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Abstract 
The multi objective optimization problems can be found in 
various fields such as finance, automobile design, aircraft design, 
path optimization etc. This paper reviews some of the existing 
literature on multi objective optimization problems and some of 
the existing Swarm Intelligence (SI) based techniques to solve 
these problems. The objective of this paper is to provide a 
starting point to the multi objective optimization problems to the 
reader. 
Keywords: Multiobjective optimization problem, Evolutionary 
Algorithm, Particle Swarm Optimization, Ant Colony 
Optimization. 

1. Introduction 

Most real life problems are multi objective in nature. 
These objectives are conflicting (preventing simultaneous 
optimization) in general. It means that one objective is 
optimized at the cost of other objective. The multi 
objective optimization problems are difficult but realistic, 
because of their broad applicability, optimization 
problems have been studied by researchers with various 
backgrounds. This gives rise to a variety of strategies for 
solving such problems. There exists a vast literature on the 
methods to deal with multi objective optimization 
problems. It should be noted that every approach has its 
pros and cons, and no single best option is available to the 
solution seeker in the general case. There are two general 
approaches to multiple objective optimization problems. 
(i) Classical Approach (preference-based multi-objective 
optimization) (ii) Ideal Approach (Pareto optimal 
approach). 

A simple method to solve a multi objective optimization 
problem would be to form a composite objective function 
as the weighted sum of the objectives, where a weight for 
an objective is proportional to the preference vector 
assigned to that particular objective. This method of 
scalarizing an objective vector into a single composite 

objective function converts the multi objective 
optimization problem into a single objective optimization 
problem. When such a composite objective function is 
optimized, in most cases it is possible to obtain one 
particular trade off solution. This procedure of handling 
multi objective optimization problems is simple but 
relatively subjective. This procedure is preference based 
multi objective optimization [19]. 

The second approach is to determine an entire set of 
solutions that are non-dominated with respect to each 
other. This set is known as Pareto optimal set. While 
moving from one Pareto solution to another, there is 
always a certain amount of sacrifice in one or more 
objectives to achieve a certain amount of gain in the 
other(s). Pareto optimal solution sets are often preferred to 
single solutions because they can be practical when 
considering real-life problems. The size of the Pareto set 
usually increases with the increase in the number of 
objectives [55]. 

It is important to note that the result obtained by 
preference-based strategy largely depends on the relative 
preference vector used in forming the composite function. 
A change in this preference vector will result in a 
(hopefully) different trade-off solution. Preference vector 
need not result in a trade-off optimal solution to all 
problems. Also, it is important to note that it is highly 
subjective and not so easy to find a relative preference 
vector. On the other hand, the ideal multi objective 
optimization procedure is less subjective. The main task in 
this approach is to find as much different trade-off 
solutions as possible. Once a well distributed set of trade 
off solutions is found then higher level information related 
to a problem is required to choose one solution from a set 
of already obtained set of trade off solutions. Thus, the 
fundamental difference in using the problem information 
in the two approaches is that, relative preference vector 
needs to be supplied without any knowledge of the 
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possible consequences in the classical approach; where in 
the ideal approach, the problem information is used to 
choose one solution from the obtained set of trade-off 
solutions. The ideal approach, in this matter is more 
practical and less subjective [19]. 

2. Multi Objective Optimization Problems 

The multi-objective optimization problem needs to pay 
attention to a number of conflicting objectives 
simultaneously. The goal in multi-objective optimization 
is to obtain a finite number of Pareto optimal solutions, 
instead of a single optimal solution. For example, the 
multi objective problem that simultaneously minimizes 
(without loss of generality)1 objectives can be described as 
follows: 

Minimize (f1(x), f2(x), ..., fi(x)),     subject to x  S 

Where, S denotes the feasible solution space. In order to 
solve a multi objective problem, some important concerns 
must be handled carefully. One of these concerns is how 
to optimize every objective functions at the same time. An 
important concept tied to multi objective optimization is 
domination. Deb, K. [19] defines domination by 
Definition 1.  

Definition 1: A solution x(1) is said to dominate the other 
solution x(2), if both conditions 1 and 2 are true: 

I. The solution x(1) is no worse than x(2) in all 
objectives, or fj(x

(1))  fj(x
(2)) for all j=1,2,….,M. 

II. The solution x(1) is strictly better than x(2) in at 
least one objective, or )x(f)x(f )2(

j
)1(

j  for at 

least one  j{1,2,….,M} [19]. 

A non-dominated set of solution is defined by Definition 
2. 
 
Definition 2: Among a set of solutions P, the non-
dominated set of solutions P’ are those that are not 
dominated by any member of the set P [19]. 

The set of non-dominated solutions is also known as the 
Pareto optimal set of solution. This set has all the possible 
good solutions for the solution seeker. 

Multi objective optimization problems has been tackled 
through various approaches of which evolutionary 
computation, PSO and ACO are reviewed in the current 

                                                           
1 A maximization problem can be changed to a minimization 
problem by using duality principle. 

 

text. PSO has been known to perform well for many static 
problems. However, many real-world problems are 
dynamic and it has been argued that EAs are potentially 
well-suited in the dynamic problems [73], [77], [83]. 
However, PSO techniques also hold promises for dynamic 
problems [5], [12]. Another approach which is gaining 
popularity for multi objective Optimization is Ant Colony 
Optimization technique [7], [21], [35]. Various fields 
where ACO has been applied and known to be working 
well are classical problems such as assignment problems, 
sequencing [35] and scheduling problems [7], graph 
coloring [39], discrete and continuous function 
optimization and path optimization problems [3], [23], 
[24], [31], [32], [33], [36], [72] etc. More recent 
applications include cell placement problems arising in 
circuit design, the design of communication networks 
[11], [22], problems in bioinformatics [62] etc. 

3. Solution to Multiobjective Optimization 
Problems 

3.1. Evolutionary Algorithm 

Evolutionary algorithms (EA’s) are often well-suited for 
optimization problems involving several, often conflicting 
objectives, i.e., multi objective optimization problems. 
EAs have been used in various fields such as an auto pilot 
design [8], vehicle routing problem, travelling salesman 
problem [30]. Brockhoff reviewed theoretical aspects of 
evolutionary multiobjective optimization in [9]. Potwin 
[71] reviewed the literature on evolutionary algorithm for 
vehicle routing problem which is a multi objective 
optimization problem. Abraham and Jain state that real 
world applications have several multiple conflicting 
objectives generally. They defined fundamental concepts 
of multiobjective optimization emphasizing the motivation 
and advantages of using evolutionary algorithms in [1]. 

Fig. 1   Flow chart for EA. 
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Fieldsend [29] defined multi objective problems as being 
typically complex, with both a large number of parameters 
to be adjusted and several objectives to be optimized. 
Multi objective evolutionary algorithms (MOEAs) are a 
popular approach to confronting multi objective 
optimization problems by using evolutionary search 
techniques. The use of EAs as a tool of preference is due 
to such problems. EAs, which can maintain a population 
of solutions, are in addition able to explore several parts 
of the Pareto front simultaneously. Flow chart in Fig. 1 
displays basic EA functionality. 

Srinivas, N. and Deb, K. applied genetic algorithm in [77] 
to find the Pareto optimal set. Deb, K. describes the 
problem features that may cause a multi-objective genetic 
algorithm difficulty in converging to the true Pareto-
optimal front in [18]. He constructed multiobjective test 
problems having features specific to multiobjective 
optimization enabling researchers to test their algorithms 
for specific aspects of multi-objective optimization. Deb, 
K. and Agrawal, S. [20] investigated the performance of 
simple tripartite GAs on a number of simple to complex 
test problems from a practical standpoint. For solving 
simple problems mutation operator plays an important 
role, although crossover operator can also be applied to 
solve these problems. When these two operators are 
applied alone they have two different working zones for 
population size. For complex problems involving massive 
multimodality and deception, crossover operator is the key 
search operator and performs reliably with an adequate 
population size. Based on this study, they recommended 
using of the crossover operator with an adequate 
population size. 

Corne and Knowles [17] introduced Pareto Envelop based 
Selection Algorithm (PESA). Zitzler, Deb and Thiele [84] 
compared four multi objective EA’s quantitatively. Also, 
they introduced an evolutionary approach to multi-criteria 
optimization, the Strength Pareto EA (SPEA) that 
combines several features of previous multi objective 
EA’s in a unique manner to produce better results. Binh 
and Korn [4] presented a Multiobjective evolution 
strategy (MOBES) for solving multiobjective optimization 
problems subject to linear and non-linear constraints. The 
algorithm proposed by them maintains a set of feasible 
Pareto optimal solution in every generation. 
 
Some researchers modified genetic algorithm to get better 
results for the problems to be tested. In this series Jian 
[48] employed a proposed genetic particle swarm 
optimization method (MGPSO) to solve the capacitated 
vehicle routing problems. He incorporated PSO with the 
genetic reproduction mechanisms (crossover and 
mutation). This algorithm employs an integer encoding 

and decoding representation. This method has been 
implemented to five well-known CVRP benchmarks. 
Prins developed a hybrid GA that is relatively simple but 
effective to solve the vehicle routing problem. 

Jin, Okabe and Sendhoff [49] brought an idea that 
systematically changes the weights during evolution that 
leads the population to the Pareto front. They investigated 
two methods; one method is to assign a uniformly 
distributed random weight to each individual in the 
population in each generation. The other method is to 
change the weight periodically with the process of the 
evolution. They found in both cases that the population is 
able to approach the Pareto front, although it does not 
keep all the found Pareto solutions in the population. 
Zhang and Rockett [82] compared three evolutionary 
techniques (i) The Strength Pareto Evolutionary 
Algorithm (SPEA2), (ii) The Non-dominated Sorting 
Genetic Algorithm (NSGA-II) and (iii) The Pareto 
Converging Genetic Algorithm (PCGA). 
 

3.2. Particle swarm techniques 

a. Particle Swarm Optimization Algorithm 

Heppner and Grenander, in 1990 [38] proposed that the 
small birds fly in coordination and display strong 
synchronization in turning, initiation of flight, and landing 
without any clear leader. They proposed that the 
synchronization of movement may be a by product of 
"rules" for movement followed by each bird in the flock. 
Simulation of a bird swarm was used to develop a particle 
swarm optimization (PSO) concept [51]. PSO was 
basically developed through simulation of bird flocking in 
two dimensional spaces. Searching procedures by PSO 
can be described as follows:  
i. Each particle evaluates the function to maximize at 

each point it visits in spaces.  
ii. Each particle remembers the best value it has found 

so far (pbest) and its co-ordinates.  
iii. Each particle know the globally best position that one 

member of the flock had found, and its value global 
best (gbest).  

iv. Using the co-ordinates of pbest and gbest, each 
particle calculates its new velocity as in Eq. (1) 
Error! Reference source not found.and the position 
of each particle is updated by Eq. (2). 

))t(xp())t(xp()t(v)1t(v ig2ii1ii


  (1) 

)1t(v)t(x)1t(x iii 


                                            (2) 

Here, .1R0;1R0;RcandRc 21222111    
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The basic particle swarm optimization algorithm is as 
follows: 

i. Randomly generate an initial swarm 
ii. Repeat for each particle i do 

a. If f(xi)> f(pi) then pi  xi 
b. pg= max (pneighbours) 
c. update velocity 
d. update position 
e. end for 

iii. until termination criteria is met 

Kennedy and Eberhart, in a later work [50] introduced the 
Discrete Binary version of the PSO algorithm. In this 
algorithm the velocity of particle is described by the 
Hamming distance between the particle at time t and t+l. 
they defined vid for discrete space as the probability of bit 
xid taking the value 1. So, the Error! Reference source 
not found. remained unaltered in the discrete version 
except that now pid and xid belongs to {0, 1} and are 
discrete. Secondly, Vid, since it is a probability, is 
constrained to the interval {0.0, 1.0}. The resulting 
change in position then is defined by the following rule: 
 

If (rand() < S(vid)) 
  then xid = 1 

else xid = 0 
 
where, the function S(v) is a sigmoid limiting 
transformation and rand() is a quasi-random number 
selected from a uniform distribution in [0.0, 1.0]. From 
the results obtained they [50] concluded that binary 
particle swarm implementation is capable of solving 
various problems very rapidly. Also, they found that the 
discrete version of the algorithm extends the capabilities 
of the continuous valued one and is able to optimize any 
function, continuous or discrete. Higashi and Iba [40] 
presented a particle swarm optimization with Gaussian 
mutation that combines the idea of the particle swarm with 
concepts from evolutionary algorithms. They tested and 
compared this model with the standard PSO and standard 
GA. The experiments conducted on unimodal and 
multimodal functions gave the better results when PSO 
with Gaussian mutation is used in comparison with 
standard GA and PSO. Khanesar, Teshnehlab, and 
Shoorehdeli [53] introduced a novel binary particle swarm 
optimization.  

b. PSO Parameters 

Many researchers and scientists focused their attention to 
different parameters used in PSO to produce better results. 
Pederson, M. E. H. explains in Good Parameters for 
Particle Swarm Optimization [69] that particle swarm 

optimization has a number of parameters that determine 
its behavior and efficacy in optimizing a given problem. 

Shi and Eberhart [75] in late 90’s pointed out that for 
different problems, there should be different balances 
between the local search ability (pbest) and global search 
ability (gbest). Considering this they introduced a 
parameter called inertia weight (w), in Error! Reference 
source not found. as given in Error! Reference source 
not found. where, Error! Reference source not found. 
remained unchanged. 

))(())(()(*)1( 21 txptxptvwtv igiiii


     (3) 

Inertia weight introduced by [75] could be a positive 
constant or even a positive linear or nonlinear function of 
time. They performed various experiments to test the 
Schaffer’s f6 function, a benchmark function, and 
concluded that the PSO with the inertia weight in the 
range [0.9, 1.2] on average will have a better performance. 
They also introduced the concept of time decreasing 
inertia weight to improve the PSO performance. Also, Shi 
and Eberhart [75] introduced the idea to build a fuzzy 
system to tune the inertia weight on line. Clerc and 
Kennedy [13] pointed out that the traditional versions of 
the algorithm have had some undesirable dynamical 
properties especially the particle's velocities needed to be 
limited in order to control their trajectories. In their study 
they [13] also analyzed the particle's trajectory as it moves 
in discrete time, then progresses to the view of it in 
continuous time. On the basis of this analysis they 
presented a generalized model of the algorithm, 
containing a set of coefficients to control the system's 
convergence tendencies. They [13] introduced the 
constriction factor  that causes the convergence of the 
individual trajectory in the search space, and whose value 
is typically approximately 0.729. 

))]t(xp(),0(U))t(xp(),0(U)t(v[)1t(v ig2ii1ii


  (4) 

Here, 21  . Clerc’s analysis worked out using a 

condensed form of the formula given by Eq. (5). 
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Where   is the set of neighbors of the particle and kp


is 

the best position found by individual k [59]. In this model 
all the neighbors contribute to the velocity adjustment, the 
authors called it the fully informed PSO.  

Adriansyah and Amin [2] proposed a variation of PSO 
model where inertia weight is sigmoid decreasing; they 
called it Sigmoid Decreasing Inertia Weight. Parsopolus 
and Vrahatis [67] conducted various experiments on the 
benchmark problems to yield useful conclusions regarding 
the effect of the parameters on the algorithm’s 
performance. 
 
c. Neighborhood topologies 

Kennedy and Mendes [52] describes the particle swarm 
algorithm as a population of vectors whose trajectories 
oscillate around a region which is defined by each 
individual’s previous best success and the success of some 
other particle. Various methods have been used to identify 
“some other particle” to influence the individual.  In the 
original PSO algorithm the particle were influenced by its 
own position and the position of the particle that has 
found best value for the function. They used gbest and 
pbest topologies in combination to improve the 
performance of basic PSO and tested the algorithm on six 
standard benchmark functions keeping two factors in 
focus (i) Number of neighbors and (ii) Amount of 
clustering. The results suggested that the Von-Neumann 
topology (with and without self) did well where star and 
gbest (without self) were the worst [52]. Fig. 2 depicts 
different topological structures. The traditional particle 
swarm topology gbest as described by Mendes, Kennedy 
and Neves [59] treats the entire population as the 
individual’s neighborhood; all particles are directly 
connected to the best solution in the population. Whereas, 
the neighborhood of individual in the pbest type 
sociometry is comprised of the adjacent members of the 
population array. It is the slowest and most indirect 
communication pattern. According to Kennedy and 
Mendes [52] it has been thought that the gbest type 
converges quickly on problem solutions but has a 
weakness for becoming trapped in local optima, while 
pbest populations are able to flow around local optima, as 
subpopulations explore different regions. They concluded 
that when distances between nodes are too short, and 
communication passes too quickly, the population 
converges very quickly to the best solution found in the 
early iterations. In this case the population will fail to 
explore outside of locally optimal regions. On the other 
hand, inhibiting communication too much results in 
inefficient allocation of trials, as individual particles 
wander clueless through the search space. Out of the 
neighborhood configurations they tested they 

recommended von Neumann sociometry that performed 
better than the standard ones on a suite of standard test 
problems. Mendes, R., Kennedy, J. and Neves, J. [60] 
introduced new ways that an individual particle can be 
influenced by its neighbors. Different topological 
structures are shown in  
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Fig. 2   Neighborhood Topologies. 

Mendes, Kennedy and Neves designed and studied several 
sociometries [60] i.e., gbest, pbest, four clusters, Von-
Neumann and pyramid (See  
 
 
 

 

 

 

 

 

 
Fig. ). Von-Neumann is a square lattice whose extremities 
connect as a torus; pyramid is a three dimensional wire-
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frame triangle as described by Mendes, Kennedy and 
Neves [60]. They used two measure of performance (a) 
Best functional result found after the fixed number of 
iterations. (b) Number of iterations needed for the 
algorithm to meet the criteria and employed five standard 
test functions. They found that the individual is not only 
influenced by the best individual in the neighborhood but 
also that the best results do not take into consideration the 
experience of the individual. They concluded that the von-
Neumann sociometry is a very good performer but the 
reason remained unanswered. Wang and Xiang [78] 
proposed a dynamically changing ring topology, in which 
particles have unidirectional connection with respect to 
their personal best fitness. Meanwhile, two strategies, 
namely the “Learn From Far and Better Ones” strategy 
and the “Centroid of Mass” strategy are used to enable 
certain particle to communicate with its neighbors. 
Experimental results on six benchmarks functions validate 
the effectiveness of the proposed algorithm [78]. Ghosh, 
Kundu, Kaushik, Das, Abraham, Panigrahi and Snasel 
[34] took first step towards the probabilistic analysis of 
the pbest PSO with variable random neighborhood 
topology by addressing issues like inter-particle 
interaction and probabilities of selection based on particle 
ranks. Hamdan [37] hybridized star, ring and Von-
Neumann topologies to get better results. According to 
this algorithm the particle will compute its velocity 
according to all the topologies separately and will update 
its velocity according to the best suited topology. So, the 
particle will choose the best for itself. According to the 
author this algorithm performed better on nine standard 
test functions and has faster convergence speed in 
comparison to other strategies that exists.  
 
d.   Dynamic Environments 

Many real world applications are dynamic that requires an 
optimization algorithm to have a property to continuously 
track the changing position of the goal. Carlisle and 
Dozier [10] proposed a method for adapting the particle 
swarm optimizer for dynamic environments. The process 
consists of causing each particle to reset its record of its 
best position as the environment changes, to avoid making 
direction and velocity decisions on the basis of outdated 
information. Two methods for initiating this process are 
examined: (i)Periodic resetting, based on the iteration 
count, and (ii)Triggered resetting, based on the magnitude 
of change in environment. The preliminary results suggest 
that these two modifications allow PSO to search in both 
static and dynamic environments. Hu and Eberhart [42] 
modified PSO to track changes in a dynamic system 
automatically. They tested different environment detection 
and response techniques on two benchmark functions. 
Also, they introduced re-randomization to respond to the 

dynamic changes. In another study they introduced an 
adaptive PSO [42] which automatically tracks various 
changes in a dynamic system. Blackwell and Branke [6] 
explored different variants of PSO that works well in the 
dynamic environments. Their main idea is to split the 
population of particles into a set of interacting swarms. 
These swarms interact locally by an exclusion parameter 
and globally through an anti convergence operator. The 
multi-swarm algorithm evaluated on multimodal dynamic 
moving peaks benchmark functions gives the results 
showing that the multi-swarm optimizer significantly 
outperforms previous approaches. Janson and Middendorf 
[46] compared dynamic variants of standard PSO and 
Hierarchical PSO (H-PSO) on different dynamic 
benchmark functions. Also, they proposed a hierarchical 
PSO, called Partitioned H-PSO (PH-PSO). In PH-PSO 
algorithm the hierarchy is partitioned into several sub-
swarms for a limited number of generations after a change 
occurred. The test results show that H-PSO performs 
significantly better than PSO on all test functions and that 
the PH-PSO algorithms often perform best on multimodal 
functions where changes are not too severe.  

In a later study on noisy and dynamic environment Janson 
and Middeendorf [47] studied Particle Swarm 
Optimization method for dynamic and noisy function 
optimization. PH-PSO maintains a hierarchy of particles 
that is partitioned into several sub-swarms for a limited 
number of generations after a change of the environment 
occurred. A standard method for metaheuristics to cope 
with noise is to use function re-evaluations. They 
proposed a method to reduce the number of necessary re-
evaluations which uses the hierarchy to find a subset of 
particles for which re-evaluations are particularly 
important. They also presented a method to detect changes 
of the optimization function in the presence of noise. 
 
e. Particle Swarm Optimization Algorithm for 

Multiobjective Optimization Problems 

Particle Swarm Optimization Techniques have 
applications in a variety of area such as Clustering 
Analysis [12], Multiobjective Optimization Problems [14], 
[43], [44], [45], [63], [65], [81], Neural Network Training 
[58] etc. In this section we will focus our attention to the 
application of PSO to Multi-objective Optimization 
Problems. Parsopolus and Vrahatis presented first study of 
the Particle Swarm Optimization method in 
Multiobjective Optimization Problems in [68]. They 
studied the ability of PSO to detect Pareto Optimal points 
and capture the shape of the Pareto Front. They 
considered Weighted Aggregation technique with fixed or 
adaptive weights. Also, they adapted critical aspects of the 
VEGA approach for Multiobjective Optimization using 
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Genetic Algorithms to the PSO framework in order to 
develop a multi-swarm PSO that can cope effectively with 
multi objective problems.  

Hu, Eberhart and Shi [43] presented a dynamic 
neighborhood particle swarm optimization algorithm for 
multiobjective optimization problems. They introduced an 
extended memory to store global Pareto optimal solutions 
to reduce computation time. Li [57] introduced a modified 
PSO, Non-dominated Sorting Particle Swarm Optimizer 
(NSPSO), for better multiobjective optimization. NSPSO 
extends the basic form of PSO by making a better use of 
particle’s personal bests and offspring for more effective 
non-domination comparisons. Instead of a single 
comparison between a particle’s personal best and its 
offspring, NSPSO compares all particle’s personal bests 
and their offspring in the entire population. This proves to 
be effective in providing an appropriate selection pressure 
to propel the swarm population towards the Pareto-
optimal front. By using the non-dominated sorting concept 
and two parameter-free niching methods, results and 
comparison with NSGA II show that NSPSO is highly 
competitive with existing evolutionary and PSO 
multiobjective algorithms. 

Coello, Pulido and Lechuga [15] introduced the concept 
of Pareto dominance into particle swarm optimization in 
order to allow it to handle problems with several objective 
functions. This modified algorithm uses a secondary 
repository of particles that is later used by other particles 
to guide their own flight. They also incorporated a special 
mutation operator that enriches the exploratory 
capabilities of the algorithm. Persopolus, Tasoulis and 
Vrahatis [65] studied a parallel version of the Vector 
Evaluated Particle Swarm Optimization (VEPSO) method 
for multiobjective problems and performed experiments 
on well known and widely used test problems. The 
obtained results yields the superiority of VEPSO when 
compared with the corresponding results of the Vector 
Evaluated Genetic Algorithm approach. Hwang, Koo and 
Lee [45] proposed a Homogeneous Particle Swarm 
Optimizer (HPSO) for multi-objective optimization 
problems. They proposed one global repository concept 
for choosing pBest and gBest, this means that each 
particle has lost its own identity and treated simply as a 
member of social group. They tested various kinds of the 
multiobjective optimization problem that illustrated the 
successful result in finding a Pareto optimal set. 
Parsopolus and Vrahatis [66] described the state of art 
literature on multiobjective PSO algorithms. They 
distinguished two fundamental categories of algorithms, 
(a) approaches that exploit each objective function 
separately and (b) Pareto-based schemes. The exposition 
of the methods for each category is based on 

chronological ordering. According to Xiao-hua, Hong-yun 
and Li-cheng [79] it is very important to find a sufficient 
number of uniformly distributed and representative Pareto 
optimal solutions for multiobjective optimization 
problems. They constructed a model for particle swarm 
optimization, and proposed an intelligent particle swarm 
optimization (IPSO) for MO problems, on the basis of 
AER (agent-environment-rules) model, in which 
competition operator and clonal selection operator are 
designed to provide an appropriate selection pressure to 
propel the swarm population towards the Pareto-optimal 
front. The quantitative and qualitative comparisons 
indicate that the proposed approach is highly competitive 
and that can be considered as a viable alternative to solve 
multiobjective objective problems. Koppen and Veenhuis 
[56] introduced a approach to multi-objective particle 
swarm optimization. The approach is based on the Fuzzy-
Pareto-Dominance (FPD) relation. FPD is a generic 
ranking scheme, where ranking values are mapped to 
element vectors of a set. These ranking values are directly 
computed from the element vectors of the set and can be 
used to perform rank operations (e.g. selecting the 
"largest") with the vectors within the given set. FPD can 
be seen as a paradigm or metaheuristic to formally expand 
single-objective optimization algorithms to multi-
objective optimization algorithms, as long as such vector 
sets can be defined. This was already shown for the 
Standard Genetic Algorithm. They applied this concept to 
PSO, where a swarm of particles is maintained. The 
resulting PSO algorithm studied on a fundamental 
optimization problem (Pareto-Box-Problem) is shown to 
handle the case of a larger number of objectives, and 
shows properties similar to single-objective PSO.  Kodru, 
Das and Welch described a PSO Nelder Mead Simplex 
hybrid multiobjective optimization algorithm [54] based 
on a numerical metric called ε-fuzzy dominance. In this 
approach, k-means algorithm is applied to divide the 
population into smaller sized clusters, while the position 
and velocity of each particle is updated using PSO, in 
every iteration. The Nelder Mead simplex algorithm is 
used separately within each cluster for added local search. 
The algorithm they proposed is shown to perform better 
than MOPSO on several test problems.  

Zhang and Xue [81] proposed a dynamic sub-swarms 
multi-objective particle swarm optimization algorithm 
(DSMOPSO). Based on solution distribution of multi-
objective optimization problems, it separates particles into 
multi subs warms, each of which adopts an improved 
clustering archiving technique, and operates PSO in a 
comparably independent way. Clustering eventually 
enhances the distribution quality of solutions. The 
selection of the closest particle to the gbest from archiving 
set and the developed pbest select mechanism increase the 
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choice pressure. In the meantime, the dynamic set particle 
inertial weight being relevant to the number of dominating 
particles, effectively keeps the balance between the global 
search in the early stage and the local search in the later 
stage. Experiments show that this strategy yields good 
convergence and strong capacity to conserve the 
distribution of solutions, especially for the problems with 
non-continuous Pareto-optimal front. Elhossini and Areibi 
[27] proposed an efficient particle swarm optimization 
technique based on the strength Pareto approach to deal 
with multi objective optimization problem. The proposed 
modified particle swarm algorithm is used to build three 
hybrid EA-PSO algorithms to solve different multi-
objective optimization problems. They tested these 
algorithm using seven benchmarks from the literature and 
compared the results to the strength Pareto evolutionary 
algorithm (SPEA2) and a competitive multi-objective 
PSO using several metrics. The proposed algorithm shows 
a slower convergence, compared to the other algorithms, 
but requires less CPU time. Combining PSO and 
evolutionary algorithms leads to superior hybrid 
algorithms that outperform SPEA2, the competitive multi-
objective PSO, and the proposed strength Pareto PSO 
based on different metrics.  

Minnebo in [61] explored various strategies for handling 
boundary constraints and guide selection. Additionally he 
explored the method to combine independent runs of the 
algorithm in order to obtain solutions of higher quality. 
Mostaghim and Teich [63] proposed a method using 
multi-objective particle swarm optimization to cover the 
Pareto optimal front. The method works in two phases. In 
phase 1 the goal is to obtain a good approximation of the 
Pareto-front. In a second run sub swarms are generated to 
cover the Pareto front. Omkar, Khandelwal, Ananth, Naik, 
Narayana and Gopalakrishnan [64] present a generic 
method for multi-objective design optimization of 
laminated composite components using a novel multi-
objective optimization algorithm developed on the basis 
of the Quantum behaved Particle Swarm Optimization 
(QPSO) paradigm. QPSO is a co-variant of the popular 
Particle Swarm Optimization and has been developed and 
implemented successfully for the multi-objective design 
optimization of composites. The problem is formulated 
with multiple objectives of minimizing weight and the 
total cost of the composite component to achieve a 
specified strength. Fan and Chang [28] proposed a 
technique to use particle swarm optimization algorithms to 
solve multi-objective optimization problems. Their 
algorithm is based on the concept of Pareto dominance, as 
well as a state-of-the-art ‘parallel’ computing technique 
that intends to improve algorithmic effectiveness and 
efficiency simultaneously. The results indicate that the 
algorithm proposed is extremely competitive when 

compared with other MOEAs, being able to accurately, 
reliably and robustly approximate the true Pareto front in 
almost every tested case. Sierra and Coello [76] proposed 
a Multi-Objective Particle Swarm Optimizer, which is 
based on Pareto dominance and the use of a crowding 
factor to filter out the list of available leaders. They also 
proposed the use of different mutation operators which act 
on different subdivisions of the swarm. Also, the approach 
incorporates the e-dominance concept to fix the size of the 
set of final solutions produced by the algorithm. The 
results indicate that the proposed approach is highly 
competitive, being able to approximate the front even in 
cases where all the other PSO-based approaches fail. 

f. Hybrid Particle Swarm Algorithm 

Researchers and scientists hybridized PSO with various 
different existing evolutionary and fuzzy concepts. 
Existing literature on these include [41] in which Hongbo, 
Abraham and Zhang states, that for multimodal problems 
involving high dimensions, the PSO algorithm tends to 
suffer from premature convergence. Analysis of the 
behavior of the particle swarm model reveals that such 
premature convergence is mainly due to the decrease of 
velocity of particles in the search space that leads to a 
total implosion and ultimately fitness stagnation of the 
swarm. They introduced turbulence in the Particle Swarm 
Optimization algorithm to overcome the problem of 
stagnation. The algorithm uses a minimum velocity 
threshold to control the velocity of particles. The 
parameter, minimum velocity threshold of the particles is 
tuned adaptively by a fuzzy logic controller embedded in 
the TPSO algorithm, which is further called as Fuzzy 
Adaptive TPSO (FATPSO). The results of the 
experiments performed illustrates that the FATPSO could 
prevent premature convergence very effectively and it 
clearly outperforms SPSO and GA. Premlatha and 
Natarajan [70] presented the hybrid approaches of Particle 
Swarm Optimization with Genetic Algorithm (GA). They 
proposed modification strategies in PSO using GA. The 
experimental results are show that the proposed hybrid 
models outperform the standard PSO. Settles and Soule in 
[74] proposed a novel hybrid GA/PSO algorithm, 
Breeding Swarms, combining the strengths of particle 
swarm optimization with genetic algorithms. The hybrid 
algorithm combines the standard velocity and position 
update rules of Crossover (VPAC), incorporating the PSO 
velocity vector. The VPAC crossover operator actively 
disperses the population preventing premature 
convergence. The comparison between the hybrid 
algorithm and the standard GA and PSO models show that 
the hybrid algorithm is highly competitive, often 
outperforming both GA and PSO.  
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3.3. Ant Colony Optimization Techniques 

Ant System (AS) can be applied to the optimization 
problems like traveling salesman problem [23], the 
quadratic assignment and job-shop scheduling [5]. The 
inspiring source of ACO is the foraging behavior of real 
ants. When searching for food, ants initially explore the 
area surrounding their nest in a random manner. As soon 
as an ant finds a food source, it evaluates the quantity and 
the quality of the food and carries some of it back to the 
nest. During the return trip, the ant deposits a chemical 
pheromone trail on the ground. The quantity of 
pheromone deposited, which may depend on the quantity 
and quality of the food, will guide other ants to the food 
source. The main principle behind these interactions is 
called stigmergy, or communication through the 
environment. An example is pheromone laying on trails 
followed by ants. Pheromone is a potent form of hormone 
that can be sensed by ants as they travel along trails. It 
attracts ants and therefore ants tend to follow trails that 
have high pheromone concentrations. This causes an 
autocatalytic reaction, i.e., one that is accelerated by itself. 
Ants attracted by the pheromone will lay more of the same 
on the same trail, causing even more ants to be attracted 
see Fig. 3. This characteristic makes swarm intelligence 
very attractive for routing networks, robotics and 
optimization. A number of extensions are proposed to the 
original ant algorithm. These algorithms performed better 
producing much improved results than the original ant 
algorithm. Deneubourg, Aron, Goss and Pasteels [21] 
explained that the workers of the Argentine ant 
(Iridomyrmex humilis) start to explore a chemically 
unmarked territory randomly. As the exploratory front  

 

 

 

 

 

 

 

Fig. 3   Path Optimization by Ants. 

advances, other explorers are recruited and a trail extends 
from it to the nest. Whereas recruitment trails are 
generally constructed between two points, these 
exploratory trails have no fixed destination, and strongly 
resemble the foraging patterns of army ants. A minimal 
model shows how the exploratory pattern may be 
generated by the individual worker’s simple trail laying 

and following behavior, illustrating how complex 
collective structures in insect colonies may be based on 
self-organization. Colorni, Dorigo and Meniezzo [16] 
explored the implications that the study of ants behavior 
can have on problem solving and optimization. They 
introduced a distributed problem solving environment and 
proposed its use to search for a solution to the travelling 
salesman problem. Later, Dorigo, M. Maniezzo, V. and 
Colorni, A. proposed ant colony optimization based on 
this foraging behavior of the ants in [26]. The main 
characteristics of this model are positive feedback, 
distributed computation, and the use of a constructive 
greedy heuristic. The basic algorithm introduced by them 
[18] is given by following steps: 
 

i. Set parameters, initialize the pheromone trails 
ii. while (termination condition not met) do  

a. Construct ants solutions 
b. Apply local search  
c. Update pheromones  

iii. end while 

Dorigo and Gambardella in [24] applied ant colony 
optimization to solve travelling salesman problem. They 
proposed [24] an artificial ant colony capable of solving 
the traveling salesman problem (TSP). Ants of the 
artificial colony are able to generate successively shorter 
feasible tours by using information accumulated in the 
form of a pheromone trail deposited on the edges of the 
TSP graph. Computer simulations demonstrate that the 
artificial ant colony is capable of generating good 
solutions to both symmetric and asymmetric instances of 
the TSP. The method is an example, like simulated 
annealing, neural networks, and evolutionary 
computation, of the successful use of a natural metaphor 
to design an optimization algorithm. Di Caro and Dorigo 
in [22] introduced a distributed algorithm that is applied to 
the traveling salesman problem (TSP). In his algorithm, a 
set of cooperating agents called ants cooperate to find 
good solutions to TSPs. Ants cooperate using an indirect 
form of communication mediated by pheromone they 
deposit on the edges of the TSP graph while building 
solutions. The results show that ACS outperforms other 
nature inspired algorithms such as simulated annealing 
and evolutionary computation. They concluded comparing 
ACS-3-opt, a version of ACS augmented with a local 
search procedure, to some of the best performing 
algorithms for symmetric and asymmetric TSPs. Dorigo, 
Di Caro and Gambardella [25] presented algorithms for 
discrete optimization that took inspiration from the 
observation of ant colonies foraging behavior, and 
introduces the ant colony optimization metaheuristic. 
Guntsch and Middendorf [36] investigated strategies for 
pheromone modification of ant algorithms in reaction to 
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the insertion/deletion of a city of Traveling Salesperson 
Problem instances. They proposed three strategies for 
pheromone diversification through equalization of the 
pheromone values on the edges. One strategy acts globally 
without consideration of the position of the 
inserted/deleted city. The other strategies perform 
pheromone modification only in the neighborhood of the 
inserted/deleted city, where neighborhood is defined 
differently for the two strategies [3]. The Probabilistic 
Traveling Salesman Problem (PTSP) is a TSP problem 
where each customer has a given probability of requiring 
a visit. The goal is to find an a priori tour of minimal 
expected length over all customers, with the strategy of 
visiting a random subset of customers in the same order as 
they appear in the a priori tour. 

Gottlieb, Puchta and Solnon [35] described and compared 
several heuristic approaches for the car sequencing 
problem. Yaseen and AL-Salami [80] introduced ACO as 
a distributed algorithm and applied it to solve Traveling 
Salesman Problem. 

4. Conclusion 

Although there are many techniques in literature to solve 
multiobjective optimization problems such as 
Evolutionary Algorithms, Particle Swarm Optimization 
Technique, Ant Colony Optimization and the Hybrid 
Algorithms of all these techniques but the best technique 
to handle the multiobjective optimization problems is not 
yet clear. The result of different algorithms depends upon 
different parameters of the respective algorithms but it is 
to be discovered that exactly in which ways these factors 
are to be altered to get better result for different kind of 
problems and how will a solution seeker set the 
parameters in the chosen algorithm to get the best result in 
minimum number of iterations.  

5. Future Scope 

In this paper we reviewed various techniques to solve 
multiobjective optimization problems (MOOPs) such as 
Evolutionary Algorithms (EAs), Particle Swarm 
Optimization (PSO), Ant Colony Optimization (ACO) and 
their various versions. Firstly MOOPs are described and 
categorized into two general approaches viz., Classical 
Approach (preference-based multi-objective optimization) 
and Ideal Approach (Pareto optimal approach). Both of 
these techniques are explained briefly. Considering EAs, 
PSOs and ACOs as the possible efficient solutions to 
these problems, these techniques are also described and 
work done by various researchers in this area are listed as 
a literature review. Suitability of these three techniques to 

particular types of problems is also established. Thus, we 
found that there is no technique that can be categorized 
clearly as the best techniques to solve the MOOPs. Some 
techniques are better for one kind of problems while some 
others are better for other kind of MOOPs. Also, the 
performance of these algorithms depends on various 
parameters used in the respective algorithms, and the 
choice of values of these parameters also depends on the 
problem in hand. 
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