Arr stands for array;
eType represents the attribute type of the element
composing the array and n its length.

 If the upper and lower limits are not defined, a
multiset must be used because this collection type
does not limit the values to store.

f:AC(name, attributeType, 1..*) AST(name,
type = Mult(eType))

(22
)

In the previous expression Mult stands for multiset;
eType corresponds to the element type composing it.

In all the previous cases the type of eType matches the
type of attributeType of the class.

Pseudoattribute Transformation
When a class participates in a relationship (association,
aggregation, composition, association class) and it has
navigable ends, these can be considered as
pseudoattributes of the class presented in the opposite
side of the relationship. These ends involve a
multiplicity, a navigability and a type, among others
properties.
Pseudoattributes become crucial in the transformation of
class relationships. Mapping functions are generated
with the objective of preserving relationship semantic, as
follows:
 If the pseudoattribute is not composite (isComposite

= ‘No’) and its endType property is “none” or
“aggregate”, it is transformed using references,
having into account its multiplicity.
o If the multiplicity is 1, it is transformed into a

reference type single attribute.

f:PA(name, multiplicity = 1..1,
isComposite = ‘No’, navigable = ‘Yes’,
endType = ‘none’/‘aggregate’)
AST(name, type = Ref(OST))

(23)

where OST is the opposite structured type of the
relationship.

o If the multiplicity is defined and it has a

maximum of n, it is transformed into an array
of reference types of length n.

f:PA(name, multiplicity = 1..n,
isComposite = ‘No’, navigable = ‘Yes’,
endType = ‘none’/‘aggregate’)
AST(name, type = Arr(Ref(OST), n))

(24)

o If the multiplicity is undefined (specified by an
*) it is transformed into a multiset of reference
types.

f:PA(name, multiplicity = 1..*,
isComposite = ‘No’, navigable = ‘Yes’,
endType = ‘none’/‘aggregate’)
AST(name, type = Mult(Ref(OST)))

(25)

 If the pseudoattribute is composite (isComposite =

‘Yes’) and its endType property is “none”, then the
pseudoattribute represents the association end
corresponding to the part of a composition
relationship, and it is transformed into a structured
type embedded into the structured type of the
whole. It must also be considered the multiplicity of
the pseudoattribute, as follows:

o If the multiplicity is of 1, the pseudoattribute is

transformed as an attribute of the structured
type corresponding to the part.

f:PA(name, multiplicity = 1..1,
isComposite = ‘Yes’, navigable =
‘Yes’, endType = ‘none’) AST(name,
type = OST)

(26)

o If the multiplicity has a maximum of n, it is

transformed into an array of length n of the
structured type of the part.

f:PA(name, multiplicity = 1..n,
isComposite = ‘Yes’, navigable =
‘Yes’, endType = ‘none’) AST(name,
type = Arr(OST, n))

(27)

o If the multiplicity is undefined (*), it is

transformed into a multiset of structured types.

f:PA(name, multiplicity = 1..*,
isComposite = ‘Yes’, navigable =
‘Yes’, endType = ‘none’) AST(name,
type = Mult(OST))

(28)

For the previous cases, OST is the opposite structured
type of the relationship corresponding to the part of the
composition relationship.

Pseudoattributes whose eType property is “composite”
represent the whole of a composition relationship. In
agreement with the definition the whole of a
composition is not navigable. Therefore,
pseudoattributes of type before mentioned are not
converted into the object-relational layer.

Operation Transformation
The description of class operations and its subsequent
mapping need to disaggregate their components and a
more detailed study than the presented here. Its

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 19

treatment is performed in a simple manner because its
analysis goes beyond the scope of this article. Having
this issue into account, the UML operations are
transformed into methods of the structured types by
means of the following function:

f:O M (29)

where O is a finite set of operations; and M is a finite set
of methods.

Generalization - Specialization Relationship
Transformation
In the UML class diagram as well as in the object-
relational layer generalization - specialization
relationships are specified by means of qualifiers
(isAbstract, superclass, inheritFrom, isInstantiable). The
transformation of this relationship type is made using
those ones. The mapping function defined to the
generalization-specialization relationship is:

f:C(name, isAbstract = ‘No’,… , superclass =
‘superclass_name’) ST(name,…, isInstantiable
= ‘Yes’, inheritFrom = ‘supertype_name’)

(30)

Class Transformation
Classes of the UML diagram of the conceptual design
are mapped into a structured type the object-relational
technology.

f:C(name, isAbstract, A, AEs, PA, O, superclass)
 ST(name, isInstantiable, A, M, inheritFrom)

(31)

The transformation of each class component was
previously described. Note that attributes and
pseudoattributes of a class are transformed into attributes
of the structured type.

Association Class Transformation
The mapping of an association class is similar to the one
defined for a class. Hence, attributes, pseudoattributes
and operations are transformed in the same way. The
difference is on the fact that an association class can not
participate of generalization-specialization relationships.

f:AC(name, A, PA, O) ST(name, A, M) (32)

4.2 Mappings from the Object-Relational to the
Object-Relational Persistent Layer

Once the object-relational elements are obtained typed
tables must be defined in order to provide persistence to
the objects. For this purpose, every structured type of the
object-relational layer is transformed into a typed table
of the object-relational persistence layer. This mapping
function is defined as follows:

f:ST TT(name, ST) (33)

where name indicates the name assigned to the typed
table; and ST specifies the structured type which origins
it.

To complete the mapping of this layer, the designer must
enter additional information which is not included in the
metamodels of the previous ones. The first case is
related with table restrictions (primary key, unique key,
not null restrictions, check type restrictions, etc.), which
do not have an equivalent neither UML class diagram
nor object-relational layer. The other one corresponds to
the transformation of generalization-specialization
relationships from the object-relational layer to typed
tables. In the latter, the user must choose the mapping
from the three different possibilities that exist:
 Flat Model: this model includes the definition of a

single table for the whole hierarchy. It must create a
typed table for the supertype, with the
substitutability property that enables the storage of
subtypes in the same supertype table.

 Vertical Partition: in this mapping a typed table for
every class in the hierarchy is created. The
substitutability property is removed, so only the
appropriated structured types can be stored in those
tables.

 Horizontal Partition: in this transformation typed
tables for subtypes are created, translating all
supertype attributes to them. The substitutability
property is removed.

5. Automation of Database Design Process

The automation proposal presented in this paper is based
on MDA and XML. The Model Driven Architecture [21]
was originated in response to the new technology
advances, diversity of system exploitation platforms and
business model continuous changes. MDA decouples the
functional specification from the implementation
specification of that functionality for a specific platform.
It proposes a development process based on the
realization and transformation of the models. The
principles on which MDA is based are abstraction,
automation and standardization. Those are the main
reasons to select MDA for the ORDB automation
process.
The models used by MDA are classified into:
 Platform Independent Models (PIM): are models

with a high level of abstraction, independents of any
implementation technology. The UML class
diagram metamodel is the PIM of this work.

 Platform Specific Models (PSM): combine
specifications of the platform independent model
with the details of a specific platform. The PSM of
this work is related with SQL:2003.

The MDA framework allows the application
development on any open or proprietary platform. To
achieve this goal, the development process of MDA

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 20

starts from the requirements of an application (Platform
Independent Model) which is then transformed into one
or more Platform Specific Models which are finally
converted into code (Fig. 9).

Fig. 9. Development process in MDA

On the other hand, XML has also a number of
advantages for application development that justifies its
use for the automation process of ORDB schemes. These
are:
 It is a formal and concise language, from the point

of view of the data and the way of storing them.
 It is extensible, which means that once the structure

of a document was designed and put into
production, it is possible to extend it with the
addition of new tags, allowing the model evolution.

 It is expressive, its files are easy to read and edit. If
a third person chooses to use a
document created in XML, it is easy to understand
its structure and process it, which improves the
compatibility among applications.

 There are commercial and free tools that facilitate
its implementation, programming and the
production of different systems.

The XML schema definition language [26] has become a
dominant technology to describe the type and the
structure of XML documents. This capability makes it
appropriate for the definition of the metamodels used in
this work. XML schemas provide the basic infrastructure
for building interoperable systems because they provide
a common language for the XML document description.
The specification of the XML transformations (XSLT)
defines a language for expressing rules which allows
transforming an XML document into another. XSLT
[14] has many of the traditional constructors of the
programming languages, including variables, functions,
iterators and conditional sentences, so XSLT can be
thought as a programming language. Furthermore,
XSLT documents are also useful as general purpose
language to express transformations from an XML
schema to another. In fact, the use of XSLT documents
can be imagined as an XML translation engine, so this
technology was selected for this, for the implementation
of mapping rules.

5.1 Transformation Methodology Architecture

The architecture to perform the model transformation is

depicted in Fig. 10.

Fig. 10. Transformation methodology architecture

The architecture is based on different abstraction levels
[10]:
 Metamodel Level: contains XML schemas

generated for the three metamodels used for the
transformations: UML class diagramas, SQL:2003
Data Types and SQL:2003 Schema. Besides, XSLT
transformation rules between the XML schemas are
defined in this level.

 Model Level: contains the XML documents
fulfilling the XML Schemas defined in the
metamodel level. The first XML document
complying with the UML metamodel represents the
hierarchical and structured information of the
application. Mappings from one XML document to
another are performed executing the XSLT rules
defined in the metamodel level.

 Data Level: this level contains the input and output
of the model level. The UML class diagram
corresponding to the application requirements is the
input while the output is the code of the object-
relational database schema.

The transformation method starts with the definition of
the application UML class diagram which is converted
into an XML document complying with the
corresponding XML Schema after that. Mapping rules
defined between the UML and the SQL:2003 data types
metamodels are then executed. The XML document of
the SQL:2003 data type obtained in the previous step is
converted into a XML document fulfilling the SQL:2003
schema executing the XSLT rules defined between
them. Finally, a Java code generates the object-relational
database script having this last XML document as input.

This architecture was implemented in a tool prototype
employing the Altova XMLSpy tool [2]. It provides a
flexible and efficient environment to create and edit
XML schemas and XML files. For writing the rules in
XSLT language a graphical interface of Altova
MapForce [1] was used. MapForce has a complete set of
graphic functions that allows an easy writing,
modification and deletion of the rules, providing a great
flexibility and modificability of the transformations.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 21

6. Conclusions

Nowadays, there are several commercial tools which
automate relational database design (ToadTM Data
Modeler, DB Designer4, DatabaseSpy), but it is not the
case for object-relational ones. The reason for this
situation is that does not exist a standard methodology
accepted in the database community. This paper
describes a method to overcome this gap. First, three
mapping layers for the object-relational database design
process were defined: UML class diagram layer, object-
relational layer and object-relational persistent layer.
This is a novel aspect of this work because it represents
a difference respect of other works proposed in the
literature. A metamodel is used and adapted for each
layer, for the conceptual design, the UML class diagram
metamodel; for the logical design, the SQL:2003
metamodel, split in two parts: datatypes and schema. A
detailed description of the elements composing the
metamodels was made superseding other works
proposed in the open literature. A key issue in the
characterization of the UML class diagram is the
distinction of association ends participating as
pseudoattributes of the classes. This concept facilitates
the mapping definition for associations between classes.
Mapping functions between metamodels were proposed
and formalized by means of f:AB type expressions. In
this article, the most common transformation set
between the UML class diagrams and the object-
relational databases is presented.
The automation of the ORDB design process is
addressed with an architecture based on the MDA
specification and the XML technology. MDA is selected
because is the indicated technology for model-based
software design. The platform independent model (PIM)
is represented by the UML class diagram metamodel and
platform specific models (PSM) are composed by the
SQL:2003 metamodels. The architecture has different
levels of abstraction: metamodels, models and data.
These specifications separate the functionalities
facilitating the transformation rule generation.
The architecture implementation was made using XML
technology: XML schemas for the metamodel
definitions, XSLT rules for transforming the schemas,
and XML documents that represent the structured
information of the application complying with the XML
schemas. The use of the XML technology facilitates the
reading, understanding, modifying, testing and fixing the
tool for ORDB design.
For future work, properties and the impact that present
the inclusion of the behavior in the first steps of the
design, and its next mapping to the object-relational
model, will be investigated with the objective of
completing the design and the case tool implementation.

References
[1] Altova GmbH (2006). Altova MapForce 2007 User and

Reference Manual. Revised May 5, 2005, from
http://www.altova.com/download/2006/MapForcePro.pdf

[2] Altova GmbH (2007). Altova XMLSpy 2008 Enterprise

Edition User and Reference Manual. Revised September
5, 2006, from
http://www.altova.com/download/2006/XMLSpyPro.pdf

[3] Altova GmbH (2010). Altova DatabaseSpy 2010.
http://www.altova.com/databasespy.html

[4] Arango, F., Gómez, M. C., & Zapata, C. M. (2006).
Transformación del modelo de clases UML a Oracle9i®
bajo la directiva MDA: Un caso de estudio. DYNA, Vol.
73 (149), (pp. 166-179).

[5] Baroni, A. L., Calero, C., Ruiz, F., & Abreu, F. B. (2004).
Formalizing object-relational structural metrics. 5a
Confer^encia da APSI.

[6] Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The
Unified Modeling Language. User Guide. Addison-
Wesley Professional.

[7] Elmasri, R., & Navathe, S. (2006). Fundamentals of
Database Systems, 5th Edition. Addison-Wesley.

[8] fabFORCE (2003). DB Designer 4 Online
Documentation. Fabulous Force Database Tools. Revised
2003, from http://www.fabforce.net/dbdesigner4/

[9] Golobisky, M. F., & Vecchietti, A. (2005). Mapping
UML class diagrams into object-relational schemas. In
Proceedings of the Argentine Symposium on Software
Engineering (ASSE 2005), 34 JAIIO, (65-79 pp).

[10] Golobisky, M. F., & Vecchietti, A. (2008). A flexible
approach for database design based on SQL:2003.
Proceedings of the XXXIV Conferencia Latinoamericana
de Informática CLEI 2008 (pp. 719-728).

[11] Grissa-Touzi, A., & Sassi, M. (2005). New approach for
the modeling and the implementation of the object-
relational databases. World Academy of Science,
Engineering and Technology. Vol. 11 (pp. 51-54).

[12] ISO/IEC 9075-1 (2003). Information technology -
Database languages – SQL- Part 1: Framework (SQL/
Framework), International Organization for
Standardization.

[13] ISO/IEC 9075-2 (2003). Information technology -
Database languages – SQL- Part 2: Foundation
(SQL/Foundation), International Organization for
Standardization.

[14] Kay, Michael (2007). XSL Transformations (XSLT),
Version 2.0. Revised January 23, 2007, from W3C
Recommendation, http://www.w3.org/TR/xslt20.

[15] Liu, C., Orlowska, M. E., & Li, H. (1997). Realizing
object-relational databases by mixing tables with objects.
OOIS, (pp. 335-346).

[16] Marcos, E., Vela, B., & Cavero, J. M. (2003). A
methodological approach for object-relational database
design using UML. Software and Systems Modeling, 2(1),
59-72.

[17] Marcos, E., Vela, B., Cavero, J. M., & Caceres, P. (2001).
Aggregation and composition in object-relational database
design. In Albertas Caplinskas and Johann Eder (Ed.) 5th
Conference on Advances in Databases and Information
Systems (pp. 195-209).

[18] Melton, J., & Simon, A. R. (2002). SQL:1999-
Understanding Relational Language Components.
Morgan Kaufmann.

[19] Melton, Jim (2003). Advanced SQL:1999: Understanding
Object-Relational and Other Advanced Features. Morgan
Kaufmann.

[20] Mok, W. Y., & Paper, D. P. (2001). On transformations
from UML models to object-relational databases.
Proceedings of the 34th Annual Hawaii International
Conference on System Sciences (HICSS-34): Vol. 3 (p.
3046).

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 22

[21] Mukerji, J., & Miller, J. (2003). MDA Guide Version
1.0.1. Object Management Group. Revised June 12, 2003,
from http://www.omg.org/cgi-bin/doc?omg/03-06-01.

[22] Rumbaugh, J., Jacobson, I., & Booch, G. (1999). The
Unified Modeling Language. Reference Manual. Addison-
Wesley.

[23] OMG (2005). Unified modeling language: Superstructure,
Version 2.0. OMG Final Adopted Specification. Retrieved
July 2005, from
http://www.omg.org/spec/UML/2.0/Superstructure/PDF

[24] OMG (2006). Unified modeling language: Infrastructure,
Version 2.0. OMG Final Adopted Specification. Object
Management Group. Retrieved July 2005, from
http://www.omg.org/spec/UML/2.0/Infrastructure/PDF

[25] Quest Software (2010). ToadTM Data Modeler 3. Quest
Software, Inc.
http://www.casestudio.com/enu/default.aspx

[26] W3C (2004). XML Schema. Revised October 28, 2004,
from XML Schema Working Group Public Page,
http://www.w3.org/XML/Schema

M.F. Golobisky obtained his PhD degree in Engineering, major
in Information Systems Engineering, in 2009, at Universidad
Tecnológica Nacional, Facultad Regional Santa Fe, Argentina.
She is Professor at this University and research fellow of
CONICET.

A Vecchietti. Obtained his PhD degree in 2000 in Chemical
Engineering at Facultad de Ingeniería Química Universidad
Nacional del Litoral, Argentina. He is a researcher of CONICET
and Professor at Universidad Tencnológica Nacional, Facultad
Regional Santa Fe, Argentina.

