
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org

45

Efficient Application-Level Causal Multicasting for Pre-Planned
Sensor Networks Using Resynchronization Method

Chayoung Kim1 and Jinho Ahn2*

 1 Contents Convergence Software Research Center, Kyonggi University
Suwon, Gyeonggi-do 443-760, Republic of Korea

2 Dept. of Computer Science, College of Natural Science, Kyonggi University
Suwon, Gyeonggi-do 443-760, Republic of Korea

Abstract
In this paper, we present a causal order guaranteeing multicast
protocol based on sensor brokers as publishers that aggregate the
information of results in sensor networks, periodically gossiping
about the result messages to the query nodes according to their
interesting topics. Although subscribers’ join and leave are
highly perturbed in such sensor networks, some sensors can form
overlapping multicast groups and query nodes as subscribers
receive the results of the queries based on gossip-style
dissemination. Each sensor broker manages a vector for each
overlapping multicast group that represents its knowledge for
every member of the group, and uses a vector whose dimension
is the number of groups to time-stamp message. Each sensor
broker needs piggybacking only one value per group for each
message, which carries only one vector. Also, the broker makes
information of the causally ordered delivery list and attaches the
list to all messages. It gossips about them to their subscribers in
overlapping multicast groups Therefore, this protocol guarantees
causally ordered delivery of messages in a highly reliable manner
using gossip-style dissemination technique.
 Keywords: Sensor Network, Reliable Group Communication,
Overlapping Groups, Scalability, Resynchronization.

1. Introduction

Wireless sensor networks(WSNs) are gaining high
attention from academia and industry with its potentially
infinite applicability to a lot of areas, being actively
researched for energy-efficiency and optimization in
various aspects. Their architectural styles are categorized
in two approaches, structured and unstructured. An
unstructured WSN is one that constrains a dense collection
of sensor nodes, deployed in an ad hoc manner into the
field. A structured WSN consists of all or some of the
sensor nodes which are deployed in a pre-planned manner
[18]. Especially, in terrestrial pre-planned deployment,
there is grid placement, optimal placement, 2-d and 3-d
placement model [18]. The challenge is how to gain the

most meaningful information from the data collected by
the distributed sensor nodes, to make decisions in a
reliable and efficient manner. Therefore, the
implementation of the communication protocols such as
data aggregation, data propagation and collaborative
interaction processing, explored as sensor network services,
can significantly affect energy consumption and end-to-
end delay in WSNs [13, 18]. Data aggregation and
compression reduce communication cost and increase
reliability of data transfer and aid in reducing the amount
of data to be transferred [13, 18]. And these above
applications in WSN need a variety of collaboration
features, such as chat windows, white boards, p2p video
and other media streams, and coordination mechanisms
[13, 14, 15, 18]. Therefore a new data dissemination
paradigm for such sensor networks is required to handle
data propagation and aggregation generated by a very
large number of sensor nodes in an efficient manner [10,
16]. There are several researches based on the P
(publish)/S (subscribe) paradigm in the area of sensor
network communications to address the problem of
querying sensors from subscribing nodes in order to
minimize the number of sent result packets [10, 16]. In P/S
paradigm systems, a query node periodically runs an
algorithm to identify the sensors it wishes to track and
"subscribe" to these sensors of its interesting topics, and
the sensors periodically "publish" [10, 16]. In a grid cell of
WSN, sensor nodes might lead to making overlapping
multicast groups organized by subscriber's interests and
using this grouping, a priori known to all subscriber nodes,
query nodes can be quite easily mapped onto topics [16].
These overlapping groups are prevailing in such networks
and forcing researchers to reconsider issues about novel
types of group communication facilities to satisfy the
complicated requirements stated earlier [16, 18]. In this
paper, we present a causal order guaranteeing multicast
protocol based on sensor brokers as publishers that
aggregate the information of results in sensor networks,

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org

46

periodically gossiping about the result messages to the
query nodes to subscribe according to their interest topics.
Although subscribers join and leave are highly perturbed
in such sensor networks, some sensors can form
overlapping multicast groups and query nodes as
subscribers receive the results of the queries based on
gossip-style dissemination. Each sensor broker manages a
vector per overlapping multicast group, that represents its
knowledge for each member of the group and use a vector
whose dimension is the number of groups to time-stamp
message. Each sensor broker needs for each message
piggybacking of only one value per group, so a message
carries only one vector. Also, the broker makes
information of the causally ordered delivery list and
attaches the list to all messages. It gossips about them to
their subscribers in overlapping multicast groups. This
protocol guarantees causally ordered delivery of messages
in a highly reliable manner using gossip-style
dissemination protocols, yet still achieving high degree of
both scalability and reliability rather than those of the
protocols by traditional reliable group communication.

2. System Model

In the distributed system, a group consists of a set of
processes. Processes join and leave the system
dynamically and have ordered distinct identifiers. The
process maintains a local membership list called a "local
view". It can send unicast messages to another process
through the communication network. A finite set of
processes communicate only by exchanging messages over
a fully connected, point-to-point network. Processes
communicate using the primitives send(m) and receive(m).
Communication links are fair-lossy, but correct processes
can construct reliable communication links on top of fair-
lossy links by periodically retransmitting messages. Each
member performs operations according to a local clock.
Clock rates at all members are the same. Runs of the
system proceed in a sequence of rounds. Members may
undergo two types of failures, both probabilistic in nature.
The first is process failure. There is an independent, per-
process probability of at most � that a process has a crash
failure during the finite duration of a protocol. Such
processes are called faulty. Processes that survive despite
the failures are correct. The second type of failures is
message omission failure. There is an independent, per-
message probability of at most δ that a message between
non-faulty processes experiences a send omission failure.
The union of all message omission failure events and
process failure events are mutually independent. For
simplicity, we do not include process recovery in the
model. Also, we expect that both � and δ are small
probabilities. There are no malicious faults, spurious

messages, or corruption of message i.e. we do not consider
Byzantine failures.
In proposed protocols, a group of processes is defined
through two primitives, PMCAST and PDELIVER, which
use gossip protocols to provide probabilistic reliability in
networks. Processes communicate with these two pairs of
primitives, PMCAST and PDELIVER, which model
unreliable communication associated with probability of
successful message transmission. We refer to probability
as the expected reliability degree. These primitives are as
follows: (Integrity) For any message m, every correct
process PDELIVER m at most once, and only if m was
previously PMCAST by send(m). (Validity) If a correct
process p PMCASTs a message m then p eventually
PDELIVERs m. (Probabilistic Agreement) Let p and q be
two correct processes. If p PDELIVERs a message m, then
with the probability of , q PDELIVERs m. In other terms,
the only probabilistic property is Agreement. This
probabilistic notion of agreement also captures a weakly
consistent membership of local view, typical for large
scale settings.

3. The New Application-Level Causal
Multicast

3.1 Basic Idea

We assume that in our proposed protocol based on sensor
brokers, some sensors designed as brokers can form
overlapping multicast groups and query nodes subscribe to
the brokers publishing their interest topics. The mapping
of subscribers and brokers (publishers) is entirely driven
by the application matching their interest queries. Recently,
much research has been devoted to designing broker
selection methods that best suits application needs [10, 16].
Common sensors can update information periodically to
some of its brokers based on gossip communication
protocols or other highly reliable communications and the
brokers might aggregate the query results by combining
reports from several sensors [10, 16]. There is a two-
dimensional area of interest (AoI), which the sensor broker
publishes messages to a particular topic, while query nodes
subscribe to all the topics that match their interests. It is
possible that there are two or more brokers in a grid and
each broker can know every other broker. All brokers
representing a sensor grid and having interests of their
subscribers can participate in overlapping multicast groups.
But, if all subscribers in a grid lose their interests in
information published on a particular topic, the brokers
representing the grid send leave messages to the
corresponding overlapping multicast groups and then all of
their group members are updated by leaving brokers. The
sensor brokers periodically gossip about the messages of
the results, while guaranteeing the message delivery order,

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org

47

such as causally ordered delivery, with aggregating the
information of the results in overlapping multicast groups.
In this protocol based on sensor brokers, we present a
causal order guaranteeing multicast protocol supporting
overlapping multicast groups and useful for distributed
applications with a variety of collaboration features, such
as chat windows, white boards, p2p video and other media
streams, and coordination mechanisms requiring causally
ordered delivery of messages. In this protocol, because
every broker knows every other brokers, it manages a
vector per group, that represents its knowledge for each
member of the group, of the number of message multicast
by this member within this group, as same as a member in
the protocol of Birman et. al. [2]. In the protocol [2], each
member, pi has to manage a vector per group and each
message has to piggyback the whole set of these vectors. It
is correct but expensive. Therefore, we propose the
protocol similar to that of [12] that needs for each message
piggybacking of only one value per group. So a message
carries only one vector whose dimension is the number of
groups. There is a trade-off between the optimality in
terms of the delay in the delivery of messages and the size
of vectors carried by messages. The choice of a particular
protocol actually depends on various kinds of factors in the
distributed applications [12].
For data dissemination between sensor brokers as
publishers and subscribers, every sensor broker makes the
causally ordered delivery list by aggregating information
based on VTs of overlapping multicast groups and attaches
the list to all messages. It gossips about the result
messages with the causally ordered delivery list to their
subscribers and periodically updates the digest information
of causally ordered delivery list using gossip protocols.
Therefore, this proposed protocol might result in its very
low cost compared with the cost incurred by traditional
reliable group communication protocols [2] because this
protocol makes up transient message losses between
publishers and subscribers and deals with subscribers’
leave using gossip communication protocols[16]. That is,
the processing of traditional group communication
protocol [2] is different from that of the protocol based on
gossip [3, 5]. This assumption has led to rigorously
establish many desirable features of gossip protocols like
scalability, reliability, and efficiency and a wide range of
higher functions, which include information dissemination,
aggregation, and network management [10, 16].

Fig. 1 An example of each sensor broker publishing messages to
subscribers by gossip-style disseminations

3.2 Detailed Description

In figure 1, we can see that each sensor broker A12
1, B

12
4

involved in overlapping multicast groups, Group1 and
Group2, respectively in a grid A and B of a sensor network.
Each broker publishes desired messages of query results to
all query nodes subscribing to their brokers based on
interest topics by gossip-style disseminations. Figure 2
shows that all sensor brokers implement the rules that
guarantee causally ordered delivery of messages in a
sensor network like in Fig. 1. In this paper, we implement
the protocol similar to that of [12] in each broker. In figure
2, Gi is the set of groups that pi is member of.

Fig. 2 An example of each sensor broker processing the information for
the causally ordered delivery based on the highest time-stamped value

and each vector per group

Each sensor broker pi manages a local array
expectedgx

i[1..n](initialized to (0, ..., 0)) where n is the
number of broker members constituting the group, gx; an
entry has the following meaning: [12]

for gx Gi, pj gx :
expectedgx

i[j] = : It indicates pi's knowledge that the next
timestamp used by pj to multicast within gx will be greater
or equal to .

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org

48

In order to guarantee causally ordered delivery of
messages, each pi manages a vector Ki of size |G| (one
entry per group) and uses the vector Ki to timestamp
messages. The meaning of Ki initialized to (0, ..., 0) is as
follows:

Ki[x] = : is the highest timestamp value concerning gx
and known by pi.
If pi gx , Ki[x] = expectedgx

i[i] holds[12].

This "expectedg1

1 = (0, 0,*)" means as follows: "process p1
belongs to g1 and each entry, p1 and p2 is a member of
group g1 and p3 does not participate in the group g1". For
each message generated by a member, each vector,
expectedgx

i[j] and Ki[x] is incremented by one respectively.
So, if a member p1 belonging to g1 generates a multicast
message, then expectedg1

1 and K1 is (1, 0, *) and (1, 0)
respectively. In the causal order of p1(m1

g1)->p2(m2
g2)-

>p2(m3
g2) of Fig. 3, sensor brokers aggregate the

information about the causally ordered delivery list based

on the following condition becoming true: for ∀gx Gi,

∀pj gx : expectedgx
i[j] Ki[x]. When p3 knows there is a

message m2
g2 preceding m3

g2 by verifying piggybacked
vector information, p3 should delay the delivery of the
message m3

g2 after the receipt of the predecessor, m2
g2.

Fig. 3 An example of each sensor broker gossiping about messages

including a causal order delivery list for subscribers

Figure 3 shows that all sensor brokers gossip about
messages piggybacking a causal order delivery list to
subscribers associated with their interesting topics. This
example of Fig. 3 illustrates sensor brokers(publishers) ,
g1={p1,p2} and g2={p2,p3} and subscribers={s1,s2,s3,s4}.
The subscribers={s2,s3}, overlapped in two groups receive

all messages from g1 and g2. Subscriber s1 receives
messages only from g1 and s4 receives messages only from
g2. On receiving gossip messages, a subscriber validates its
receipt of predecessor messages according to causal order
delivery list, m1

g1->m2
g2->m3

g2 piggybacked by the
messages. Also, there are undesired messages are sent to a
subscriber, forcing it to discard them. When s1 belonging
to g1 receives gossip messages from broker p2, it discards
m2

g2 and m3
g2 without delivering them to the application

layer because s1 does not belong to g2. Subscriber s2
requests m1

g1 to the latest gossip sender after receiving
m2

g2 and m3
g2 because it knows that the predecessor, m1

g1 is
not received by verifying piggybacked causal order list,
m1

g1->m2
g2->m3

g2 . Subscribers4 requests m2
g2 to the latest

gossip sender after receiving m3
g2 but it discards m1

g1
because it does not belong to g1.
Figure 4 shows that a sensor broker, pi implements the
proposed protocol in this paper. In procedure INITIALIZE,
pi initializes vectors expectedgx

i[j] and Ki[x] for each group
gx. In procedure SEND_MULTICAST, pi sends multicast
messages to broker members constituting each group, gx.
In procedure SEND_GOSSIP, pi gossips about multicast
messages to subscribers randomly selected as gossip-
targets in its local view. If there are no new messages, pi
gossips about the summary of causal order delivery list. In
procedure RECEIVE_RESYNCH, on receiving resynch
(the highest timestamp information) message from pj, pi
updates expectedgx

i[j] accordingly, like the protocol of [12].
In procedure RECEIVE_MULTICAST, pi receives
multicast messages from pj and processes them according
to piggybacked vectors. So, pi puts the received message
into the Pending_List and then updates expectedgx

i[j] to
k+1. If necessary, expectedgx

i[j] is updated and the new
timestamp is multicast using resynch message. If the

delivery condition, ∀gx Gi, ∀pj gx : expectedgx
i[j] Ki[x]

is satisfied and the message is delivered to the application
layer. In procedure SEND_SOLICITATION, subscriber si
requests the not-received predecessor messages to the
latest gossip sender, pi, after verifying piggybacked causal
order list from sensor broker pi. In procedure
RECEIVE_SOLICITATION, on receiving solicitation
message, pi gossips about the requested messages by
attaching causal order lists to the subscriber si.

4. Performance Evaluation

In this section, we compare average throughput of our
protocol based on gossip-style dissemination protocol
between sensor brokers and subscribers with that of a
previous protocol based on traditional reliable group
communication using resynch messages carrying a
timestamp indicating that the next phase in a member will
possibly send messages [12]. In this comparison, we rely

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org

49

on a set of parameters referred to Bimodal Multicast [3]
and LPBCast [5] for gossiping parameters.
And we assume that processes gossip in periodic rounds,
gossip period is constant and identical for each process and
maximum gossip round is log N. The probability of
network message loss is a predefined 0.1% and the
probability of process crash during a run is a predefined
0.1% using UDP/IP. The group size of each sub-figure is
32(2), 64(4), 128(8) and 256(16).

Fig. 4 Formal form of our proposed protocol

Procedure INITIALIZE

Expected[i]gx (Vector timestamp for each group gx,)
K[gx] (MAX timestamp values for each group gx)

Procedure SEND_MULTICAST
for all interest groups, x do
Unreliable_Multicast(msg, K[gx], x) to gx
Expected[i]gx = Expected[i]gx + 1
K[gx] = Expected[i]gx

Procedure SEND_GOSSIP
select subscribers as gossip-target in Local_View
for each subscriber do
DIGEST = the summary of delivered msgs in causal order
Gossip_MSG(msg with DIGEST)
if Periodically GOSSIP then
Gossip_MSG(DIGEST)
do Garbage_Collection

Procedure RECEIVE_RESYNCH(time)
Expected[j]gx = timestamp

Procedure RECEIVE_MULTICAST
put (msg, K[gx], x) in Pending_List
Expected[j]gx = K[gx] + 1
if Expected[i]gx < K[gx] + 1 then
Expected[i]gx = K[gx] + 1
Ki[gx] = K[gx] + 1
Multicast_Resynch(K[gx] + 1)
for every msg in Pending_List do
for all interest groups, x do
Expected[j]gx >= K[gx] then
deliver msg to the application
remove msg from Pending_List
Ki[gy]=max(K[gy],Ki[gy]) in all groups, y, not interested
call Procedure SEND_GOSSIP

Procedure SEND_SOLICITATION
check DIGEST piggybacked with msg
if there are msg, not received then
call for SOLICITATION to the Sensor_Broker

Procedure RECEIVE_SOLICITATION
DIGEST = the summary of delivered msgs in causal order
Gossip_MSG(msg with DIGEST) to the Subscriber

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org

50

Figure 5 shows the average throughput as a function of
perturb rate for various group sizes. The x-axis is the
group size (the number of overlapping groups) and the y-
axis is the number of messages processed in the perturb
rate, (a)20%, (b)30%, (c)40% and (d)50%. In the four sub-
figures from 6(a) to 6(d), the average throughput of
causally ordered delivery protocol based on sensor
broker(publishers) by gossiping about messages to
subscribers is not a rapid change than that of the protocol
based on traditional reliable group communication by
resynch messages [12] among members. Especially, the
two protocols are compared to each other in terms of
scalability by showing how many members execute by
phases; in each phase each member multicasts exactly one
message. In perturbed networks with members join and
leave, synchronous multicast-based executions [12] are
very expensive because events of sending and receiving
messages are governed by application that do not always
progress synchronously.

Fig. 5 Simulation results

The proposed protocol based on sensor brokers is more
scalable because communications between brokers
(publishers) and subscribers are based on gossip-style
disseminations and sensor brokers among themselves use
traditional reliable group communications. We know that
which approach is more preferable depends on the user
applications. If the underlying network is a communication
bus, multicasting resynch messages to all the other
members consists of only one operation. But, in the
network layers not using some sort of ACK mechanism to
ensure reliability, such a use of additional resynch message

is very expensive. In gossip-style dissemination networks,
there is no ACK mechanism because members periodically
gossip about the summary of received messages. So, we
argue that gossip-style dissemination approach outperform
computations in a distributed fashion without any
synchronous computation and in terms of memory
overhead. There are no needs of big memory between
brokers (publishers) and subscriber because subscribers
receive aggregated causal order delivery list from them
without any information of computation.

5. Related Work

Recently, there is a multicast platform based on gossip
technique, Quicksilver Multicast Platform [15]. QSM is
built in two layers. One extends a system such .NET to
support live objects by embedding them in the .NET
common language runtime, as well as focusing on the
hooks connecting the objects to the .NET type system and
the Windows shell (the GUI that interprets mouse actions).
Quicksilver's second layer provides the scalable and
extensible communication infrastructure needed to make
the objects "live" and "distributed" [14]. Live distributed
objects [14] are designed to offer developers a scalable
multicast infrastructure such as QSM that's tightly
integrated with a runtime environment. A live object can
be understood as a distributed mechanism through which a
group of software components communicate with each
other, share data, exchange events, and coordinate actions
in a decentralized, p2p fashion. A live object can represent,
for example, a streaming video, a news channel, a
collaboratively edited document, a replicated variable, or a
fault-tolerant service. If live objects were to take off, they
could be the gateway to an active, trustworthy Web. An
active Web based on live objects could be a world with
millions of IPTV streams and live electronic health records
that integrate regional medical providers, or banking
systems that could trade "live" financial instruments. And
such kind of collaborative applications will need to
combine two types of content: traditional web service
hosted content, such as data from geographic and
topologic map servers, image repositories, and other
databases, with a variety of collaboration features, such as
chat windows, white board, p2p video and other media
streams, and coordination mechanisms [9].
Early work in gossip-style protocol, Birman et al. [3]
proposes bimodal multicast thanks to its two phases: a
"classic" best-effort multicast such as IP multicast is used
for the first rough dissemination of messages. The second
phase assures reliability with a certain probability by using
a gossip based retransmissions. But Lpbcast [5] proposes
gossip-style broadcast membership mechanisms based on
a partial view without a global view. Each process has a
randomly chosen local view of the system. Lpbcast [5] is a

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org

51

completely as a decentralized membership protocol
because of no dedicated messages for membership
management based on gossips. In P. Eugster et. al. [6], the
protocol deals with the case of multicasting events only to
subsets of the processes in a large group by relying on a
specific orchestration of process as a superimposition of
spanning trees.
As a fundamental problem in distributed computing, much
effort has been invested in solving atomic broadcast. Early
work such as [2] mostly focuses on stronger notions of
Agreement and also membership than the proposed
protocols discussed in this paper. Also, there are some
works to solve atomic delivery order in gossip-style
protocol such as atomic probabilistic broadcast (apbcast)
[7], a hybrid approach implemented for publish/subscribe
programming. Its deterministic ordering of messages
ensures the consistency of the delivery order of broadcast
messages and its probabilistic propagation of broadcast
messages and order information provides a high level of
reliability in the face of an increasing number of process
failures because of more heroic efforts by making use of
the membership of delegates. Probabilistic Atomic
Broadcast (pabcast) [8] is fully probabilistic by mixing
message atomic ordering and propagation, basing these on
gossips without a membership of delegates. But, a
promising approach for increasing scalability is to weaken
the deterministic ordering guarantees to make the
properties of dependencies between broadcast messages
probabilistic. Also, it does not give the guarantees
achieved for the consistency of the delivery order of
overlapping groups.
To ensure the causal order in [2], each process manages a
vector of integers per group and each message is time-
stamped with the whole set of vectors of the sending
process. This protocol is correct but expensive. So, in [12],
the paper proposes a protocol that needs for each message
the piggybacking of only one value per group, so a
message carries only one vector of integers whose
dimension is the number of groups. In a real system, the
choice of a particular protocol actually depends on several
factors. We use the protocol, like that of [12] because our
protocol stands for structured sensor networks in a pre-
planned manner.
And there are researches based on the P (publish)/S
(subscribe) paradigm in the area of sensor network
communications to approach the problem of querying
sensors from mobile nodes [10, 16]. Directed Diffusion
[10] can be seen as publish-subscribe mechanism, which is
implemented using the tree-based architecture rooted at the
publisher. SENSTRACT [16] is mapping from queries to
topics and the corresponding underlying sensor network
structure. SENSTRACT [16] is a tree-based P/S system
structured by service providers as roots, representing one
of the data-centric routing protocols for data dissemination
of sensor networks. Cross Reality is about connecting

"location-specific 3D animated constructs" in virtual
worlds to in-building sensors [11]. MIT has also created a
whole portal network that maps sensors to virtual worlds,
called the Ubiquitous Sensor Portal [11]. There are 45
portals currently in the Media Lab, each one featuring a
myriad of environmental sensors - such as motion, light
and sound level, vibration, temperature, and humidity.
They have a small touch-screen display and audio speaker,
for user interaction.

6. Conclusions

In this paper, we present a causal order guaranteeing
multicast protocol based on sensor brokers as publishers
that aggregate the information of results in sensor
networks, periodically gossiping about the result messages
to the query nodes to subscribe according to their interest
topics. Although subscribers join and leave are highly
perturbed in such sensor networks, some sensors can form
overlapping multicast groups and query nodes as
subscribers receive the results of the queries based on
gossip-style dissemination. Each sensor broker manages a
vector per overlapping multicast group that represents its
knowledge for each member of the group, and uses a
vector whose dimension is the number of groups to time-
stamp message. Each sensor broker needs for each
message piggybacking of only one value per group, so a
message carries only one vector. Also, the broker makes
information of the causally ordered delivery list and
attaches the list to all messages. It gossips about the
aggregated result messages based on topics with the
information of causal order list to their subscribers.
Therefore, this protocol guarantees causally ordered
delivery of messages in a highly reliable manner using
gossip-style dissemination protocols, yet still achieving
high degree of both scalability and reliability rather than
those of the protocols by traditional reliable group
communication.

References
[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“A survey on Sensor Networks”, IEEE Communications
Magazine. Vol. 40, No. 8, 2002, pp. 102-114.
[2] K. Birman, A. Schiper and P. Stephenson, "Lightweight
Causal and Atomic Group Multicast", ACM Transactions on
Computer Systems, Vol.9, No.3, pp.272-314, 1991.
[3] K. Birman, M. Hayden, O. Ozkasap. Z. Xiao, M. Budiu and
Y. Minsky, "Bimodal Multicast," ACM Transactions on
Computer Systems, Vol.17, No.2, pp.41-88, 1999.
[4] D. Culler, D. Estrin, and M. Srivastava, “Overview of Sensor
Networks”, IEEE Computer, Vol. 37, No. 8, pp.41-49, 2004.
[5] P. Eugster, R. Guerraoui, S. Handurukande, P. Kouznetsov,
and A.-M. Kermarrec, "Lightweight probabilistic broadcast",

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org

52

ACM Transactions on Computer Systems, Vol.21, No.4, pp.341-
374, Nov. 2003.
[6] P. Eugster and R. Guerraoui, "Probabilistic Multicast",
Proceedings of the 2002 International Conference on Dependable
Systems and Networks, pp.313-324, Vienna, Austria, June 2002.
[7] P. Eugster, "Atomic Probabilistic Broadcast", EPFL,
IC_TECH_REPORT_200303.
[8] P. Felber, and F. Pedone, “Probabilistic Atomic Broadcast”,
in Proceedings of 21st IEEE Symposium on Reliable Distributed
Systems (SRDS'02), Osaka, Japan, Oct. 2002, pp.170-179.
[9] D. Freedman, Ken. Birman, K. Ostrowski, M. Linderman, R.
Hillman, and A. Frantz, “Enabling Tactical Edge Mashups with
Live Objects”, in Proceedings of the 15th International
Command and Control Research and Technology
Symposium(ICCRTS '10), Information Sharing and
Collaboration Processes and Behaviors Track. Santa Monica, CA,
USA, Jun. 2010.
[10] C. Intanagonwiwat, R. Govindan and D. Estrin, "Directed
diffusion: A scalable and robust communication paradigm for
sensor networks", In Proceedings of the Sixth Annual
International Conference on Mobile Computing and Networking
(MobiCOM '00), pp.56-67, Boston, MA, Aug, 2000.
[11] J. Lifton, M. Laibowitz, D. Harry, N.-W. Gong, M. Mittal,
and J.A. Paradiso, "Metaphor and Manifestation—Cross-Reality
with Ubiquitous Sensor/Actuator Networks", IEEE Pervasive
Computing, Vol.8, No.3, pp.24-33, Jul.-Sep. 2009.
[12] A. Mostefaoui and M. Raynal, "Causal Multicasts in
Overlapping Groups: Towards a Low Cost Approach",
Proceedings of the 4th IEEE International Conference on Future
Trends in Distributed Computing Systems, pp.136-142, 1993.
[13] C. Meesookho, S. Narayanan, and C. S. Raghavendra,
“Collaborative Classification Applications in Sensor Networks”,
in Proceedings of Sensor Array and Multichannel Signal
Processing Workshop, Rosslyn, USA, pp. 370-374, Aug. 2002.
[14] K. Ostrowski, K. Birman, and D. Dolev, "Live Distributed
Objects: Enabling the Active Web", IEEE Internet Computing,
Vol.11, Issue 6, pp.72-78, Nov.-Dec. 2007.
[15] K. Ostrowski, K. Birman, and D. Dolev, "QuickSilver
Scalable Multicast", 7th IEEE International Symposium on
Network Computing and Applications (IEEE NCA 2008). pp.9-
18, Cambridge, July 2008.
[16] S. Pleisch and K. Birman, "SENSTRAC: Scalable Querying
of SENSor Networks from Mobile Platforms Using TRACking-
Style Queries", International Journal of Sensor Networks. Vol.3,
Issue 4, pp.266-280, June 2008.
[17] L. Rodrigues, R. Baldoni, E. Anceaume, and M. Raynal,
"Deadline-Constrained Causal Order," in Proceedings of Third
IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing, 2000, pp. 234-243.
[18] J. Yicka, , B. Mukherjeea, and D. Ghosal “Wireless sensor
network survey", Computer Networks, Vol.52, Issue 12,
pp.2292-2330, Aug. 2008.

CHAYOUNG KIM B.S. and M.S. degrees from the Sookmyung
Women's University, Seoul, Korea, in 1996 and 1998, respectively
and Ph.D. degree from the Korea University in 2006. From 2005 to
2008, she was a senior researcher in Korea Institute of Science
and Technology Information, Korea, where she has been engaged
in National e-Science of Supercomputing Center. Since 2009, she
has been a researcher at Contents Convergence Software
Research Center in Kyonggi University, Korea. Her research

interests include distributed computing, group communications and
peer-to-peer computing.

JINHO AHN(Corresponding author) received his B.S., M.S. and
Ph.D. degrees in Computer Science and Engineering from Korea
University, Korea, in 1997, 1999 and 2003, respectively. He has
been an associate professor in Department of Computer Science,
Kyonggi University. He has published more than 70 papers in
refereed journals and conference proceedings and served as
program or organizing committee member or session chair in
several domestic/international conferences and editor-in-chief of
journal of Korean Institute of Information Technology and editorial
board member of journal of Korean Society for Internet Information.
His research interests include distributed computing, fault-
tolerance, sensor networks and mobile agent systems.

* Corresponding author: Tel.: +82 31 249-9674

