
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org

23

Algorithm for Reducing Overhead of Message
Purging in Large-Scale Sender-Based Logging

Jinho Ahn

Dept. of Computer Science, College of Natural Science, Kyonggi University
Suwon, Gyeonggi-do 443-760, Republic of Korea

Abstract
When attempting to apply sender-based message logging
with checkpointing into large-scale and geographically
distributed systems, two important things should be
reconsidered: reducing the number of messages passing on
core networks during its fully message logging and
recovery procedures and purging effectively logged
messages from their senders' volatile memories. This paper
presents a novel message purging algorithm to solve the
second problem based on our previous work having
alleviated the first one. Its first step results in no extra
message and forced checkpoint by piggybacking a vector
on each sent message. If additional empty buffer space for
logging is needed even after the first step has executed, its
second step is performed to remove the useful log
information each sender maintains while satisfying the
consistency condition by using a vector recording its size
for every other process.
Keywords: distributed systems, roll-back recovery,
message logging, checkpointing, message purging.

1. Introduction

Thanks to highly rapid advances in processor and network
technologies, a lot of architectural variations in distributed
computing systems are being experienced and reflected on
many application fields such as p2p computing,
collaborative computing, ubiquitous sensor networks,
network monitoring, grid and cloud computing and so on.
But, as their collaborative feature may cause themselves to
be more vulnerable to process failures, the systems require
some cost-effective fault-tolerance techniques [8]. Log-
based rollback recovery is such a technique in that each
process periodically saves it local state by or without
synchronizing with other processes [3], [9], [10] and logs
each received message [5]. Message logging protocols are
classified into two approaches, i.e., sender-based and
receiver-based message logging, depending on which
process each message is logged by [5]. First, receiver-

based message logging approach [11], [15] logs the
recovery information of every received message into the
stable storage before the message is delivered to its
receiving process. Thus, the approach simplifies the
recovery procedure of failed processes. However, its main
drawback is the high failure-free overhead caused by
synchronous logging. Sender-based message logging
approach [2], [6], [14] enables each message to be logged
in the volatile memory of its corresponding sender for
avoiding logging messages into the stable storage
synchronously. Therefore, it significantly reduces the
failure-free overhead compared with the first approach.
But, the second approach forces each process to maintain
in its limited volatile storage the log information of its sent
messages required for recovering their receivers when they
crash.

As architectural aspects of current and future distributed
computing systems are changing to geographically group-
based and peer-to-peer based, many of these systems are
adopting representative-based architecture like broker-
based sensor networks, super-peer based P2P systems, etc.,
to accommodate these topological features well. Thus, this
change is making a lot of issues about their fundamental
building blocks reconsidered to work well for these newly
fashioned systems in highly effective manners. Sender-
based message logging abbreviated by SBML should also
be examined properly before its application to
accommodate this architectural change. Two important
things should be reconsidered:

 Be reducing the number of messages passing on
core networks during its fully message logging and
recovery procedures

 Purging effectively logged messages from their
senders' volatile memories.

In our previous work [1], the first drawback was alleviated
to enable the representative elected in a cluster or group of
nodes like broker or super-peer to localize both of the
logging and recovery procedures to a maximum. This

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org

24

paper presents a novel message purging algorithm to
efficiently remove logged messages from the volatile
storage while ensuring the consistent recovery of the
system in case of node failures. As the first step, the
algorithm eliminates useless log information in the volatile
storage with no extra message and forced checkpoint. But,
even if the step has been performed, the additional empty
buffer space for logging messages in future may be
required. In this case, the second step of our algorithm
forces some useful log information in each sender’s
volatile memory to become useless by maintaining a
vector recording the size of the information for every other
process’ failure. This algorithm can choose a minimum
number of processes participating in the message purging
procedure based on the vector. Thus, this behavior incurs
fewer additional messages and forced checkpoints than the
existing ones.

The remainder of the paper is as follows. Section 2
describes the distributed computing system model
assumed in this paper and section 3 introduces our
message purging algorithm in details. In sections 4 and 5,
we prove the correctness of the algorithm and evaluate
performance of our work and the representative previous
work in several aspects. Section 6 summarizes our work.

2. System Model

A distributed computation consists of a set P of n (n > 0)
sequential processes executed on hosts in the system and
there is a distributed stable storage that every process can
always access that persists beyond processor failures,
thereby supporting recovery from failure of an arbitrary
number of processors[5]. Processes have no global
memory and global clock. The system is asynchronous:
each process is executed at its own speed and
communicates with each other only through messages at
finite but arbitrary transmission delays. Exchanging
messages are reliably delivered in FIFO order. We assume
that the communication network is immune to partitioning
and hosts fail according to the fail stop model where every
crashed process on them halts its computation with losing
all contents of its volatile memory [12]. Events of
processes occurring in a failure-free execution are ordered
using Lamport’s happened before relation [7]. The
execution of each process is piecewise deterministic [13]:
at any point during the execution, a state interval of the
process is determined by a non-deterministic event, which
is delivering a received message to the appropriate
application. The k-th state interval of process p, denoted
by sipk (k > 0), is started by the delivery event of the k-th
message m of p, denoted by devp

k
 (m). Therefore, given

p’s initial state, sip0, and the non-deterministic events,
[devp

1, devp
2, …, devp

i], its corresponding state sp
i
 is

uniquely determined. Let p’s state, sp
i
 = [sip0, sip1, …, sipi],

represent the sequence of all state intervals up to sipi. sp
i

and sq
j
 (p  q) are mutually consistent if all messages from

q that p has delivered to the application in sp
i
 were sent to

p by q in sq
j, and vice versa [4]. A set of states, which

consists of only one state for every process in the system,
is a globally consistent state if any pair of the states is
mutually consistent. In the remainder of this paper, the
messages applications generate are called application
messages and the messages used for the message logging
and recovery procedures, control messages.

3. The Proposed 2-step Message Purging
Algorithm

3.1 Basic Concepts

In this section, we describe an efficient algorithm
consisting of two steps taken depending on the available
empty buffer space for logging messages in future. The
proposed algorithm is executed as follows. As the first step,
while the free buffer space of each process is larger than
its lower bound LB, the process locally removes useless
log information from its volatile storage by using only a
vector piggybacked on each received message. In this case,
the algorithm results in no additional message and forced
checkpoint. In case that the free buffer space is smaller
than LB in some checkpointing and communication
patterns, the second step forces a part of useful log
information in the buffer to be useless and removed until
the free space becomes the upper bound UB. In this case,
the algorithm chooses a minimum number of processes to
participate in the message purging procedure based on an
array recording the current size of the log information in
its buffer for every other process. Therefore, regardless of
particular checkpointing and communication patterns, the
2-step algorithm enables the cost of the message purging
procedure performed during failure-free operation to be
significantly reduced compared with the existing
algorithms.

The first step of the proposed algorithm is designed to
enable a process p to locally remove the useless logged
messages from the volatile storage without requiring any
extra message and forced checkpoints. For this purpose,
each process p must have the following data structures.

- Sendlgp: a set saving e(rid, ssn, rsn, data) of each
message sent by p. In here, e is the log information of a
message and the four fields are the identifier of the
receiver, the send sequence number, the receive sequence
number and data of the message respectively.
- Rsnp: the receive sequence number of the latest message
delivered to p.
- Ssnp: the send sequence number of the latest message

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org

25

sent by p.
- SsnVectorp: a vector in which SsnVectorp[q] records the
send sequence number of the latest message received by p
that q sent.
- RsnVectorp: a vector in which RsnVectorp[k] is the
receive sequence number of the last message delivered to k
before k has saved the last checkpointed state of k on the
stable storage.
- EnableSp: a set of rsns that aren’t yet recorded at the
senders of their messages. It is used for indicating whether
p can send messages to other processes.

Informally, our algorithm is performed as follows.
Taking a local checkpoint, p updates RsnVectorp[p] to the
receive sequence number of the latest message delivered to
p. If p sends a message m to another process q, the vector
is piggybacked on the message. When receiving the
message with RsnVectorp, q takes the component-wise
maximum of two vectors, RsnVectorp and RsnVectorq.
Afterwards, q can remove from its message log Sendlgq all
e(u)s such that for all k  a set of all processes in the
system, e(u).rid is k and e(u).rsn is less than or equal to
RsnVectorp[k]. However, in some checkpointing and
communication patterns, the first step may not allow each
process to autonomously decide whether log information
of each sent message is useless for recovery of the receiver
of the message by using some piggybacking information.
In the traditional sender-based message logging protocols,
to purge away each e(m) in Sendlgp, p requests that the
receiver of m (m.rid) takes a checkpoint if it has indeed
received m and taken no checkpoint since. Also, processes
occasionally exchange the state interval indexes of their
most recent checkpoints for purging the log information
from their volatile storages. However, the previous
algorithm may result in a large number of additional
messages and forced checkpoints needed by the forced
purging procedure in an explicit manner.
The second step obtains such information by maintaining
an array, LogSizep, to save the size of the log information
in the volatile storage by process. Thus, the algorithm can
reduce the number of additional messages and forced
checkpoints by using the vector compared with the
traditional algorithm. The second step needs a vector
LogSizep where LogSizep[q] is the sum of sizes of all
e(m)s in Sendlgp, such that p sent message m to q.
Whenever p sends m to q, it increments LogSizep by the
size of e(m). When p needs additional empty buffer space,
it executes the second step of the algorithm. It first chooses
a set of processes, denoted by participatingProcs, which
will participate in the forced purging procedure. It selects
the largest, LogSizep[q], among the remaining elements of
LogSizep, and then appends q to participatingProcs until
the required buffer size is satisfied. Then p sends a request
message with the rsn of the last message, sent from p to q,
to all q  participatingProc such that the receiver of m is q

for e(m)  Sendlgp. When q receives the request message
with the rsn from p, it checks whether the rsn is greater
than RsnVectorq[q]. If so, it should take a checkpoint and
then send p a reply message including RsnVectorq[q].
Otherwise, it has only to send p the reply message. When p
receives the reply message from q, it removes all e(m)s
from Sendlgp such that the receiver of m is q.

3.2 Algorithmic Description

The procedures for process p in our algorithm are formally
described in figures 1 and 2. MSG-SEND() in figure 1 is
the procedure executed when each process p sends a
message m to its receiver or the representative of the
receiver and logs the message into its volatile memory. In
this case, p piggybacks RsnVectorp on the message for the
first step of the algorithm and then adds the size of e(m) to
LogSizep[q] after transmitting the message for the second
step. In procedure MSG-RECV1(), the following two parts
are performed according to who its final receiver is. If the
process receiving the message is its final receiver, it
invokes procedure MSG-RECV2(). Otherwise, it forwards
the message to its final destination and then performs the
first step by calling procedure MAX-RSNS&PURGE-
MSGS(). Next, it logs the message into its volatile
memory and then adds the size of e(m) to LogSizeAi[rcvr].
Procedure MSG-RECV2() is executed when p receives a
message. In this procedure, p first notifies the sender of the
message of its rsn and then performs the first step for
removing useless log information from its log based on the
piggybacked vector. In procedure RSN-RCVR(), process p
receives the rsn of its previously sent message and updates
the third field of the element for the message in its log to
the rsn. Then, it confirms fully logging of the message to
its receiver, which executes procedure RSN-CONFIRM().
In this case, it purges useless log information from its
volatile storage by using RsnVector piggybacked on the
message. If process p attempts to take a local checkpoint,
it calls procedure CHECKPOINTING(). In this procedure,
the element for p of RsnVectorp is updated to the rsn of the
last message received before the checkpoint. STEP2() in
figure 2 is the procedure executed when each process
attempts to initiate the forced garbage collection of the
second step and CHECKLRSNINLCHKPT() is the
procedure for forcing the log information to become
useless for future recovery.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org

26

Fig. 1 Message logging with Step 1 procedures

Fig. 1 Step 2 procedures during failure-free operation

4. Correctness Proof

In this section, we prove the correctness of the first and the
second steps of the proposed algorithm.

Lemma 1. If siq
j is created by message m from p to q (p 

q) for all p, q  P and then q takes its latest checkpoint in
siq

l(j  l), lge(m) need not be maintained in Sendlgp for q’s
future recovery in the sender-based message logging.

Proof : We prove this lemma by contradiction. Assume
that lge(m) in Sendlgp is useful for q’s future recovery in
case of the condition. If q fails, it restarts execution from
its latest checkpointed state for its recovery in the sender-
based message logging. In this case, p need not retransmit
m to q because devq

i(m) occurs before the checkpointed
state. Thus, lge(m) in Sendlgp is not useful for q’s recovery.
This contradicts the hypothesis.

Theorem 1. The first step of the proposed algorithm
removes only the log information that will not be used for
future recoveries in sender-based message logging any
longer.

Proof: Let us prove this theorem by contradiction. Assume

Module STEP2(sizeOflogSpace)
participatingProcs ←  ;
while sizeOflogSpace > 0 do

if(there is r st ((r  P) ^ (r is not an element of
participatingProcs) ^ (LogSizep[r]  0)^
(max LogSizep[r]))) then
sizeOflogSpace ← sizeOflogSpace – LogSizep[r] ;
participatingProcs ← participatingProcs ∪ {r} ;

T: for all u  participatingProcs do
MaximumRsn ← (max e(m).rsn) st

((e(m)  Sendlgp)^(u = e(m).rid)) ;
send Request(MaximumRsn) to u ;

while participatingProcs   do
receive Reply(rsn) from u st (u  participatingProcs) ;
for all e(m)  Sendlgp st (u = e(m).rid) do

remove e(m) from Sendlgp ;
LogSizep[u] ← 0 ;
participatingProcs ← participatingProcs ∪ {u} ;

Module CHECKLRSNINLCHKPT(Request(MaximumRsn),
q)

if(RsnVectorp[p] < MaximumRsn) then
CHECKPOINTING() ;

send Reply(RsnVectorp[p]) to q ;

Module MSG-SEND(data) OF SENDER Psndr
wait until (EnableSsndr = ) ;
Ssnsndr ← Ssnsndr + 1 ;
if(data is destined to a process Prcvr in another area not
playing the role of area representative) then

send m(Ssnsndr, data) with RsnVectorsndr to the
representative of Prcvr ;

else send m(Ssnsndr, data) with RsnVectorsndr to Prcvr ;
Sendlgsndr ← Sendlgsndr ∪ {(rcvr, Ssnsndr, -1, data)} ;
LogSizesndr[rcvr] ← LogSizesndr[rcvr] + size of (rcvr, Ssnsndr,
-1, data) ;

Module MSG-RECV1(m, RsnVector) OF Representative RAi
if(m is a message destined to another process Prcvr in

its managing area) then
send m with RsnVector to Prcvr ;
call MAX-RSNS&PURGE-MSGS(Ai, RsnVector) at

itself ;
SendlgAi ← SendlgAi ∪ {(rcvr, m.ssn, -1, m.data)} ;
LogSizeAi[rcvr] ← LogSizeAi[rcvr] + size of (rcvr, m.ssn,
-1, m.data) ;

else call MSG-RECV2(m, RsnVector) at itself ;

Module MSG-RECV2(m(sid, ssn, data), RsnVector) OF RECEIVER
Prcvr

if(SsnVectorrcvr[m.sid] < m.ssn) then
Rsnrcvr ← Rsnrcvr + 1 ;
SsnVectorrcvr[m.sid] ← m.ssn ;
EnableSrcvr ← EnableSrcvr ∪ {(Rsnrcvr)} ;
if(m is a message sent directly from its original sender

Pm.sid) then
send ack(m.ssn, Rsnrcvr, RsnVectorrcvr) to m.sid ;

else send ack(m.ssn, Rsnrcvr, RsnVectorrcvr) to the
representative of Prcvr ;

call MAX-RSNS&PURGE-MSGS(rcvr, RsnVector) at
itself ;

deliver m.data to its corresponding application ;
else discard m ;

Module RSN-RCVR(ack(ssn, rsn, rid, RsnVector)) OF PROCESS P

find e  SendlgP st ((e.rid = ack.rid) ^ (e.ssn = ack.ssn)) ;
e.rsn ← ack.rsn ;
send confirm(ack.rsn) to ack.rid ;
call MAX-RSNS&PURGE-MSGS(P, RsnVector) at itself ;

Module MAX-RSNS&PURGE-MSGS(pid, RsnVector)

for all k  other processes in the system do
if(RsnVectorpid[k] < RsnVector[k]) then

RsnVectorpid[k] ← RsnVector[k] ;
for all e  Sendlgpid st ((e.rid = k) ^(e.rsn 

RsnVector[k])) do
Sendlgpid ← Sendlgpid - {e} ;
LogSizepid[k] ← LogSizepid[k] - size of e ;

Module RSN-CONFIRM(m) OF RECEIVER Prcvr
EnableSrcvr ← EnableSrcvr – {(m.rsn)} ;

Module CHECKPOINTING() OF RECEIVER P

RsnVectorP [P] ← RsnP ;
take its local checkpoint on the stable storage ;

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org

27

that our algorithm removes the log information useful for
future recoveries. As mentioned in section III.A, the
algorithm forces each process p to remove log information
from its volatile memory only in the following case.

Case 1: p receives a message m from another process q. In
this case, RsnVectorq was piggybacked on m. Thus, p
removes from Sendlgp all lge(l)s such that for k  P (k  p),
lge(l).rid is k and lge(l).rsn is less than or equal to
max(RsnVectorp[k], RsnVectorq[k]), which is the rsn of the
last message delivered to k before k has taken its latest
checkpoint. In here, message l need no longer be replayed
in case of failure of process k because of its latest
checkpoint. Thus, lge(l) isn’t useful for its future
recoveries.

Therefore, the first step of the proposed algorithm removes
only useless log information for sender-based message
logging in any case. This contradicts the hypothesis.
 �

Theorem 2. Even if every process has performed the
second step of the proposed algorithm in the sender-based
message logging, the system can recover to a globally
consistent state despite process failures.

Proof: the second step of the proposed algorithm removes
the useful log information in the storage buffer of every
process in the following cases.

Case 1: Process p for all p  P removes any lge(m) in
Sendlgp.
In this case, it sends a request message with the rsn of the
last message, sent from p to lge(m).rid, to lge(m).rid.
When lge(m).rid receives the request message with the rsn
from p, it checks whether the rsn is greater than
RsnVectorlge(m).rid[lge(m).rid].

Case 1.1: The rsn is greater than
RsnVectorlge(m).rid[lge(m).rid].
In this case, lge(m).rid takes a checkpoint. Afterwards,
lge(m) becomes useless for the sender-based message
logging by lemma 1.

Case 1.2: The rsn is less than or equal to
RsnVectorlge(m).rid[lge(m).rid].
In this case, lge(m).rid took its latest checkpoint after
having received m. Thus, lge(m) is useless for the sender-
based message logging by lemma 1.

Thus, all the useful log information for the sender-based
message logging is always maintained in the system in all
cases. Therefore, after every process has performed the
second step of the proposed algorithm, the system can
recover to a globally consistent state despite process

failures.

5. Performance Evaluation

5.1 Simulation Environment

To evaluate performance of our algorithm (2-step) with
that of the traditional one (Tradi) [6], some experiments
are performed in this paper using a discrete-event
simulation language. First, one performance index is used
for evaluating the effectiveness of the first step of the
proposed algorithm; the average elapsed time required
until the volatile memory buffer for message logging of a
process is full(Tfull). The performance index Tfull is
measured under the condition that the two algorithms
perform no forced garbage collection procedure, i.e., incur
no additional messages and no forced checkpoints. Second,
the following performance indexes are used for comparing
forced garbage collection overheads of both the second
step of algorithm 2-step and algorithm Tradi; the average
number of additional messages (NOAM) and the average
number of forced checkpoints (NOFC) required for
garbage collection per process.

A simulated system consists of four areas where there
are each one representative node and four normal nodes. In
each area, five nodes including representative are
connected through a 100Mbps wired multi-access LAN.
All representatives communicate with each other through a
10Mbps wired WAN. For simplicity of this simulation, it
is assumed each node has one process executing on it and
20 processes are initiated and completed together. For the
experiments, it is also assumed that the size of each
application message ranges from 50 to 200 Kbytes and the
size of the memory buffer for logging of every process is
10Mbytes.

Each process takes its local checkpoint with an interval
following an exponential distribution with a mean
Ckpttime=3 minutes. The simulation parameter is the mean
message sending rate, Tinterval, following an exponential
distribution. All simulation results shown in this section
are averages over a number of trials.

5.2 Simulation Results

Figure 3 shows the average elapsed time of the two
algorithms required until the volatile memory buffer for
message logging of a process is full for the specified range
of the Tinterval values. In this figure, as their Tintervals of
algorithms 2-step and Tradi increase, their corresponding
Tfulls also increase. The reason is that as each process sends
messages more slowly, the size of its message log also
increases at a lower rate. However, as it is expected, Tfull of
algorithm 2-step is significantly higher than that of
algorithm Tradi. In particular, as Tinterval increases, the

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org

28

increasing rate of the first rises much faster than that of the
latter. This benefit of our algorithm results from its
desirable feature as follows: it enables a process p to
autonomously and locally eliminate useless log
information from the buffer by only carrying a vector
RsnVectorp on each sent message whereas the traditional
algorithm does not so.

Figure 4 shows NOAM for the various Tinterval values. In
this figure, we can see that NOAMs of the two algorithms
increase as Tinterval decreases. The reason is that forced
garbage collection should frequently be performed because
the high inter-process communication rate causes the
storage buffer of each process to be overloaded quickly.
However, NOAM of algorithm 2-step is much lower than
that of algorithm Tradi. Algorithm 2-step reduces about
38%-50% of NOAM compared with algorithm Tradi.

Figure 5 illustrates NOFC for the various Tinterval values.
In this figure, we can also see that NOFCs of the two
algorithms increase as Tinterval decreases. The reason is that
as the inter-process communication rate increases, a
process may take a forced checkpoint when it performs
forced garbage collection. In the figure, NOFC of
algorithm 2-step is lower than that of algorithm Tradi.
Algorithm 2-step reduces about 25% - 51% of NOFC
compared with algorithm Tradi.

Therefore, we can conclude from the simulation results
that, regardless of the specific checkpointing and
communication patterns, algorithm 2-step enables the
garbage collection overhead occurring during failure-free
operation to be significantly reduced compared with
algorithm Tradi.

Fig. 3 Average elapsed time required until the volatile memory buffer for
message logging of a process is full according to Tinterval

Fig. 4 NOAM vs. Tinterval

Fig. 5 NOFC vs. Tinterval

6. Conclusions

This paper presents a novel message purging algorithm to
effectively eliminate the volatile log information at sender
processes on demand without the violation of the system
consistency. The first step of the algorithm gets rid of
needless logged messages from the corresponding senders’
volatile memories only by piggybacking a vector on their
sent messages. This advantageous feature results in no
additional message and forced checkpoint. If additional
empty buffer space for the volatile logging is needed even
after the first step has executed, the next step of this
proposed algorithm is performed to address this limitation.
This step uses a vector for saving the size of the log
information required to recover every other process and
enables the information to be efficiently removed while
satisfying the consistency condition.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org

29

References
[1] J. Ahn, “Scalable message logging algorithm for

geographically distributed broker-based sensor
networks,” Proc. of the ISCA 23rd International
Conference on Computers and Their Applications in
Industry and Engineering (CAINE-2010), 2010, pp.
279-284.

[2] A. Bouteiller, F. Cappello, T. Herault, G. Krawezik, P.
Lemarinier, F. Magniette, “MPICH-V2: a fault
tolerant MPI for volatile nodes based on pessimistic
sender based message logging,” Proc. of the Int’l
Conf. on High Performance Networking and
Computing, 2003.

[3] D. Buntinasd, C. Coti, T. Herault, P. Lemarinier, L.
Pilard, A. Rezmerita, E. Rodriguez, F. Cappello,
“Blocking vs. non-blocking coordinated
checkpointing for large-scale fault tolerant MPI
Protocols,” Future Generation Computer Systems,
vol. 24, pp. 73-84, 2008.

[4] K. M. Chandy, and L. Lamport, “Distributed
snapshots: determining global states of distributed
systems,” ACM Transactions on Computer Systems,
vol. 3, no. 1, pp. 63-75, 1985.

[5] E. Elnozahy, L. Alvisi, Y. Wang, D. Johnson, “A
survey of rollback-recovery protocols in message-
passing systems,” ACM Computing Surveys, vol. 34,
no. 3, pp 375-408, 2002.

[6] D. Johnson, W. Zwaenpoel, “Sender-based message
logging,” Proc. of Int’l Symp. on Fault-Tolerant
Computing, 1987, pp. 14-19.

[7] L. Lamport, “Time, clocks, and the ordering of events
in a distributed system,” Communications of the
ACM, vol. 21, pp. 558-565, 1978.

[8] T. LeBlanc, R. Anand, E. Gabriel and J. Subhlok,
“VolpexMPI: an MPI library for execution of parallel
applications on volatile nodes,” Lecture Notes In
Computer Science, vol. 5759, pp. 124-133, 2009.

[9] H. F. Li, Z. Wei and D. Goswami, “Quasi-atomic
recovery for distributed agents,” Parallel Computing,
vol. 32, pp. 733-758, 2009.

[10] Y. Luo and D. Manivannan, “FINE: a fully informed
and efficient communication-induced checkpointing
protocol for distributed systems,” J. Parallel Distrib.
Comput., vol. 69, pp. 153-167, 2009.

[11] M. Powell, D. Presotto, “Publishing: a reliable
broadcast communication mechanism,” Proc. Of the
9th International Symposium on Operating System
Principles, 1983, pp 100-109.

[12] R. D. Schlichting and F. B. Schneider, “Fail-stop
processors: an approach to designing fault-tolerant
distributed computing systems,” ACM Transactions
on Computer Systems, vol. 1, pp. 222-238, 1985.

[13] R.E. Strom and S.A. Yemeni, “Optimistic recovery in
distributed systems,” ACM Transactions on
Computer Systems, vol. 3, pp. 204-226, 1985.

[14] J. Xu, R.B. Netzer and M. Mackey, “Sender-based
message logging for reducing rollback propagation,”
Proc. of the 7th International Symposium on Parallel
and Distributed Processing, 1995, pp. 602-609.

[15] B. Yao, K. Ssu, W. Fuchs, “Message logging in
mobile computing,” Proc. of the 29th International
Symposium on Fault-Tolerant Computing, 1999, pp.
14-19.

JINHO AHN(Corresponding author) received his B.S., M.S. and
Ph.D. degrees in Computer Science and Engineering from Korea
University, Korea, in 1997, 1999 and 2003, respectively. He has
been an associate professor in Department of Computer Science,
Kyonggi University. He has published more than 70 papers in
refereed journals and conference proceedings and served as
program or organizing committee member or session chair in
several domestic/international conferences and editor-in-chief of
journal of Korean Institute of Information Technology and editorial
board member of journal of Korean Society for Internet Information.
His research interests include distributed computing, fault-
tolerance, sensor networks and mobile agent systems.

