
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 427

Coalesce Model to Prevent Format String Attacks

Jayant Shekhar1, Seema Yadav2, Khaleel Ahmad3,

CSE/IT Dept. S.I.T.E., SVSU,
Meerut-250002, India

 Abstract

Format string attacks cause serious security problems in the field of
software security in computer world. Testing and implementation
against to Format String vulnerabilities can avoid result due to
working of Format String Bugs. In this paper, we have proposed
eight novel approaches to prevent format string attacks and
combination of these approaches named as Coalesce Model. With the
help of this model we check our coding in such a manner that no any
type of format string attacks occurs. We check the system
implementation of any applications with the help of coalesce model
against corruption of application states, and giving the control to
attacker. Our work addresses Format String vulnerabilities related to
ANSI C library. The result indicates that the proposed model is
effective to testing of Format String Vulnerability.
 Keyword: Format function, Software security, Format string
attacks, Vulnerability.

 1. Introduction

 Several types of computer security attacks arise from
software bugs. Format string attacks are most important type
of buffer overflow attacks in software security. Format string
attacks damage our important information or data first time in
year 2000 in computer world. Format string attacks are also
called Variadic functions. Format string attacks are result of
flexible features of C language by representation of data or
information and use of pointer. Flexible feature of C language
give more choices to programmer for system programming
but C language lacks safety and function arguments checking
in the function. Format string function attacks apply to all
format string functions in the C library [3][8][16][19] such as
given in table1.This is possible to declare functions that take
variable number of pointers in C and C++ [3][8][9][12][14].
Format string function are also called conversion function,
which is used to convert primitive data types into a human
understandable form [8][12][18][22]. Format string function
is used in any type of C program to giving output message,
printing error message etc. Format string bugs arise to the

reason of passing arguments in not a safe way. Format string
attacks can be used locally or remotely [3][8][12][14][20][22].
Remote format string attacks are wu-ftpd, BSd ftpd, rpc.stat
and local format string attacks are lpr, LPRng, BSD and fstat
[8]. Wu-ftpd attacks one of the most widely used on FTP
server in computer network security. All attacks program we
find out from the Internet, overwrite the function pointers or
return address to execute a remote root shell. Format string is
also called ASCIIZ or ASCIZ (used to refer a null-terminated
ASCII string).

Code for understand the format string problem

 Wrong use of printf function

 Int func (char *employee)
 {
 printf (employee);
 } // this is the unsafe function

 Correct form of printf function

 int func (char *employee)
 {
 printf ("%s", employee);
 } // this printf function gives the safe function
If the attacker control the format string arguments of a Format
Function in a victim application, it is very easy for attacker to
read or write the application address space.
 Format string bugs are very dangerous in computer and
software security. It gives full control to attacker of the
application to damage our system security. Format string
attacks can be used to execute harmful or crashing the
program [3][6][14]. Format string attacks arises from the same
dark corner as many other security holes, means it comes by
laziness of programming. In format string function there is no
any single function in the ANSI C definition
[3[6][8][9][12][14][22], there are some basic format string
functions (family member) [1][6][8][12][14][22][18]which is
given below in table 1 and format function specifier of the
format function are given in table 2.

 Table1. Format String Function

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 428

 Table2. Specifier of The Function

Parameter Output Passed as to
function

%d decimal (int) value
%x hexadecimal (unsigned int) value
%s string ((const) (unsigned) char *) reference
%n number of bytes written so far, (* int) reference
%u unsigned decimal (unsigned int) value
%% % character(literal) reference

%p External representation of pointer to
void

reference

We take a printf Format Function to explain how the format
string looks in a stack. See figure 1.

 Top of the Stack

 Bottom of the stack

 Figure 1.Stack of printf((“%d %s,” integer ,string)

In this example (figure 1) the format string takes two specifier
(%x and %s) and two arguments (string and integer) which is
corresponds by these specifiers (which is integer and string
type). Return address which is given by the function is saved
followed by the address of format string and arguments of the
function. There are two pointers used to keep track of format
string and arguments. The first position of argument pointer is
comes after the address of format string.

Function of the format string functions [4][6][8][19][21]

•convert simple C data types to a string.
• allow specifying the format of the representation
• process the resulting (system messaging functions) string
(output to stderr, stdout, syslog, etc).

Working of the format string functions [12][14][19][21]

• It controls the behavior of the function.
• It specifies the type of parameters that should be printed as a
output.
• Parameters of the function are saved on the stack (pushed).

2. Literature Survey

Timothy Tsai and Navjot Singh [3] developed a tool Libsafe
that is a shared library tool and used to prevent Format String
Attacks during runtime of the function. The library intercepts
format function call and check that function safely executed or
not. If a function call does not overwrite the return address of
the function with %n specifiers, then it is considered as a safe
execution. Otherwise, a warning message is logged and the
process is terminated or aborted. This tool is not effective for
many other types of attack that do not overwrite the return
addresses of the function (e.g., arbitrary reading from stack).
 Crispin Cowan and Greg Kroah-Hartman [10]
developed a Format Guard tool that is more effective to stop
the format string bugs and does not impose compatibility
problems to functions. FormatGuard is incorporated into
WireX’s Immunix distribution in Linux and server products.
FormatGuard tool is used to prevent format string bugs during
the compilation and linking stages of the format function. This
tools counts the number of arguments which is passed during
compile time and matches this count to number of the
specifiers of the format string function during program
runtime. If there is a mismatch occurred then a warning about
format string attacks is logged and the format function call is
aborted.
 Dekok [17] designed a PScan tool to detect format
string attacks to printf family functions. They give two
principles of detecting Format string attacks which are: (i) a
format string is not constant and (ii) it is the last argument of a
function call. This tool not works for vsprintf family of format
functions.

S.
N.

Format
Function

Output of the Format Function Pass as

1 fprintf Prints output to a File stream Through
copying

2 printf Prints output to the stdout stream Through
copying

3 sprintf Prints output into a String Through
copying

4 snprintf Prints output into a String with length
checking

Through
copying

5 vfprintf Prints output to a File stream from a
va arg structure

Through
pointer

6 vprintf Prints output to the stdout stream from
a va arg structure

Through
pointer

7 vsprintf Prints output into a String from a va
arg structure

Through
pointer

8 vsnprintf Prints output into a String with length
checking from a va arg structure

Through
pointer

9 syslog Output to the log file Through
copying

10 vsyslog Output to the log file from a va arg
structure

Through
pointer

11 err Output as a error Through
copying

Local variables,
saved registers

 %d %s

 string

 integer

 Format string

Return address of
format function

S
T
A
C
K

G
R
O
A
T
H

Format string
pointer (fsptr)

Argument pointer

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 429

 Li, W. and Chiueh, T.[18], developed Lisbon tool that is
used to protect applications against Format String attacks to
insert a canary word at the end of arguments of the format
function; it can really stop known format string attacks to run
time of the applications.
 Robbins, T [22] developed Lib Format tool that is used
to detect Format string bugs during runtime. Libformat tool
kill the applications if format strings are in writable memory
and contain %n specifiers. It can’t prevent other attacks
related to reading arbitrary memory (e.g., supplying more
number of specifiers than the arguments).

3. Novel Approaches Preventing for Format
String Attacks

3.1-checking the size of string before using syslog() functions
 (CBOSYF)

 This is our first approach to preventing format string attacks.
The syslog() function writes message to the system message
logger, the message is then written to the system console, log
files, logged-in users because syslog() take string as input, but
depending on the implementation it does not check the
boundary of string before using it. Because of this reason
when we use syslog() function, first check the string which is
passed to this function, otherwise we invite the FSB.

3.2- Fix the boundary to sprint() function (FBTSpF)

When we do not check the boundary of the sprintf function,
there is more possibilities to format string attacks. So
prevention from format string attacks we first check the
boundary of this function.e.g:
 Sprint(buffer,errorcommon:%100”,user) not as a
 Sprint (output,buffer)

3.3- Check that the number of argument is equal to specifier
of function (CArgETS)

When we pass arguments to any format function then first
check that number of arguments is equal to specifier or not, if
not then there is more possibility to format string attack. Such
as sprintf (“%n%d%n”, a, b, c) not as a sprintf(“%n”, a ,b, c)

3.4-use %.nd in the place of %nd (%.nd)

In this approach we clarify that (.n) is the precision that
specifies the minimum number of digits to be written after the
decimal point, .n is the precision number treated as .n and %d
in function but %nd treated as %n and %d specifier, so it give
two specifier for one arguments, it gives invitation to format
string attacks. For example when we take %.2d, it means 2
numbers of digits to be printed after the decimal point. So
because of this we always use (%.nd in the place of %nd)

carefully to preventing format string, otherwise we invite the
Format String Bugs.

3.5-Avoid to fix the length of format string function
(AFLOFoSF)

Not specify any type of length to function such as h, l or L
because it takes one type of data types which is declared in
that function. Detailed is given below

 h- It interpreted the arguments as a short int or un-
signed short int (only applies to integer specifiers: i,
d, o, u, x and X).

 l- The argument is interpreted as a long int or
unsigned long int for integer specifiers (i, d, o, u, x
and X), and as a wide character or wide character
string for specifiers c and s.

 L- The argument is interpreted as a long double (only
applies to floating point specifiers: e, E, f, g and G).

3.6-Not use format string function without specifier (NUFWS)

This situation occurs when a programmer writes the programs
like this printf (str) as a short-hand for
 printf (“%s”, str). It is easier to type;
 Unfortunately, it is also vulnerable if the attacker inserts
spurious % directives in the str string. So as to remove this
type of problem first we check that arguments of the function
take specifier or not. If checking is true then execute otherwise
aborted this type of application.

3.7-Not use conversion specifier without arguments in format
string functions (NUSWArg)

 To understand this problem we take an example such as
printf ("%08x.%08x.%08x\n");
This works, because we instruct the printf function to retrieve
three parameters from the stack and display them as 8-digit
padded hexadecimal numbers. So a possible output may look
like: 40012980.080628c4.bffff7a4.
These values comes from the stack memory by the partial
dump, starting from the current bottom upward to the top of
the stack assuming that the stack grows towards the low
addresses. Depending on the size of the format string buffer
and the size of the output buffer, we can reconstruct more or
less large parts of the stack memory by using this type of
technique. In some cases you can also retrieve the entire stack
memory. A stack dump gives most important data or secures
information about the program flow and local function
variables and may be very helpful for finding the correct
offsets for a successful exploitation. So when we use format
function then first check that specifier of the function takes
arguments or not. If yes then send application to execution
otherwise reject the application.

3.8-Avoid using of % n features (AU%nFer)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 430

 In this approach we clarify that n is the function argument
treated as a pointer to an integer (or integer variant such as a
short). The number of output characters is stored in the
addresses pointed by the arguments of the function. So, if we
specify %n specifier in the format string, then the number of
output characters is written to the location specified by the
arguments of the function.
 The result of spurious %n specifier in printf() format
strings is that the attacker can “walk” back up the stack some
number of words by inserting some number of %d directives,
until they reach a suitable word on the stack and treating that
word such as integer in format string. This directive is the
most dangerous in format string because it induces printf to
write data back to the argument list. So in our novel

approaches, we suggest that to avoid the use of %n directive
in format string functions.

 4 - Coalesce Model

In Coalesce model we combine all eight novel approaches
which is given in section III to prevent from Format String
Attacks in a secure way. This model filters all the attacks
which are related to Format String Attacks that means all the
vulnerable applications are rejected or aborted and executed
only safe functions. So we can say that this model (see in
figure 2) is better to prevent Format String Attacks.

 Novel Approaches

Figure 2- Coalesce Model for Preventing Format String Attacks

5- Comparisons of Coalesce Model with other Tool That Prevent Format String Attacks

 TABLE3. COMPARISON OF COALESCE MODEL WITH OTHER PREVENTION TOOLS

1-Sprintf (output,buffer)

2-printf ("%08x.%08x.")

3-Sprintf
(buffer,errorcommon:%100

”,user)

4-sprint(“%n%d%n”, a ,b,

c)

5- sprintf(“%n”, a ,b, c)

6- printf(str)

7-printf
(“%08x.%08x.”&a,&b)

8- printf(“%s”, str)

7‐NUSWArg

3‐CArgETS

2‐FBTSPF

8‐AU%nFer

1‐CBOSYF

5‐AFLOFoSF

4‐U%.nd

6‐NUFWS

Rejected functions
[

1‐ Sprintf
(output,buffer)
2-printf
("%08x.%08x.")
5-sprintf(“%n,”a,b,c)
6-printf(str)

Accepted functions
[

3‐ Sprintf
(buffer,errorcommon:
%
100”, user)
4-sprintf
(“%n%d%n,”a,b,c)
7-printf
("%08x.%08x."&a,&b)

S
A
F
E

F
U
N
C
T
I
O
N

E
X
E
C
U
T
E
D

A
T
T
A
C
K
E
R

I
N
P
U
T

F
U
N
C
T
I
O
N

Input Output

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 431

Tool/ Work Both Families
covered(Printf and
vsprintf)

Prevent to Stack
read

Prevent to Stack
write

Prevent to
Argument
retrieve

Check the
Specifier
width

Check the
Specifier
mismatch

Libsafe[3] tool Yes No Yes No No No

FormatGaurd[10] tool No Yes Yes No No No

PScan tool[17] tool No Yes Yes No No No

Lisbon[18] tool Yes Yes Yes No No No

Libformat [19] tool Yes No Yes No No No

Coalesce model Yes Yes Yes Yes Yes Yes

6 –CONCLUSION

 Format String Bugs depth analyses report and the
corresponding source code of the applications drive the
development of Coalesce Models to depict and reason about
software security vulnerability of the applications .Format
string attacks are dangerous and most important security
vulnerabilities that appeared in Year 2000 and continue to be a
major cause of software vulnerabilities. This work proposed
Coalesce model to testing of Format String Bugs that gives the
safe function execution. The problem of testing which is
observed in the extensive survey of the related work provided
in this paper is not come under the Coalesce model. Coalesce
Model is one of the most effective Model for defending
against format string attacks. By applying our proposed
model, an implementation can be tested for any type of
Format String Bugs. So with the help of this Model the
coming bugs can be reject or aborted and the loss comes by
end user can be prevented. This Model reject the Format
String Bugs in the source code of the applications which may
lead various types of vulnerability such as arbitrary reading,
writing , application crash and direct parameter access of the
stack and heap memory. Coalesce Model check both (printf,
vprintf) of Format Family Functions.

7. FUTURE WORK

Computer vulnerabilities corrupt our important data or steal
confidential information such as user ID and Password of the
system user; so we think that our future work is to design and
implement finite state machine to prevent Format String
attack. With the help of this Finite State Machine we improve
our security performance and software vulnerability.

 REFERENCES

[1] M. F. Ringenburg and D. Grossman, “Preventing format string attacks via
automatic and efficient dynamic checking,” In Proceedings of the 12th

ACM conference on Computer and communication security ACM Press,
November 7–11-2005.

[2] S. Nanda, W. Li, L. chung Lam, and T. cker Chiueh, “Bird: Binary
interpretation using runtime disassembly,” In Proceedings of the 4th
IEEE/ACM Conference on Code Generation and Optimization (CGO’06),
March 2006.

[3] Tsai, T., and Singh, N., “Libsafe 2.0: Detection of format string vulnerability

exploits,” Technical report, Avaya Labs,February 2001. version 3-21-
01,PP.1-5.

[4] Security Team. Pfinger format string vulnerability http://www .securiteam
.com/unixfocus/ 6K00N1P3FQ.html.

[5] Security Focus. Proftpd shutdown message format string vulnerability.
http://www.security focus . com/ bid/14381/info.

[6] US-CERT. Format string input validation error in wuftpd site exec()
function. http://www.kb.cert.org vuls/id/29823.

[7] Shuo Chen, Zbigniew Kalbarczyk, Jun Xu, Ravishankar and K. Iyer, “ A
Data-Driven Finite State Machine Model for Analyzing Security
Vulnerabilities,” Center for Reliable and High-Performance Computing
Coordinated Science Laboratory University of Illinois at Urbana-
Champaign 1308 W. Main Street, Urbana, IL 61801

[8] Andreas thuemmel, “Analysis of format string bugs,” a.thuemmel@web.dc-
version 1.0, Format String Buggs and SITE EXEC exploit against wu-ftpd
on 15-02-2001.

[9] Hossain Shahriar and Mohammad Zulkernine, “ Mutation-based Testing of
Format String Bugs,” School of Computing Queen’s University, Kingston,
Ontario, Canada, In proceeding of the 11th IEEE High Assurance Systems
Engineering Symposium in 2008,page no.229-238.

[10] Crispin Cowan, Matt Barringer, Steve Beattie, and Greg Kroah- Hartman,
“FormatGuard: Automatic Protection From printf Format String
Vulnerabilities,” WireX Communications, Inc. published in the preceeding
Of the USENIX security Symposium in 15-August-2001, Washington Dc.

[11] Lap-chung Lam and Tzi-cker Chiueh, “ Automatic Extraction of Accurate
Application Specific Sandboxing Policy,” Networks, Inc. 99 Mark Tree
RD, Suite 301, Centereach NY 11720, USA

[12] Scut / team teso, “Exploiting Format String Vulnerabilities,” September 1,
2001 version 1.2.Accessed from http:/doc.bughunter.net/Format-
String/exploit-fs.html.

[13] Pankaj Kohli and Bezawada Bruhadeshwar, “FormatShield: A Binary
Rewriting Defense against Format String Attacks,” Centre for Security
Theory and Algorithmic Research (C-STAR) International Institute of
Information Technology Hyderabad,Spinger ACISP 2008,LNCS 5107 page
no. 376-390.

[14] Format String Attacks, Tim Newsham, Guardent Digital Infrastructure,
Inc.September 2000.

[15] Fang Yu, Muath Alkhalaf and Tevfik Bultan “Generating Vulnerability
Signatures for String Manipulating Programs Using Automata-based
Forward and Backward Symbolic Analyses,” 2009 IEEE/ACM
International Conference on Automated Software Engineering,1527-
1366/09,PP 605-609.

[16] Shuo Chen, Jun Xu, and Ravishankar K. Iyer “Non-Control-Data Attacks
Are Realistic Threats,” Center of Reliable and High Performance

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 432

Computing Cordinated Science Laboratory, University of Illinois at
Urbana-Champaign,1308 W.

[17] DeKok,A., “Pscan (1.2-8) Format string security checker for C files”,
http://packages.debian.org/ etch/ pscan(Accessed January 2008)

[18] Li, W. and Chiueh, T., “Automated Format String Attack Prevention for
Win32/X86 Binaries”, In proceedings of the 23rd Annual Computer
Security Applications Conference (ACSAC), Miami, December 2007, pp.
398-409.

[19] The Shellcoder handbook,2nd edition, discovering and exploiting security
holes.

[20] ITS4: Software Security Tool, Accessed from http: //www.
cigital.com/its4/.

[21] Silva, A., “Format Strings,” Gotfault Security Community, Version 2.5,
Nov 2005, Accessed from http://www.milw0rm.com/papers/5 (April 2008).

[22] Robbins, T., Libformat, http://archives.neohapsis.com/ archives
/linux/lsap/2000-q3/0444.html (Accessed January 2008)

