
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 433

Applying Genetic Algorithm for Prioritization of Test Case
Scenarios Derived from UML Diagrams

 Sangeeta Sabharwal, Ritu Sibal and Chayanika Sharma

Department of computer Science and IT

 Netaji Subhas Institute of Technology

Delhi, India

Abstract

Software testing involves identifying the test cases which
discover errors in the program. However, exhaustive testing of
software is very time consuming. In this paper, a technique is
proposed to prioritize test case scenarios by identifying the
critical path clusters using genetic algorithm. The test case
scenarios are derived from the UML activity diagram and state
chart diagram. The testing efficiency is optimized by applying
the genetic algorithm on the test data. The information flow
metric is adopted in this work for calculating the information
flow complexity associated with each node of the activity
diagram and state chart diagram. If the software requirements
change, the software needs to be modified and this requires re –
testing of the software. Hence, to take care of requirements
change, a stack based approach for assigning weights to the
nodes of activity diagram and state chart diagram has also been
proposed. In this paper, we have extended our previous work of
generating test case scenarios from activity diagram by also
considering the concurrent activities in nested activity diagram.

Keywords: software testing, genetic algorithm, activity
diagram, state chart diagram, CFG, SDG, test case

1. INTRODUCTION

Software testing is one of the major and primary
techniques for achieving high quality software. Software
testing is done to detect presence of faults, which cause
software failure. However, software testing is a time
consuming and expensive task [1], [3]. It consumes almost
50% of the software system development resources [2],
[3], [9]. Testing can be done either manually or
automatically by use of testing tools. It is found that
automated software testing is better than manual testing.
However, very few test data generation tools are
commercially available today [4].
Evolutionary testing is an emerging methodology for
automatically producing high quality test data [11].
Genetic algorithms (GA) are well known form of the
evolutionary algorithms conceived by John Holland in
United States during late sixties [10], [12]. GA has been

applied in many optimization problems for generating test
plans for functionality testing, feasible test cases and in
many other areas [6], [7]. GA has also been used in model
based test case generation [2], [5]. Various techniques
have been proposed for generating test data/test cases
automatically using GA in structural testing [3], [4]. GA
has also been applied in the regression testing, object
oriented unit testing as well as in the black box testing for
the automatic generation of the test cases [5], [6], [11].

Unified modelling language (UML) is the de-facto
standard for modelling object – oriented software systems.
UML provides diagrams to represent the static as well as
the dynamic behaviour of a system [16]. Class, component
and deployment diagrams are used to represent the static
behaviour of the system whereas activity, sequence and
state diagrams are used to represent the dynamic
behaviour. UML Activity diagram shows the activities of
the object, so the operations can be realized in the design
stage itself [17].

In this paper, we have proposed a technique for
prioritization of test case scenarios derived from activity
diagram and state chart diagram of UML using the concept
of basic information flow (IF) metric, stack and GA. The
paper presents the extended work of our previous work
[18]. In this paper, as extension to our previous work we
propose a technique for generating test cases from state
chart diagram and nested activity diagrams wherein
concurrent activities are also occurring. The paper is
divided into 6 sections. Section 2 describes the basic
structure of GA. In section 3, our proposed approach is
discussed while section 4 and section 5 describe the test
case scenarios derived from nested activity diagram and
state chart diagram. Section 6 concludes the paper and
gives an overview of our future work.

2. GENETIC ALGORITHM

In the past, evolutionary algorithms have been applied in
many real life problems. GA is one such evolutionary
algorithm. GA has emerged as a practical, robust

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 434

optimization technique and search method. A GA is a
search algorithm that is inspired by the way nature evolves
species using natural selection of the fittest individuals.

The possible solutions to the problem being solved are
represented by a population of chromosomes. A
chromosome is a string of binary digits and each digit that
makes up a chromosome is called a gene. This initial
population can be totally random or can be created
manually using processes such as greedy algorithm. The
pseudo code of a basic algorithm for GA is as follows
[18]:-

 Initialize (population)
Evaluate (population)
While (stopping condition not satisfied)

 {
Selection (population)
Crossover (population)
Mutate (population)
Evaluate (population)

}

A GA uses three operators on its population which are
described below:-

 Selection: A selection scheme is applied to determine
how individuals are chosen for mating based on their
fitness. Fitness can be defined as a capability of an
individual to survive and reproduce in an
environment. Selection generates the new population
from the old one, thus starting a new generation. Each
chromosome is evaluated in present generation to
determine its fitness value. This fitness value is used
to select the better chromosomes from the population
for the next generation.

 Crossover or Recombination: After selection, the
crossover operation is applied to the selected
chromosomes. It involves swapping of genes or
sequence of bits in the string between two individuals.
This process is repeated with different parent
individuals until the next generation has enough
individuals. After crossover, the mutation operator is
applied to a randomly selected subset of the
population.

 Mutation: Mutation alters chromosomes in small
ways to introduce new good traits. It is applied to
bring diversity in the population.

3. PROPOSED APPROACH

This section illustrates the details of our proposed
approach for test case prioritization using GA. The
approach uses nested activity diagram and state chart
diagram for deriving the test case scenarios. Activity
diagram depicts the functional view of the system by
modelling the flow of control from one activity to another.
An activity represents an operation that results in the
change of the state in the system. In activity diagram, the
nodes represent activities. The main constructs used in the
activity diagrams are shown in Fig.1.

 Fig. 1 Main Constructs used in Activity Diagram

Fig. 2 Main Constructs used in State Chart Diagram

For the purpose of test case generation, the activity
diagram is converted into a control flow graph (CFG)
where each node represents an activity and the edges of
the flow graph depict the control flow of the activities.

In our work, we have also derived the test cases form the
state chart diagram. The main constructs used in the state
chart diagram are shown in Fig.2. The event with guard
condition and action generates a new state. The state chart
diagram is converted into an intermediate graph called as
State Dependency Graph (SDG) for test case generation.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 435

Path testing involves generating a set of paths from CFG
or SDG that will cover every branch in the program and
finding the set of test case scenarios that will traverse
every activity or state in these scenarios. It may be very
tedious, expensive and time consuming to achieve this
goal due to various reasons. For example, there can exist
infinite paths when a CFG or SDG have loops. In our
approach we propose to find the critical path that must be
tested first using the concept of IF metric, stack and GA.
While finding the path we are ensuring that every loop is
traversed at most once.

3.1 Procedure

If requirements change, the software needs to be
redesigned to comply with the software specification
before the implementation phase. During requirement
engineering, addition or deletion of user requirements
causes changes in the activity diagram as well as state
chart diagram where the action or states are directly
derived from user requirements. If right changes are not
taken care during the requirement phase then they are
carried over to the implementation phase where effort,
time and resources are unnecessarily wasted in correcting
the user requirements change.

We take care of the issue of requirements change by
prioritizing the nodes of CFG and SDG using the stack
based memory allocation approach and IF metrics. In the
stack based memory allocation approach, the data or info
is pushed or popped only at one end called top of stack.
The stack uses last in first out (LIFO) approach. Node
pushed first is removed last from the stack. The top is
incremented when node is inserted and decremented when
node is deleted.

The stack based memory allocation approach is explained
with an illustration in section 4 and section 5 respectively.
Thus the steps involved in identifying the critical path
clusters for an activity and state chart diagram are as
follows:-

a) Convert the activity diagram into CFG and state chart
diagram into SDG respectively.

b) Assign the weights to the nodes of CFG or SDG as
the case may be, by using stack based weight
assignment approach and the Basic IF Model.

In the proposed stack based memory allocation
technique, for the nodes of the CFG or SDG each
node is assigned a weight, w based on number of
operations to access element in the stack. But to
access or modify the node (data), we have to pop all
the data above it. Higher the number of operations
required to access the node, higher is the weight and
hence the complexity of the node. If the weight of the
node or number of operations to access the node

increases the cost of modifying the node also
increases.

In the Basic IF model [15], information flow metrics
are applied to the components of system design. In
our work, the component is taken as a node in the
CFG and SDG. The IF is calculated for each node of a
CFG and SDG. For example, the IF of node A i.e. IF
(A) is calculated using equation given below:-

)]()([)(AFANOUTAFANINAIF (1)

Where FANIN (A) is the count of the number of other
nodes that can call, or pass control to node A and
FANOUT (A) is the number of nodes that are called
by node A. The IF is calculated for each node of a
CFG and SDG. The weighted nodes in the path are
summed together and the complexity of each path is
calculated.

Therefore, the sum of the weight of a node by stack
based weight assignment approach and IF complexity
contributes to the total weight of a node of CFG and
SDG.

c) Selection: - The decision nodes of the CFG and SDG
form the chromosome. A chromosome or test data
will therefore be a binary string where a single bit or
multiple bits in a string will correspond to a decision
node of the graph. Number of bits in the chromosome
will depend upon the number of decision nodes and
the type of graph being used. For example, in CFG if
there are four decision nodes, a four bit binary string
will form a chromosome or an individual in the
population. The fitness value of each chromosome is
calculated by applying the stack based weight
assignment approach and Basic IF model. The
chromosomes with high fitness value are selected as
the parents for the reproduction. The fitness value of
each chromosome is calculated by using the formula
given below:-

n

i
iwF

1 (2)

Where, wi is weight of ith node in a path under
consideration and n is number of nodes in a current
path. Weight of ith node is the sum of IF complexity
and stack based complexity given by equation given
below.

)()(iWEIGHTSTACKBASEDiIFwi (3)

d) Crossover: - There are number of techniques of

crossover, but all require swapping of genes or
sequence of bits in the chromosome. It involves
swapping between two individuals or test data in our
case. In our work, we assume the probability of
crossover is taken as 80% [3]. The random number r
is generated from 0 to 1. Crossover is done if r < 0.8

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 436

.

Fig. 3 Proposed Algorithm for generating test scenarios from the
activity diagram

condition is satisfied. This follows from our
assumption that crossover probability should be 80%.

e) Mutation:-Mutation is done to introduce new traits or
bring diversity in the population to avoid the local
optima. In mutation the bits are flipped from 0 to 1
and vice versa. In our work, we assume the
probability of mutation as 20%. The random number
is generated from 0 to 1. If r < 0.2 condition is
satisfied, then the bits of the test data are mutated
randomly.

The algorithm for our proposed approach to generate test
scenarios for activity diagram and state chart diagram is
shown in Fig.3 and Fig.5 respectively while the weight
assignment algorithm is shown in Fig.4.

Fig. 4 Algorithm for the weight assignment

 ALGORITHM 2

1. for each activity node ai , i = 1...n ,

a) Push nodes of CFG on the stack using

DFS and BFS approach.

b) Determine the maximum size, smax of
the stack.

c) for i = 1 to smax , assign w = smax – k

to each node of the CFG, where smax is
maximum size of stack and k is
number of nodes above current node.

d) for each decision node, di

 (i) Assign the same weight, w to
 branching nodes.
 (ii) Insert the next neighbour nodes of
 branching nodes and update top.
 (iii) Neglect the branching nodes and
 decision nodes that have been
 inserted previously.

 end

e) Assign same weight, w to concurrent
nodes .

 end

 ALGORITHM 1

1. Convert the activity diagram into CFG.

2. Use the decision nodes to generate the test data
or chromosome population randomly.

3. for each test data i = 1....n ,

a) Traverse the CFG by applying Depth first
search (DFS) as well as Breadth first search
(BFS) and identify the paths.

(i) Find the neighbour node for the current
 node having next higher depth di by
 applying DFS.

(ii) For each concurrent node, ci traverse the
 next neighbour node having next higher

breadth value, bi.

(iii) Update the top pointer, size s and k of the
 Stack.

(iv) Assign weight, w to each node by applying
 weight assignment algorithm.

b) Calculate the fitness value of each test

data by using equation (2) and stack based
weight assignment approach.

c) For sub activity of each node calculate the
fitness value using 80-20 rule and by using
equation (2).

d) Select initial test data by ranking the
fitness of the chromosomes.

e) If initial population is not enough randomly
generate them.

 If r < 0.8, perform crossover
 Else if r < 0.2, perform mutation
 end if
end if

 end

4. If test data for all the paths have not been

covered, then repeat the GA process.

5. Else end system

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 437

Fig. 5 Proposed Algorithm for generating test scenarios from state chart
diagram

4. TEST CASE SCENARIOS DERIVED

 FROM ACTIVITY DIAGRAM
In this section we will explain our approach by taking the
activity diagram of a shipping order system (Fig.6). The
activity diagram is converted into CFG as shown in Fig.7.
In this case study we have taken nested activity diagram
that also takes into account concurrency among action
nodes.

Fig. 6 Activity diagram of shipping order system

In Fig.7, the fork node 10 shows concurrency between
nodes 11 and 12 whereas the fork node 17 shows
concurrency between node 18 and 19 nodes respectively.
The concurrent nodes are shown as rounded rectangles in
Fig.7.

 ALGORITHM 3

1. Convert the state chart diagram into SDG.

2. Use the fork nodes in SDG to generate the
test data or chromosome population
randomly.

3. for each test data i = 1.... n ,

a) Traverse the SDG by applying Depth
first search (DFS).

(i) Find the neighbour node for the current
 node having next higher depth d by
 applying DFS.

(ii) Update the top pointer ,size s and k of
 the stack, where k is number of nodes
 above the current node.

 (iii) Assign weight, w to the node by
 applying the weight assignment
 algorithm.

b) Calculate the fitness value of each test
data by using equation (2) and stack
based weight assignment approach.

c) Select initial test data by ranking the
fitness of the chromosomes.

d) If initial population is not enough
randomly generate them.

 If r < 0.8, perform crossover
 Else if r < 0.2, perform mutation
 end if

 end if
 end

4. If test data for all the paths have not been

covered, then repeat the GA process.

5. Else end system

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 438

For Fig.7, the stack based weight assignment to all nodes
of CFG is shown in Fig.8. The maximum size of stack is
smax = 18. The initial node of CFG i.e. node 1 is pushed
first hence the weight, w for node 1 is smax – k i.e. 18 – 0=
18 where smax is maximum size of stack and k is number of
nodes before the lowest node i.e. number of nodes before
node 1. Similarly the priority for node 2 is 17 and node 3
is 16. The complexity of node 1 is highest i.e. 18.
Therefore, making changes to node 1 will require the
highest number of operations to access it.

Fig. 7 CFG of Activity diagram of shipping order system

Now as clear from Fig. 7, there are four decision nodes
namely 4, 7, 8 and 16 which will form the chromosome in
our case. Therefore, corresponding to the chromosome
value 0000 the decision nodes i.e. 4, 7, 8 and 16 will
evaluate to false condition. The path to be followed using
this chromosome value is 1, 2, 3, 4, 5, 8, 13, 21, 22. The IF
complexity of each node is calculated shown in Table I
where, FI is Fan In and FO is Fan Out of the
corresponding node. The fitness value of test data 0000 is
18 + 18 + 17 + 17 + 15 + 15 + 19 + 32 +22 = 173.

The sum of stack based priority number (A) and the IF
complexity of each node (B) is equal to the total
complexity of each node.

In this example, we have taken the nested activity for
modify order. The nested activity diagram includes the
fork and merges nodes. The Fig.9 shows the nested sub
activity diagram of Modify Order shown in Fig.6. The
Fig.10 has one fork and merge node showing the
concurrency among the nodes. The corresponding CFG for
Fig.9 is shown in Fig.10.

 Fig. 8 Stack based weight assignments to nodes of CFG for the
shipping order

 Nodes K Size, s Weight, w =
smax – k

 22 17 18 18-17=1

 21 16 17 18-16=2

 20 15 16 18-15=3

 22 19 14 15 18-14=4

 21 18 13 14 18-13=5

 13 or 17 12 13 18-12=6

 16 11 12 18-11=7

 15 10 11 18-10=8

 14 9 10 18-9=9

 11 22 8 9 18-8=10

 12 or 22 21 7 8 18-7=11

 10 or 21 9 or 13 6 7 18-6=12

 7 8 5 6 18-5=13

 5 or 6 4 5 18-4=14

 4 3 4 18-3=15

 3 2 3 18-2=16

 2 1 2 18-1=17

 1 0 1 18-0=18

Top

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 439

Table 1: Complexity of nodes of the CFG of shipping order

Fig. 9 Nested Activity diagram of Modify order

 .

Fig. 10 CFG of modify order (nested activity)

Fig. 11 Stack based weight assignment to nodes of nested activity
diagram (Fig.10)

Table 2: Complexity of CFG (Fig.10)

Node Complexity
based on pop
operation, (A)

IF= Fan In (a)
* Fan Out (a),

(B)

Total Complexity =

(A+B)

9.1 8 0 8

9.2 7 1 8

9.3 6 2 8

9.4 5 1 6

9.5 4 1 5

9.6 3 2 5

9.7 2 1 3

9.8 1 0 1

Node Complexity
based on pop
operation, (A)

IF= Fan In
(a) * Fan
Out (a),

(B)

Total Complexity
=

(A+B)

1 18 0 18

2 17 1 18

3 16 1 17

4 15 2 17

5 14 1 15

6 14 1 15

7 13 2 15

8 13 2 15

9 12 1 13

10 12 2 14

11 10 2 12

12 11 1 12

13 12+6 1 19

14 9 1 10

15 8 2 10

16 7 2 9

17 6 2 8

18 5 1 6

19 4 1 5

20 3 2 5

21 12+11+5+2 2 32

22 11+10+1 0 22

Nodes K Size, s Weight = smax-k

9.8 7 8 8 - 7 = 1

9.7 6 7 8 - 6 = 2

9.6 5 6 8 - 5 = 3

 9.5 4 5 8 - 4 = 4

9.4 3 4 8 - 3 = 5

9.3 2 3 8 - 2 = 6

9.2 1 2 8 - 1 = 7

9.1 0 1 8 - 0 = 8

Top

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 440

The total complexity for the nested activity of modify
order is the summation of the total complexity of each
node i.e. 8 + 8 + 8 + 6 + 5 + 5 + 3 + 1 = 44. The total
complexity of activity Modify Order i.e. node 9 (Fig.6) =
complexity of node 9 + complexity of nested activity of
node 9 i.e. 13 + 44 = 57. Hence, the total complexity of
node 9 is 57.

We start the process by randomly generating the initial
population as shown in Table 3.

Initial Population: - 0011, 0001, 1100 and 1111, where X
is the test data, F(X) is the fitness value, r is random
number generated from 0 to 1. F’(X) is new computed
fitness value after crossover and mutation operation. C is
crossover and M is mutation operation. In our example,
GA is run for 12 iterations. The test data 0011 will follow
the path 1, 2, 3, 4, 5, 8, 9, 7, 21, 22 and the corresponding
fitness value for the test data is 18 + 18 + 17 + 17 + 15 +
15 + 57 + 15 + 32 + 22 = 226. The test data 0001 will
follow the path 1, 2, 3, 4, 5, 8, 13, 21, 22 and the
corresponding fitness value for the test data is 8 + 18 + 17
+ 17 + 15 + 15 + 19 + 32 + 22= 173. The test data 1100
will follow the path 1, 2, 3, 4, 6, 7, 10, 11, 12, 14, 15, 16,
13, 21, 22 and the corresponding fitness value is 18 + 18 +
17 + 17 + 15 + 15 + 14 + 12 + 12 + 10 + 10 + 9 + 19 + 32
+ 22 = 240. The test data 1111 will follow the path 1, 2, 3,
4, 6, 7, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22 and
the corresponding fitness value for the test data is 18 + 18
+ 17 + 17 + 15 + 15 + 14 + 12 + 12 + 10 + 10 + 9 + 8 + 6
+ 5 + 5 + 32 + 22 = 245.

Table 3: Iteration 1

S.
No.

X F

(X)

R C M F’(X)

1. 0011 226 0.327 0111 0111 317

2. 0001 173 0.867 0001 0001 173

3. 1100 240 0.912 1100 1100 240

4. 1111 245 0.490 1011 1011 154

Table 4: Iteration 2

S.
No.

X F

(X)

R C M F’(X)

1. 0111 317 0.372 0101 0101 173

2. 1100 240 0.541 1110 1110 240

3. 0001 173 0.934 0001 0001 173

4. 1011 154 0.860 1011 1011 154

Table 5: Iteration 3

S.
No.

X F

(X)

R C M F’(X)

1. 1100 240 0.841 1110 1110 240

2. 0101 173 0.415 0001 0001 173

3. 0001 173 0.301 0101 0101 173

4. 1011 154 0.971 1011 1011 154

 .

 .

 .

 .

 Table 6: Iteration 11

S.
No.

X F

(X)

R C M F’(X)

1. 0111 317 0.712 0111 0111 317

2. 0111 317 0.431 0111 0111 317

3. 0111 317 0.692 0111 0111 317

4. 1111 245 0.169 1111 0111 317

Table 7: Iteration 12

S.
No.

X F

(X)

R C M F’(X)

1. 0111 317 0.436 0111 0111 317

2. 0111 317 0.946 0111 0111 317

3. 0111 317 0.871 0111 0111 317

4. 0111 317 0.192 0111 0011 226

After the 12th iteration as shown in table 7, the test data
0111 have the highest fitness value i.e. 317. So, the path
corresponding to this chromosome value i.e. 1, 2, 3, 4, 5,
8, 9, 7, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22 should
be the one which must be tested first. Next we will discuss
an example illustrating our approach to generate and
prioritize test case scenarios from state chart diagram.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 441

5. TEST CASE SCENARIOS DERIVED
FROM STATE CHART DIAGRAM

In our next case study we have applied our approach on
the state chart diagram of the student enrolment system as
shown in Fig.12. In student enrolment system, student
enrolled is an event, seat available is a guard condition and
add student is an action. If the guard condition becomes
true then action is performed and open for enrolment state
is generated. The intermediate graph is called as SDG
(Fig.13).

In Fig.13, INIT represents start process, PR represents
proposed state, SC represents scheduled state, OE
represents open for enrolment state, FU represents Full
state and CE represents closed to enrolment state
respectively. The events are shown as e1, e2, e3.......e12
where e1 is scheduled, e2 is registration open ,e3 is
student apply for enrolment, e4 is enrolment closed, e5 is
student apply for waiting list, e6 is close enrolment, e7 is
student dropped, e10 is seat allotment and e8, e9, e11, e12
are cancelled events respectively. As shown in Fig.12,
there are four decision nodes namely 2, 3, 4, and 6
respectively which will form the chromosomes in our case
study.

 Fig. 12 State chart diagram of student enrolment system

Fig. 13 SDG of student enrolment system

Fig. 14 Stack based weight assignment to nodes of SDG

The events e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11 and
e12 represent the edges and the states represent the
corresponding nodes in the SDG. The test data
corresponding to decision nodes 2, 3, 4 and 6 are shown in
Table 8. These test data show the events representing
edges in the SDG and are part of test case scenarios. For
example test data involving events e1, e2, e5 and e7 will
lead to path consisting of nodes 1, 2, 3, 4, 6 and 7. It is to
be noted that in Table 8 we have considered all the test
data leading to valid as well as invalid paths.

Nodes K Size, s Weight = smax-k

7 5 6 6-5 = 1

5 or 6 or 7 4 5 6-4 = 2

4 3 4 6-3 = 3

3 or 7 2 3 6-2 = 4

2 1 2 6-1 = 5

1 0 1 6-0 = 6

Top

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 442

Table 8: Test cases for SDG

 Decision Nodes

S.No. 2 3 4 6

1. e1 e2 e4 e7

2. e1 e2 e4 e10

3. e1 e2 e5 e7

4. e1 e2 e5 e10

5. e1 e2 e11 e7

6. e1 e2 e11 e10

7. e1 e9 e4 e7

8. e1 e9 e4 e10

9. e1 e9 e5 e7

10. e1 e9 e5 e10

11. e1 e9 e11 e7

12. e1 e9 e11 e10

13. e12 e2 e4 e7

14. e12 e2 e4 e10

15. e12 e2 e5 e7

16. e12 e2 e5 e10

17. e12 e2 e11 e7

18. e12 e2 e11 e10

19. e12 e9 e4 e7

20. e12 e9 e4 e10

21. e12 e9 e5 e7

22. e12 e9 e5 e10

23. e12 e9 e11 e7

24. e12 e9 e11 e10

25. e1 e2 e3 e7

26. e1 e2 e3 e10

27. e1 e9 e3 e7

28. e1 e9 e3 e10

29. e12 e2 e3 e7

30. e12 e2 e3 e10

31. e12 e9 e3 e7

32. e12 e9 e3 e10

In this example as clear from Fig.13 in a state, maximum
four events can take place. Therefore each event in SDG is
represented in two bit format. In our case, the events e1
and e12 at node 2 are represented by 00 and 01, events e2
and e9 at node 3 are represented by chromosome 00 and
01, events e11, e5, e4 and e3 at node 4 are represented by
00, 01, 10 and 11 respectively. Events e7 and e10 at node
6 are represented by 00 and 01 respectively. Therefore,
each event in SDG is represented in two bit format. As
there are four decision nodes in the SDG, the chromosome
here will consist of a binary string of 8 bits. In our
proposed approach, loops are traversed at most once.
Therefore, node having self loop is considered only once
in a path. For example, the test case scenario involving
events e1, e2, e3, e7 will follow the path consisting of
nodes 1, 2, 3, 4, 5 and 7 .The node 4 containing self loop is
traversed only once in the path and the next node to be
followed after loop is the nearest neighbour having
shortest distance i.e. next node to be followed after node 4
is 5 as the distance between node 4 and node 5 is small as
compared to node 6 and 7.

The sum of stack based priority number (A) and the IF
complexity of each node (B) is equal to the total
complexity of each node. The IF complexity of each node
of SDG is shown in Table 9 where, FI is Fan In and FO is
Fan Out for the corresponding node. The test data
representation involving decision nodes is shown in Fig.15
using two bit format for each decision node.

 e1 e2 e4 e7

Test case 1

 e1 e2 e4 e10

Test case 2

 .

 .

0 0

0 0

1 0

0 0

0 0

0 0

1 0

0 1

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 443

 .

e12 e9 e3 e7

Test case 31
 e12 e9 e3 e10

Test case 32

Fig.15 Test case representation using two bit format

Table 9: Complexity of nodes of SDG

We start the process by randomly generating the initial
population as shown in Table 10.

Initial Population: - 00011000, 01001000, 01000101,
00000100 where X is the test data, F(X) is the fitness
value, r is random number generated from 0 to 1. F’(X) is
new computed fitness value after crossover and mutation
operation. C is crossover and M is mutation operation.

The test data 00011000 will traverse the edges e1, e9, e4,
e7 and hence will follow the path 1, 2, 3 and 7 and the
corresponding fitness value of test data is 6 + 7 + 6 + 7 =
26. The test data 01001000 will traverse the edges e12, e2,
e4 and e7 and hence will follow the path 1, 2 and 7 and the
corresponding fitness value is 6 + 7 + 7 = 20. The test data
01000101 will follow the edges e12, e2, e5, e10 and will
follow the path 1, 2 and 7 and the corresponding fitness
value is 6 + 7 + 7 = 20. Similarly the test data 00000100
will follow the edges e1, e2, e5, e7 and hence will follow
the path 1, 2, 3, 4, 6 and 7 and the fitness value computed
is 6 + 7 + 6 + 9 + 5 + 7 = 40.

Table 10: Iteration 1
S.
No

X F(X) R C M F’(X)

1. 0001100
0

26 0.82
9

00011
000

00011
000

26

2. 0100100
0

20 0.87
6

01001
000

01001
000

20

3. 0100010
1

20 0.71
2

01000
100

01000
100

20

4. 0000010
0

40 0.68
6

00000
101

00000
101

54

 Table 11: Iteration 2
S.
No

X F(X) R C M F’(X)

1. 0001100
00

26 0.91
7

00110
000

00110
000

26

2. 0100100
0

20 0.12
6

01001
000

01000
100

20

3. 0100010
0

20 0.81
4

01000
100

01000
100

20

4. 0000010
0

54 0.56
2

00000
100

00000
100

54

Table 12: Iteration 3
S. No. X F(X) R C M F’(X)

1. 00110
000

26 0.83
3

00110
000

00110
000

26

2. 01000
100

20 0.41
5

01000
100

01000
100

20

3. 01000
100

20 0.12
4

01000
100

01001
000

20

4. 00000
100

54 0.61
2

00000
100

00000
100

54

 .

 .

 .

Table 13: Iteration 8
S.No

.
X F(X) R C M F’(X)

1. 0100010
0

20 0.84
1

01000
100

00100
000

20

2. 0000010
1

54 0.91
2

00000
101

00000
000

54

3. 0000100
1

39 0.10
4

00001
001

00000
101

54

4. 0000010
1

54 0.80
9

00000
101

00010
101

54

0 1

0 1

1 1

0 0

0 1

0 1

1 1

0 1

Node Complexity based on
pop operation, (A)

Fan In(a) *
Fan Out(a),
(B)

Total
Complexity =
(A+B)

1 6 0 6

2 5 2 7

3 4 2 6

4 3 6 9

5 2 2 4

6 2 3 5

7 4+2+1=7 0 7

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 444

Table 14: Iteration 9

S.No. X F(X) R C M F’(X)

1. 01000
100

20 0.97
1

01000
100

01000
100

20

2. 00000
101

54 0.50
1

00000
101

00000
101

54

3. 00001
001

54 0.41
2

00000
101

00000
101

54

4. 00000
101

54 0.97
2

00000
101

00000
101

54

In our example, after the 9th iteration as shown in Table
14, the test data e1, e2, e5, e10 have the highest fitness
value i.e. 54. So, the path corresponding to the
chromosome 00000101 should be the one which must be
tested first. Therefore the path consisting of nodes 1, 2, 3,
4, 6, 4, 5 and 7 consisting of events e1, e2, e5 and e10
should be the one that will be tested first.

6. CONCLUSION AND FUTURE WORK

In this paper a GA based approach is proposed for
identifying the test path that must be tested first. Test paths
or scenarios are derived from activity diagram and state
chart diagram respectively. The proposed approach makes
use of IF model and GA to find the path to be tested first.
Our future work involves applying the proposed approach
on other UML diagrams like sequence diagram and using
this technique for white box testing and object oriented
testing. A tool is also being developed to support this
proposed approach.

REFERENCES

[1] Dr. Velur Rajappa, Arun Biradar, Satanik Panda “Efficient
software test case generation Using Genetic algorithm based
Graph theory” International conference on emerging trends
in Engineering and Technology, pp. 298--303, IEEE (2008).

[2] Chartchai Doungsa-ard, Keshav Dahal, Alam Gir Hossain
and Taratip Suwannasart “An automatic test data generation
from UML state diagram using genetic
Algorithm”.http://eastwest.inf.brad.ac.uk/document/publicat
ion/Doungsa-ard-SKIMA.pdf.

[3] Praveen Ranjan Srivastava and Tai-hoon Kim “Application
of Genetic algorithm in software testing”, International
Journal of software Engineering and its Applications, vol.3,
No.4, pp. 87--96 (2009).

[4] Maha alzabidi, Ajay Kumarand A. D. Shaligram
“Automatic software structural testing by using evolutionary
algorithms for test data generations”, IJCSNS International
Journal of Computer science and Network Security, Vol.9,
No.4 (2009).

[5] Robert M .Patton, Annie S. Wu, and Gwendolyn H .Walton
“A Genetic Algorithm approach to focused software usage
testing”, Annals of software engineering,
http://www.cs.ucf.edu/~ecl/papers/03.rmpatton.pdf.

[6] Nirmal Kumar Gupta and Dr. Mukesh Kumar Rohil “Using
Genetic algorithm for unit testing of object oriented
software”, First International conference on Emerging
trends in Engineering and technology, IEEE (2008).

[7] Francisca Emanuelle, Ronaldo Menezes, Marcio Braga
“Using Genetic algorithms for test plans for functional
testing”, ACM (2006).

[8] Maha Alzabidi, Ajay Kumar and A. D. Shaligram
“Automatic Software structural testing by using
Evolutionary Algorithms for test data generations” , IJCSNS
International Journal of Computer science and Network
security, Vol.9, No. 4 (2009).

[9] Somerville, I. “Software engineering”. 7th Ed. Addison-
Wesley.

[10] Goldberg, D.E “Genetic Algorithms: in search, optimization
and machine learning”, Addison Wesley, M.A (1989).

[11] Jose Carlos, Mario, Alberto, Francisco “A strategy for
evaluating feasible and unfeasible test cases for the
evolutionary testing of object-oriented software” ACM
(2008).

[12] Phil McMinn “Search Based software test generation: A
survey”, Software testing, Verification and reliability,
Vol.14, No.2, pp.105--156 (2004).

[13] Mitchell. M. “An introduction to Genetic algorithms” MIT
Press (1996).

[14] Paul C. Jogersen “Software testing: A craftsman approach”,
Second edition, CRC press.

[15] Aggarwal K.K., Singh Yogesh “Software Engineering”, 2nd
ed., New Age International Publishers.

[16] Sapna P.G. and Hrushikesha “Automated Scenario
Generation based on UML Activity diagrams”, International
conference on information technology, pp.209-214, IEEE
(2008).

[17] Wang Linzhang, Yuan Jiesong,Yu Xiaofeng, Hu Jun,Li
Xuandong and Zheng Guoliang “Generating Test cases
from UML Activity diagram based on Gray- box Method”,
Proceedings of the 11th APSEC’04,IEEE.

[18] Sangeeta sabharwal, ritu sibal, chayanika Sharma
“Prioritization of test case scenarios derived from activity
diagram using genetic algorithm”. ICCCT, pp.481-485
IEEE (2010).

[19] Supaporn Kansomkeat,Wanchai Rivepiboon “Automated-
generating test case using uml statechart diagrams”
Proceedings of SAICSIT , pp.296-300, 2003.

