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Abstract 

Software testing involves identifying the test cases which 
discover errors in the program. However, exhaustive testing of 
software is very time consuming. In this paper, a technique is 
proposed to prioritize test case scenarios by identifying the 
critical path clusters using genetic algorithm. The test case 
scenarios are derived from the UML activity diagram and state 
chart diagram. The testing efficiency is optimized by applying 
the genetic algorithm on the test data. The information flow 
metric is adopted in this work for calculating the information 
flow complexity associated with each node of the activity 
diagram and state chart diagram. If the software requirements 
change, the software needs to be modified and this requires re – 
testing of the software.  Hence, to take care of requirements 
change, a stack based approach for assigning weights to the 
nodes of activity diagram and state chart diagram has also been 
proposed. In this paper, we have extended our previous work of 
generating test case scenarios from activity diagram by also 
considering the concurrent activities in nested activity diagram. 

Keywords: software testing, genetic algorithm, activity 
diagram, state chart diagram, CFG, SDG, test case 

 

1.  INTRODUCTION 

Software testing is one of the major and primary 
techniques for achieving high quality software. Software 
testing is done to detect presence of faults, which cause 
software failure. However, software testing is a time 
consuming and expensive task [1], [3]. It consumes almost 
50% of the software system development resources [2], 
[3], [9]. Testing can be done either manually or 
automatically by use of testing tools. It is found that 
automated software testing is better than manual testing. 
However, very few test data generation tools are 
commercially available today [4]. 
Evolutionary testing is an emerging methodology for 
automatically producing high quality test data [11]. 
Genetic algorithms (GA) are well known form of the 
evolutionary algorithms conceived by John Holland in 
United States during late sixties [10], [12]. GA has been 

 

applied in many optimization problems for generating test 
plans for functionality testing, feasible test cases and in 
many other areas [6], [7]. GA has also been used in model 
based test case generation [2], [5]. Various techniques 
have been proposed for generating test data/test cases 
automatically using GA in structural testing [3], [4]. GA 
has also been applied in the regression testing, object 
oriented unit testing as well as in the black box testing for 
the automatic generation of the test cases [5], [6], [11]. 

Unified modelling language (UML) is the de-facto 
standard for modelling object – oriented software systems. 
UML provides diagrams to represent the static as well as 
the dynamic behaviour of a system [16]. Class, component 
and deployment diagrams are used to represent the static 
behaviour of the system whereas activity, sequence and 
state diagrams are used to represent the dynamic 
behaviour. UML Activity diagram shows the activities of 
the object, so the operations can be realized in the design 
stage itself [17].  

In this paper, we have proposed a technique for 
prioritization of test case scenarios derived from activity 
diagram and state chart diagram of UML using the concept 
of basic information flow (IF) metric, stack and GA. The 
paper presents the extended work of our previous work 
[18]. In this paper, as extension to our previous work we 
propose a technique for generating test cases from state 
chart diagram and nested activity diagrams wherein 
concurrent activities are also occurring. The paper is 
divided into 6 sections. Section 2 describes the basic 
structure of GA. In section 3, our proposed approach is 
discussed while section 4 and section 5 describe the test 
case scenarios derived from nested activity diagram and 
state chart diagram. Section 6 concludes the paper and 
gives an overview of our future work. 

 

2. GENETIC ALGORITHM 

In the past, evolutionary algorithms have been applied in 
many real life problems. GA is one such evolutionary 
algorithm. GA has emerged as a practical, robust 
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optimization technique and search method. A GA is a 
search algorithm that is inspired by the way nature evolves 
species using natural selection of the fittest individuals. 

The possible solutions to the problem being solved are 
represented by a population of chromosomes. A 
chromosome is a string of binary digits and each digit that 
makes up a chromosome is called a gene. This initial 
population can be totally random or can be created 
manually using processes such as greedy algorithm. The 
pseudo code of a basic algorithm for GA is as follows 
[18]:- 

 

              Initialize (population) 
Evaluate (population) 
While (stopping condition not satisfied) 

                  { 
Selection (population)   
Crossover (population) 
Mutate (population) 
Evaluate (population)  
 
} 

A GA uses three operators on its population which are 
described below:- 

 Selection: A selection scheme is applied to determine 
how individuals are chosen for mating based on their 
fitness. Fitness can be defined as a capability of an 
individual to survive and reproduce in an 
environment. Selection generates the new population 
from the old one, thus starting a new generation. Each 
chromosome is evaluated in present generation to 
determine its fitness value. This fitness value is used 
to select the better chromosomes from the population 
for the next generation.  

 Crossover or Recombination: After selection, the 
crossover operation is applied to the selected 
chromosomes. It involves swapping of genes or 
sequence of bits in the string between two individuals. 
This process is repeated with different parent 
individuals until the next generation has enough 
individuals. After crossover, the mutation operator is 
applied to a randomly selected subset of the 
population. 

 Mutation: Mutation alters chromosomes in small 
ways to introduce new good traits. It is applied to 
bring diversity in the population. 

 

3. PROPOSED APPROACH 

This section illustrates the details of our proposed 
approach for test case prioritization using GA.  The 
approach uses nested activity diagram and state chart 
diagram for deriving the test case scenarios.  Activity 
diagram depicts the functional view of the system by 
modelling the flow of control from one activity to another. 
An activity represents an operation that results in the 
change of the state in the system. In activity diagram, the 
nodes represent activities. The main constructs used in the 
activity diagrams are shown in Fig.1. 

 

 
  

                Fig. 1 Main Constructs used in Activity Diagram 
 
 

 

 

Fig. 2 Main Constructs used in State Chart Diagram 

For the purpose of test case generation, the activity 
diagram is converted into a control flow graph (CFG) 
where each node represents an activity and the edges of 
the flow graph depict the control flow of the activities.  

In our work, we have also derived the test cases form the 
state chart diagram. The main constructs used in the state 
chart diagram are shown in Fig.2. The event with guard 
condition and action generates a new state. The state chart 
diagram is converted into an intermediate graph called as 
State Dependency Graph (SDG) for test case generation. 
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Path testing involves generating a set of paths from CFG 
or SDG that will cover every branch in the program and 
finding the set of test case scenarios that will traverse 
every activity or state in these scenarios. It may be very 
tedious, expensive and time consuming to achieve this 
goal due to various reasons. For example, there can exist 
infinite paths when a CFG or SDG have loops. In our 
approach we propose to find the critical path that must be 
tested first using the concept of IF metric, stack and GA. 
While finding the path we are ensuring that every loop is 
traversed at most once.  

3.1 Procedure  

If requirements change, the software needs to be 
redesigned to comply with the software specification 
before the implementation phase. During requirement 
engineering, addition or deletion of user requirements 
causes changes in the activity diagram as well as state 
chart diagram where the action or states are directly 
derived from user requirements. If right changes are not 
taken care during the requirement phase then they are 
carried over to the implementation phase where effort, 
time and resources are unnecessarily wasted in correcting 
the user requirements change.   

We take care of the issue of requirements change by 
prioritizing the nodes of CFG and SDG using the stack 
based memory allocation approach and IF metrics. In the 
stack based memory allocation approach, the data or info 
is pushed or popped only at one end called top of stack. 
The stack uses last in first out (LIFO) approach. Node 
pushed first is removed last from the stack. The top is 
incremented when node is inserted and decremented when 
node is deleted.  

The stack based memory allocation approach is explained 
with an illustration in section 4 and section 5 respectively. 
Thus the steps involved in identifying the critical path 
clusters for an activity and state chart diagram are as 
follows:- 

a) Convert the activity diagram into CFG and state chart 
diagram into SDG respectively. 

b) Assign the weights to the nodes of CFG or SDG as 
the case may be, by using stack based weight 
assignment approach and the Basic IF Model.  

In the proposed stack based memory allocation 
technique, for the nodes of the CFG or SDG each 
node is assigned a weight, w based on number of 
operations to access element in the stack.  But to 
access or modify the node (data), we have to pop all 
the data above it. Higher the number of operations 
required to access the node, higher is the weight and 
hence the complexity of the node. If the weight of the 
node or number of operations to access the node 

increases the cost of modifying the node also 
increases.  

In the Basic IF model [15], information flow metrics 
are applied to the components of system design. In 
our work, the component is taken as a node in the 
CFG and SDG. The IF is calculated for each node of a 
CFG and SDG. For example, the IF of node A i.e. IF 
(A) is calculated using equation given below:- 

                        )]()([)( AFANOUTAFANINAIF           (1)         

Where FANIN (A) is the count of the number of other 
nodes that can call, or pass control to node A and 
FANOUT (A) is the number of nodes that are called 
by node A. The IF is calculated for each node of a 
CFG and SDG. The weighted nodes in the path are 
summed together and the complexity of each path is 
calculated.  

Therefore, the sum of the weight of a node by stack 
based weight assignment approach and IF complexity 
contributes to the total weight of a node of CFG and 
SDG.                                                                     

c) Selection: - The decision nodes of the CFG and SDG 
form the chromosome.   A chromosome or test data 
will therefore be a binary string where a single bit or 
multiple bits in a string will correspond to a decision 
node of the graph. Number of bits in the chromosome 
will depend upon the number of decision nodes and 
the type of graph being used.  For example, in CFG if 
there are four decision nodes, a four bit binary string 
will form a chromosome or an individual in the 
population. The fitness value of each chromosome is 
calculated by applying the stack based weight 
assignment approach and Basic IF model. The 
chromosomes with high fitness value are selected as 
the parents for the reproduction. The fitness value of 
each chromosome is calculated by using the formula 
given below:-  

                               




n

i
iwF

1                            (2) 

Where, wi is weight of ith node in a path under 
consideration and n is number of nodes in a current 
path. Weight of ith node is the sum of IF complexity 
and stack based complexity given by equation given 
below.              

       )()( iWEIGHTSTACKBASEDiIFwi           (3)

 
d) Crossover: - There are number of techniques of 

crossover, but all require swapping of genes or 
sequence of bits in the chromosome. It involves 
swapping between two individuals or test data in our 
case. In our work, we assume the probability of 
crossover is taken as 80% [3]. The random number r 
is generated from 0 to 1. Crossover is done if r < 0.8  
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Fig. 3 Proposed Algorithm for generating test scenarios from the                                              
activity diagram 

condition is satisfied. This follows from our 
assumption that crossover probability should be 80%. 

e) Mutation:-Mutation is done to introduce new traits or 
bring diversity in the population to avoid the local 
optima.  In mutation the bits are flipped from 0 to 1 
and vice versa. In our work, we assume the 
probability of mutation as 20%. The random number 
is generated from 0 to 1. If r < 0.2 condition is 
satisfied, then the bits of the test data are mutated 
randomly.  

The algorithm for our proposed approach to generate test 
scenarios for activity diagram and state chart diagram is 
shown in Fig.3 and Fig.5 respectively while the weight 
assignment algorithm is shown in Fig.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Algorithm for the weight assignment 

                   ALGORITHM 2 
 
1. for each activity node ai ,  i = 1...n , 

 
a) Push nodes of CFG on the stack using 

DFS and BFS approach. 
 

b) Determine the maximum size, smax of 
the stack. 

 
c) for  i = 1 to smax , assign w  = smax – k 

to each node of the CFG, where smax is 
maximum size of stack and k is 
number of  nodes above current node.  

 
d)  for each decision node, di 

 
    (i)  Assign the same weight, w to  
          branching nodes. 
    (ii) Insert the next neighbour nodes of    
          branching nodes and update top. 
    (iii) Neglect the branching nodes and  
           decision nodes that have been   
           inserted previously. 

              end 
 

e) Assign same weight, w to concurrent 
nodes .  

   end 

 
                   ALGORITHM 1 
 

1. Convert the activity diagram into CFG. 
 

2. Use the decision nodes to generate the test data 
or chromosome population randomly.  

 
3. for each test data i = 1....n ,  
 

a) Traverse the CFG by applying Depth first 
search (DFS) as well as Breadth first search 
(BFS) and identify the paths. 
 

(i) Find the neighbour node for the current 
       node having next higher depth di by  
       applying DFS.   
 
(ii) For each concurrent node, ci traverse the  
       next neighbour node having next higher  

breadth value, bi. 
 

(iii) Update the top pointer, size s and k of the   
        Stack.  
 
(iv) Assign weight, w to each node by applying 
        weight assignment algorithm.        

 
b) Calculate the fitness value of each test   

data by using equation (2) and stack based 
weight assignment approach. 
 

c) For sub activity of each node calculate the 
fitness value using 80-20 rule and by using 
equation (2).    
 

d) Select initial test data by ranking the   
fitness of the chromosomes. 
 

e) If initial population is not enough randomly 
generate them. 
 
         If r < 0.8, perform crossover  
         Else if r < 0.2, perform mutation 
    end if 
end if 

     end 
 
4. If test data for all the paths have not been 

covered, then repeat the GA process. 
 
5. Else end system 
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Fig. 5 Proposed Algorithm for generating test scenarios from state chart 
diagram 

 

4. TEST CASE SCENARIOS DERIVED    

     FROM ACTIVITY DIAGRAM 
In this section we will explain our approach by taking the 
activity diagram of a shipping order system (Fig.6). The 
activity diagram is converted into CFG as shown in Fig.7. 
In this case study we have taken nested activity diagram 
that also takes into account concurrency among action 
nodes. 
 

 
Fig. 6 Activity diagram of shipping order system 

 
 

In Fig.7, the fork node 10 shows concurrency between 
nodes 11 and 12 whereas the fork node 17 shows 
concurrency between node 18 and 19 nodes respectively. 
The concurrent   nodes are shown as rounded rectangles in 
Fig.7. 
 

 
                 ALGORITHM 3 
 

1. Convert the state chart diagram into SDG. 
 

2. Use the fork nodes in SDG to generate the 
test data or chromosome population 
randomly.  

 
3. for each test data i = 1.... n ,  
 

a) Traverse the SDG by applying Depth 
first search (DFS). 
 

(i) Find the neighbour node for the current 
       node having next higher depth d by 
       applying DFS.  

 
(ii) Update the top pointer ,size s and k of  
      the stack, where k is number of nodes  
      above the current node.  
 
 (iii) Assign weight, w to the node by         
        applying the weight assignment     
       algorithm.  
 

b) Calculate the fitness value of each test   
data by using equation (2) and stack 
based weight assignment approach. 
 

c) Select initial test data by ranking the   
fitness of the chromosomes. 
 

d) If initial population is not enough 
randomly generate them. 
 
         If r < 0.8, perform crossover  
         Else if r < 0.2, perform mutation 
    end if 

             end if 
     end 
 
4. If test data for all the paths have not been 

covered, then repeat the GA process. 
 

5. Else end system 
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For Fig.7, the stack based weight assignment to all nodes 
of CFG is shown in Fig.8. The maximum size of stack is 
smax = 18. The initial node of CFG i.e. node 1 is pushed  
first hence the weight, w for node 1 is smax – k i.e. 18 – 0= 
18 where smax is maximum size of stack and k is number of 
nodes before the lowest node i.e. number of nodes before 
node 1. Similarly the priority for node 2 is 17 and node 3 
is 16. The complexity of node 1 is highest i.e. 18. 
Therefore, making changes to node 1 will require the 
highest number of operations to access it. 
 
 
 

 
 
 

Fig. 7 CFG of Activity diagram of shipping order system 

 
Now as clear from Fig. 7, there are four decision nodes 
namely 4, 7, 8 and 16 which will form the chromosome in 
our case. Therefore, corresponding to the chromosome 
value 0000 the decision nodes i.e. 4, 7, 8 and 16 will 
evaluate to false condition. The path to be followed using 
this chromosome value is 1, 2, 3, 4, 5, 8, 13, 21, 22. The IF 
complexity of each node is calculated shown in Table I 
where, FI is Fan In and FO is Fan Out of the 
corresponding node. The fitness value of test data 0000 is 
18 + 18 + 17 + 17 + 15 + 15 + 19 + 32 +22 = 173. 

The sum of stack based priority number (A) and the IF 
complexity of each node (B) is equal to the total 
complexity of each node. 
 
In this example, we have taken the nested activity for 
modify order. The nested activity diagram includes the 
fork and merges nodes. The Fig.9 shows the nested sub 
activity diagram of Modify Order shown in Fig.6. The 
Fig.10 has one fork and merge node showing the 
concurrency among the nodes. The corresponding CFG for 
Fig.9 is shown in Fig.10. 

 

 
 

 

     Fig. 8 Stack based weight assignments to nodes of CFG for the 
shipping order 

                       Nodes  K Size, s Weight, w = 
smax – k 

                            22 17 18 18-17=1 

                             21  16 17 18-16=2 

              20 15 16 18-15=3 

             22 19 14 15 18-14=4 

             21 18  13 14 18-13=5 

                      13 or 17 12 13 18-12=6 

                       16 11 12 18-11=7 

                        15         10 11 18-10=8 

          14  9 10 18-9=9 

           11 22 8 9 18-8=10 

     12  or 22 21 7 8 18-7=11 

     10 or 21     9 or 13 6 7 18-6=12 

           7          8 5 6 18-5=13 

                   5 or 6 4 5 18-4=14 

                        4 3 4 18-3=15 

                        3 2 3 18-2=16 

                        2        1 2 18-1=17 

                        1 0 1 18-0=18 

Top 
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Table 1: Complexity of nodes of the CFG of shipping order 

 

 

 

Fig. 9 Nested Activity diagram of Modify order 

                . 

Fig. 10 CFG of modify order (nested activity) 

 

 

Fig. 11 Stack based weight assignment to nodes of nested activity 
diagram (Fig.10) 

 

Table 2: Complexity of CFG (Fig.10) 

Node Complexity 
based on pop 
operation, (A) 

IF= Fan In (a) 
* Fan Out (a), 

(B) 

Total Complexity = 

(A+B) 

9.1 8 0 8 

9.2 7 1 8 

9.3 6 2 8 

9.4 5 1 6 

9.5 4 1 5 

9.6 3 2 5 

9.7 2 1 3 

9.8 1 0 1 

      

Node Complexity 
based on pop 
operation, (A) 

IF= Fan In 
(a) * Fan 
Out (a), 

(B) 

Total Complexity 
= 

(A+B) 

1 18 0 18 

2 17 1 18 

3 16 1 17 

4 15 2 17 

5 14 1 15 

6 14 1 15 

7 13 2 15 

8 13 2 15 

9 12 1 13 

10 12 2 14 

11 10 2 12 

12 11 1 12 

13 12+6 1 19 

14 9 1 10 

15 8 2 10 

16 7 2 9 

17 6 2 8 

18 5 1 6 

19 4 1 5 

20 3 2 5 

21 12+11+5+2 2 32 

22 11+10+1 0 22 

Nodes K Size, s Weight = smax-k 

9.8 7 8 8 - 7 = 1 

9.7 6 7 8 - 6 = 2 

9.6 5 6 8 - 5 = 3 

                  9.5 4 5 8 - 4 = 4 

9.4 3 4 8 - 3 = 5 

9.3 2 3 8 - 2 = 6 

9.2 1 2 8 - 1 = 7 

9.1 0 1 8 - 0 = 8 

Top 
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The total complexity for the nested activity of modify 
order is the summation of the total complexity of each 
node i.e. 8 + 8 + 8 + 6 + 5 + 5 + 3 + 1 = 44. The total 
complexity of activity Modify Order i.e. node 9 (Fig.6) = 
complexity of node 9 + complexity of nested activity of 
node 9 i.e. 13 + 44 = 57. Hence, the total complexity of 
node 9 is 57. 

We start the process by randomly generating the initial 
population as shown in Table 3.  

Initial Population: - 0011, 0001, 1100 and 1111, where X 
is the test data, F(X) is the fitness value, r is random 
number generated from 0 to 1. F’(X) is new computed 
fitness value after crossover and mutation operation. C is 
crossover and M is mutation operation. In our example, 
GA is run for 12 iterations. The test data 0011 will follow 
the path 1, 2, 3, 4, 5, 8, 9, 7, 21, 22 and the corresponding 
fitness value for the test data is 18 + 18 + 17 + 17 + 15 + 
15 + 57 + 15 + 32 + 22 = 226.  The test data 0001 will 
follow the path 1, 2, 3, 4, 5, 8, 13, 21, 22 and the 
corresponding fitness value for the test data is 8 + 18 + 17 
+ 17 + 15 + 15 + 19 + 32 + 22= 173. The test data 1100 
will follow the path 1, 2, 3, 4, 6, 7, 10, 11, 12, 14, 15, 16, 
13, 21, 22 and the corresponding fitness value is 18 + 18 + 
17 + 17 + 15 + 15 + 14 + 12 + 12 + 10 + 10 + 9 + 19 + 32 
+ 22 = 240. The test data 1111 will follow the path 1, 2, 3, 
4, 6, 7, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22 and 
the corresponding fitness value for the test data is 18 + 18 
+ 17 + 17 + 15 + 15 + 14 + 12 + 12 + 10 + 10 + 9 + 8 + 6 
+ 5 + 5 + 32 + 22 = 245. 

 

Table 3: Iteration 1 

S. 
No. 

X   F 

(X) 

R C M F’(X) 

1. 0011 226 0.327 0111 0111 317 

2. 0001 173 0.867 0001 0001 173 

3. 1100 240 0.912 1100 1100 240 

4. 1111 245 0.490 1011 1011 154 

 

Table 4: Iteration 2 

S. 
No. 

X   F 

(X) 

R C M F’(X) 

1. 0111 317 0.372 0101 0101 173 

2. 1100 240 0.541 1110 1110 240 

3. 0001 173 0.934 0001 0001 173 

4. 1011 154 0.860 1011 1011 154 

                                           

Table 5: Iteration 3 

S. 
No. 

X   F 

(X) 

R C M F’(X) 

1. 1100 240 0.841 1110 1110 240 

2. 0101 173 0.415 0001 0001 173 

3. 0001 173 0.301 0101 0101 173 

4. 1011 154 0.971 1011 1011 154 

 

                                            .           

                                            . 

                                            . 

                                            . 

                                       Table 6: Iteration 11 

S. 
No. 

X   F 

(X) 

R C M F’(X) 

1. 0111 317 0.712 0111 0111 317 

2. 0111 317 0.431 0111 0111 317 

3. 0111 317 0.692 0111 0111 317 

4. 1111 245 0.169 1111 0111 317 

 

 

Table 7: Iteration 12 

S. 
No. 

X   F 

(X) 

R C M F’(X) 

1. 0111 317 0.436 0111 0111 317 

2. 0111 317 0.946 0111 0111 317 

3. 0111 317 0.871 0111 0111 317 

4. 0111 317 0.192 0111 0011 226 

  

After the 12th iteration as shown in table 7, the test data 
0111 have the highest fitness value i.e. 317. So, the path 
corresponding to this chromosome value i.e. 1, 2, 3, 4, 5, 
8, 9, 7, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22 should 
be the one which must be tested first. Next we will discuss 
an example illustrating our approach to generate and 
prioritize test case scenarios from state chart diagram.  
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5.  TEST CASE SCENARIOS DERIVED     
FROM STATE CHART DIAGRAM 
 

In our next case study we have applied our approach on 
the state chart diagram of the student enrolment system as 
shown in Fig.12. In student enrolment system, student 
enrolled is an event, seat available is a guard condition and 
add student is an action. If the guard condition becomes 
true then action is performed and open for enrolment state 
is generated. The intermediate graph is called as SDG 
(Fig.13). 

In Fig.13, INIT represents start process, PR represents 
proposed state, SC represents scheduled state, OE 
represents open for enrolment state, FU represents Full 
state and CE represents closed to enrolment state 
respectively.  The events are shown as e1, e2, e3.......e12 
where e1 is scheduled, e2 is registration open ,e3 is 
student apply for enrolment, e4 is  enrolment closed, e5 is 
student apply for waiting list, e6 is close enrolment, e7 is 
student dropped, e10 is seat allotment and e8, e9, e11, e12 
are cancelled events respectively. As shown in Fig.12, 
there are four decision nodes namely 2, 3, 4, and 6 
respectively which will form the chromosomes in our case 
study. 

 

 

   Fig. 12 State chart diagram of student enrolment system 

 

 

Fig. 13 SDG of student enrolment system 

 

 

 
 

 
Fig. 14 Stack based weight assignment to nodes of SDG 

 
 

The events e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11 and 
e12 represent the edges and the states represent the 
corresponding nodes in the SDG. The test data 
corresponding to decision nodes 2, 3, 4 and 6 are shown in 
Table 8.  These test data show the events representing 
edges in the SDG and are part of test case scenarios.  For 
example test data involving events e1, e2, e5 and e7 will 
lead to path consisting of nodes 1, 2, 3, 4, 6 and 7. It is to 
be noted that in Table 8 we have considered all the test 
data leading to valid as well as invalid paths. 
 

Nodes K Size, s Weight = smax-k 

7 5 6 6-5 = 1 

5 or 6 or 7 4 5 6-4 = 2 

4 3 4 6-3 = 3 

3 or 7 2 3 6-2 = 4 

2 1 2 6-1 = 5 

1 0 1 6-0 = 6 

Top 
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Table 8: Test cases for SDG 
 

                 Decision Nodes 

S.No.      2       3          4      6 

1. e1 e2 e4  e7 

2. e1 e2 e4  e10 

3. e1 e2 e5 e7 

4. e1 e2 e5 e10 

5. e1 e2 e11 e7 

6. e1 e2 e11 e10 

7. e1 e9 e4 e7 

8. e1 e9 e4 e10 

9. e1 e9  e5 e7 

10. e1 e9 e5 e10 

11. e1 e9 e11 e7 

12. e1 e9 e11 e10 

13. e12 e2 e4 e7 

14. e12 e2 e4 e10 

15. e12 e2 e5 e7 

16. e12 e2 e5 e10 

17. e12 e2 e11 e7 

18. e12 e2 e11 e10 

19. e12 e9 e4 e7 

20. e12 e9 e4 e10 

21. e12 e9 e5 e7 

22. e12 e9 e5 e10 

23. e12 e9 e11 e7 

24. e12 e9 e11 e10 

25. e1 e2 e3 e7 

26. e1 e2 e3 e10 

27. e1 e9 e3 e7 

28. e1 e9 e3 e10 

29. e12 e2 e3 e7 

30. e12 e2 e3 e10 

31. e12 e9 e3 e7 

32. e12 e9 e3 e10 

 

In this example as clear from Fig.13 in a state, maximum 
four events can take place. Therefore each event in SDG is 
represented in two bit format. In our case, the events e1 
and e12 at node 2 are represented by 00 and 01, events e2 
and e9 at node 3 are represented by chromosome 00 and 
01, events e11, e5, e4 and e3 at node 4 are represented by 
00, 01, 10 and 11 respectively.  Events e7 and e10 at node 
6 are represented by 00 and 01 respectively. Therefore, 
each event in SDG is represented in two bit format. As 
there are four decision nodes in the SDG, the chromosome 
here will consist of a binary string of 8 bits. In our 
proposed approach, loops are traversed at most once. 
Therefore, node having self loop is considered only once 
in a path. For example, the test case scenario involving 
events e1, e2, e3, e7 will follow the path consisting of 
nodes 1, 2, 3, 4, 5 and 7 .The node 4 containing self loop is 
traversed only once in the path and the next node to be 
followed after loop is the nearest neighbour having 
shortest distance i.e. next node to be followed after node 4 
is 5 as the distance between node 4 and node 5 is small as 
compared to node 6 and 7.  

The sum of stack based priority number (A) and the IF 
complexity of each node (B) is equal to the total 
complexity of each node. The IF complexity of each node 
of SDG is shown in Table 9 where, FI is Fan In and FO is 
Fan Out for the corresponding node. The test data 
representation involving decision nodes is shown in Fig.15 
using two bit format for each decision node. 

 
        e1            e2          e4           e7 

 
 

Test case 1 

 

        e1            e2            e4           e10     
 

                    
Test case 2       

 

                                .                                         

               .  

 
0     0 

  
0     0 

 
1    0 

 
0    0 

 
0     0 

  
0     0 

 
1    0 

 
0    1 
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               .          
 
e12           e9          e3         e7 

          
                                                                      

Test case 31             
      e12           e9         e3           e10 

                                     
                                                            

Test case 32 

 

Fig.15 Test case representation using two bit format 

 

Table 9: Complexity of nodes of SDG 

 

We start the process by randomly generating the initial 
population as shown in Table 10. 

Initial Population: - 00011000, 01001000, 01000101, 
00000100 where X is the test data, F(X) is the fitness 
value, r is random number generated from 0 to 1. F’(X) is 
new computed fitness value after crossover and mutation 
operation. C is crossover and M is mutation operation.  

The test data 00011000 will traverse the edges e1, e9, e4, 
e7 and hence will follow the path 1, 2, 3 and 7 and the 
corresponding fitness value of test data is 6 + 7 + 6 + 7 = 
26. The test data 01001000 will traverse the edges e12, e2, 
e4 and e7 and hence will follow the path 1, 2 and 7 and the 
corresponding fitness value is 6 + 7 + 7 = 20. The test data 
01000101 will follow the edges e12, e2, e5, e10 and will 
follow the path 1, 2 and 7 and the corresponding fitness 
value is 6 + 7 + 7 = 20. Similarly the test data 00000100 
will follow the edges e1, e2, e5, e7 and hence will follow 
the path 1, 2, 3, 4, 6 and 7 and the fitness value computed 
is 6 + 7 + 6 + 9 + 5 + 7 = 40. 

 

 

Table 10: Iteration 1 
S. 
No 

X   F(X) R C M F’(X) 

1. 0001100
0 

26 0.82
9 

00011
000 

00011
000 

26 

2. 0100100
0 

20 0.87
6 

01001
000 

01001
000 

20 

3. 0100010
1 

20 0.71
2 

01000
100 

01000
100 

20 

4. 0000010
0 

 

40 0.68
6 

00000
101 

00000
101 

54 

 

                                         Table 11: Iteration 2 
S. 
No 

X   F(X) R C M F’(X) 

1. 0001100
00 

26 0.91
7 

00110
000 

00110
000 

26 

2. 0100100
0 

20 0.12
6 

01001
000 

01000
100 

20 

3. 0100010
0 

20 0.81
4 

01000
100 

01000
100 

20 

4. 0000010
0 

54 0.56
2 

00000
100 

00000
100 

54 

                               

Table 12: Iteration 3 
S. No. X   F(X) R C M F’(X) 

1. 00110
000 

26 0.83
3 

00110
000 

00110
000 

26 

2. 01000
100 

20 0.41
5 

01000
100 

01000
100 

20 

3. 01000
100 

20 0.12
4 

01000
100 

01001
000 

20 

4. 00000
100 

54 0.61
2 

00000
100 

00000
100 

54 

                                                .           

                                            . 

                                            .        

Table 13: Iteration 8 
S.No

. 
X   F(X) R C M F’(X) 

1. 0100010
0 

20 0.84
1 

01000
100 

00100
000 

20 

2. 0000010
1 

54 0.91
2 

00000
101 

00000
000 

54 

3. 0000100
1 

39 0.10
4 

00001
001 

00000
101 

54 

4. 0000010
1 

54 0.80
9 

00000
101 

00010
101 

54 

 

 
0     1 

  
0     1 

 
1   1 

 
0    0 

 
0     1 

  
0     1 

 
1   1 

 
0    1 

Node Complexity based on 
pop operation, (A) 

Fan In(a) * 
Fan Out(a), 
(B) 

Total 
Complexity = 
(A+B) 

1 6 0 6 

2 5 2 7 

3 4 2 6 

4 3 6 9 

5 2  2 4 

6 2 3 5 

7 4+2+1=7 0 7 
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Table 14: Iteration 9 

S.No. X   F(X) R C M F’(X) 

1. 01000
100 

20 0.97
1 

01000
100 

01000
100 

20 

2. 00000
101 

54 0.50
1 

00000
101 

00000
101 

54 

3. 00001
001 

54 0.41
2 

00000
101 

00000
101 

54 

4. 00000
101 

54 0.97
2 

00000
101 

00000
101 

54 

                                      

In our example, after the 9th iteration as shown in Table 
14, the test data e1, e2, e5, e10 have the highest fitness 
value i.e. 54. So, the path corresponding to the 
chromosome 00000101 should be the one which must be 
tested first. Therefore the path consisting of nodes 1, 2, 3, 
4, 6, 4, 5 and 7 consisting of events e1, e2, e5 and e10 
should be the one that will be tested first. 

 

6. CONCLUSION AND FUTURE WORK 

In this paper a GA based approach is proposed for 
identifying the test path that must be tested first. Test paths 
or scenarios are derived from activity diagram and state 
chart diagram respectively. The proposed approach makes 
use of IF model and GA to find the path to be tested first. 
Our future work involves applying the proposed approach 
on other UML diagrams like sequence diagram and using 
this technique for white box testing and object oriented 
testing. A tool is also being developed to support this 
proposed approach. 
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