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Abstract 
When attempting to apply sender-based message logging 
with checkpointing into large-scale and geographically 
distributed systems, two important things should be 
reconsidered: reducing the number of messages passing on 
core networks during its fully message logging and 
recovery procedures and purging effectively logged 
messages from their senders' volatile memories. This paper 
presents a novel message purging algorithm to solve the 
second problem based on our previous work having 
alleviated the first one. Its first step results in no extra 
message and forced checkpoint by piggybacking a vector 
on each sent message. If additional empty buffer space for 
logging is needed even after the first step has executed, its 
second step is performed to remove the useful log 
information each sender maintains while satisfying the 
consistency condition by using a vector recording its size 
for every other process. 
Keywords: distributed systems, roll-back recovery, 
message logging, checkpointing, message purging. 

1. Introduction 

Thanks to highly rapid advances in processor and network 
technologies, a lot of architectural variations in distributed 
computing systems are being experienced and reflected on 
many application fields such as p2p computing, 
collaborative computing, ubiquitous sensor networks, 
network monitoring, grid and cloud computing and so on. 
But, as their collaborative feature may cause themselves to 
be more vulnerable to process failures, the systems require 
some cost-effective fault-tolerance techniques [8]. Log-
based rollback recovery is such a technique in that each 
process periodically saves it local state by or without 
synchronizing with other processes [3], [9], [10] and logs 
each received message [5]. Message logging protocols are 
classified into two approaches, i.e., sender-based and 
receiver-based message logging, depending on which 
process each message is logged by [5]. First, receiver-

based message logging approach [11], [15] logs the 
recovery information of every received message into the 
stable storage before the message is delivered to its 
receiving process. Thus, the approach simplifies the 
recovery procedure of failed processes. However, its main 
drawback is the high failure-free overhead caused by 
synchronous logging. Sender-based message logging 
approach [2], [6], [14] enables each message to be logged 
in the volatile memory of its corresponding sender for 
avoiding logging messages into the stable storage 
synchronously. Therefore, it significantly reduces the 
failure-free overhead compared with the first approach. 
But, the second approach forces each process to maintain 
in its limited volatile storage the log information of its sent 
messages required for recovering their receivers when they 
crash.  

As architectural aspects of current and future distributed 
computing systems are changing to geographically group-
based and peer-to-peer based, many of these systems are 
adopting representative-based architecture like broker-
based sensor networks, super-peer based P2P systems, etc., 
to accommodate these topological features well. Thus, this 
change is making a lot of issues about their fundamental 
building blocks reconsidered to work well for these newly 
fashioned systems in highly effective manners. Sender-
based message logging abbreviated by SBML should also 
be examined properly before its application to 
accommodate this architectural change. Two important 
things should be reconsidered:  

 Be reducing the number of messages passing on 
core networks during its fully message logging and 
recovery procedures  

 Purging effectively logged messages from their 
senders' volatile memories.  
 

In our previous work [1], the first drawback was alleviated 
to enable the representative elected in a cluster or group of 
nodes like broker or super-peer to localize both of the 
logging and recovery procedures to a maximum. This 
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paper presents a novel message purging algorithm to 
efficiently remove logged messages from the volatile 
storage while ensuring the consistent recovery of the 
system in case of node failures. As the first step, the 
algorithm eliminates useless log information in the volatile 
storage with no extra message and forced checkpoint. But, 
even if the step has been performed, the additional empty 
buffer space for logging messages in future may be 
required. In this case, the second step of our algorithm 
forces some useful log information in each sender’s 
volatile memory to become useless by maintaining a 
vector recording the size of the information for every other 
process’ failure. This algorithm can choose a minimum 
number of processes participating in the message purging 
procedure based on the vector. Thus, this behavior incurs 
fewer additional messages and forced checkpoints than the 
existing ones. 

The remainder of the paper is as follows. Section 2 
describes the distributed computing system model 
assumed in this paper and section 3 introduces our 
message purging algorithm in details. In sections 4 and 5, 
we prove the correctness of the algorithm and evaluate 
performance of our work and the representative previous 
work in several aspects. Section 6 summarizes our work. 

2. System Model 

A distributed computation consists of a set P of n (n > 0) 
sequential processes executed on hosts in the system and 
there is a distributed stable storage that every process can 
always access that persists beyond processor failures, 
thereby supporting recovery from failure of an arbitrary 
number of processors[5]. Processes have no global 
memory and global clock. The system is asynchronous: 
each process is executed at its own speed and 
communicates with each other only through messages at 
finite but arbitrary transmission delays. Exchanging 
messages are reliably delivered in FIFO order. We assume 
that the communication network is immune to partitioning 
and hosts fail according to the fail stop model where every 
crashed process on them halts its computation with losing 
all contents of its volatile memory [12]. Events of 
processes occurring in a failure-free execution are ordered 
using Lamport’s happened before relation [7]. The 
execution of each process is piecewise deterministic [13]: 
at any point during the execution, a state interval of the 
process is determined by a non-deterministic event, which 
is delivering a received message to the appropriate 
application. The k-th state interval of process p, denoted 
by sipk (k > 0), is started by the delivery event of the k-th 
message m of p, denoted by devp

k
 (m). Therefore, given 

p’s initial state, sip0, and the non-deterministic events, 
[devp

1, devp
2, …, devp

i], its corresponding state sp
i
 is 

uniquely determined. Let p’s state, sp
i
 = [sip0, sip1, …, sipi], 

represent the sequence of all state intervals up to sipi. sp
i
 

and sq
j
 (p  q) are mutually consistent if all messages from 

q that p has delivered to the application in sp
i
 were sent to 

p by q in sq
j, and vice versa [4]. A set of states, which 

consists of only one state for every process in the system, 
is a globally consistent state if any pair of the states is 
mutually consistent. In the remainder of this paper, the 
messages applications generate are called application 
messages and the messages used for the message logging 
and recovery procedures, control messages. 

3. The Proposed 2-step Message Purging 
Algorithm 

3.1 Basic Concepts 

In this section, we describe an efficient algorithm 
consisting of two steps taken depending on the available 
empty buffer space for logging messages in future. The 
proposed algorithm is executed as follows. As the first step, 
while the free buffer space of each process is larger than 
its lower bound LB, the process locally removes useless 
log information from its volatile storage by using only a 
vector piggybacked on each received message. In this case, 
the algorithm results in no additional message and forced 
checkpoint. In case that the free buffer space is smaller 
than LB in some checkpointing and communication 
patterns, the second step forces a part of useful log 
information in the buffer to be useless and removed until 
the free space becomes the upper bound UB. In this case, 
the algorithm chooses a minimum number of processes to 
participate in the message purging procedure based on an 
array recording the current size of the log information in 
its buffer for every other process. Therefore, regardless of 
particular checkpointing and communication patterns, the 
2-step algorithm enables the cost of the message purging 
procedure performed during failure-free operation to be 
significantly reduced compared with the existing 
algorithms. 

The first step of the proposed algorithm is designed to 
enable a process p to locally remove the useless logged 
messages from the volatile storage without requiring any 
extra message and forced checkpoints. For this purpose, 
each process p must have the following data structures. 
 
- Sendlgp: a set saving e(rid, ssn, rsn, data) of each 
message sent by p. In here, e is the log information of a 
message and the four fields are the identifier of the 
receiver, the send sequence number, the receive sequence 
number and data of the message respectively. 
- Rsnp: the receive sequence number of the latest message 
delivered to p. 
- Ssnp: the send sequence number of the latest message 
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sent by p. 
- SsnVectorp: a vector in which SsnVectorp[q] records the 
send sequence number of the latest message received by p 
that q sent. 
- RsnVectorp: a vector in which RsnVectorp[k] is the 
receive sequence number of the last message delivered to k 
before k has saved the last checkpointed state of k on the 
stable storage. 
- EnableSp: a set of rsns that aren’t yet recorded at the 
senders of their messages. It is used for indicating whether 
p can send messages to other processes. 
 

Informally, our algorithm is performed as follows. 
Taking a local checkpoint, p updates RsnVectorp[p] to the 
receive sequence number of the latest message delivered to 
p. If p sends a message m to another process q, the vector 
is piggybacked on the message. When receiving the 
message with RsnVectorp, q takes the component-wise 
maximum of two vectors, RsnVectorp and RsnVectorq. 
Afterwards, q can remove from its message log Sendlgq all 
e(u)s such that for all k  a set of all processes in the 
system, e(u).rid is k and e(u).rsn is less than or equal to 
RsnVectorp[k]. However, in some checkpointing and 
communication patterns, the first step may not allow each 
process to autonomously decide whether log information 
of each sent message is useless for recovery of the receiver 
of the message by using some piggybacking information. 
In the traditional sender-based message logging protocols, 
to purge away each e(m) in Sendlgp, p requests that the 
receiver of m (m.rid) takes a checkpoint if it has indeed 
received m and taken no checkpoint since. Also, processes 
occasionally exchange the state interval indexes of their 
most recent checkpoints for purging the log information 
from their volatile storages. However, the previous 
algorithm may result in a large number of additional 
messages and forced checkpoints needed by the forced 
purging procedure in an explicit manner. 
The second step obtains such information by maintaining 
an array, LogSizep, to save the size of the log information 
in the volatile storage by process. Thus, the algorithm can 
reduce the number of additional messages and forced 
checkpoints by using the vector compared with the 
traditional algorithm. The second step needs a vector 
LogSizep where LogSizep[q] is the sum of sizes of all 
e(m)s in Sendlgp, such that p sent message m to q. 
Whenever p sends m to q, it increments LogSizep by the 
size of e(m). When p needs additional empty buffer space, 
it executes the second step of the algorithm. It first chooses 
a set of processes, denoted by participatingProcs, which 
will participate in the forced purging procedure. It selects 
the largest, LogSizep[q], among the remaining elements of 
LogSizep, and then appends q to participatingProcs until 
the required buffer size is satisfied. Then p sends a request 
message with the rsn of the last message, sent from p to q, 
to all q  participatingProc such that the receiver of m is q 

for e(m)  Sendlgp. When q receives the request message 
with the rsn from p, it checks whether the rsn is greater 
than RsnVectorq[q]. If so, it should take a checkpoint and 
then send p a reply message including RsnVectorq[q]. 
Otherwise, it has only to send p the reply message. When p 
receives the reply message from q, it removes all e(m)s 
from Sendlgp such that the receiver of m is q. 

 

3.2 Algorithmic Description 

The procedures for process p in our algorithm are formally 
described in figures 1 and 2. MSG-SEND() in figure 1 is 
the procedure executed when each process p sends a 
message m to its receiver or the representative of the 
receiver and logs the message into its volatile memory. In 
this case, p piggybacks RsnVectorp on the message for the 
first step of the algorithm and then adds the size of e(m) to 
LogSizep[q] after transmitting the message for the second 
step. In procedure MSG-RECV1(), the following two parts 
are performed according to who its final receiver is. If the 
process receiving the message is its final receiver, it 
invokes procedure MSG-RECV2(). Otherwise, it forwards 
the message to its final destination and then performs the 
first step by calling procedure MAX-RSNS&PURGE-
MSGS(). Next, it logs the message into its volatile 
memory and then adds the size of e(m) to LogSizeAi[rcvr]. 
Procedure MSG-RECV2() is executed when p receives a 
message. In this procedure, p first notifies the sender of the 
message of its rsn and then performs the first step for 
removing useless log information from its log based on the 
piggybacked vector. In procedure RSN-RCVR(), process p 
receives the rsn of its previously sent message and updates 
the third field of the element for the message in its log to 
the rsn. Then, it confirms fully logging of the message to 
its receiver, which executes procedure RSN-CONFIRM(). 
In this case, it purges useless log information from its 
volatile storage by using RsnVector piggybacked on the 
message. If process p attempts to take a local checkpoint, 
it calls procedure CHECKPOINTING(). In this procedure, 
the element for p of RsnVectorp is updated to the rsn of the 
last message received before the checkpoint. STEP2() in 
figure 2 is the procedure executed when each process 
attempts to initiate the forced garbage collection of the 
second step and CHECKLRSNINLCHKPT() is the 
procedure for forcing the log information to become 
useless for future recovery.  
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Fig. 1 Message logging with Step 1 procedures 

 
 

 

Fig. 1 Step 2 procedures during failure-free operation 

 

4. Correctness Proof 

In this section, we prove the correctness of the first and the 
second steps of the proposed algorithm. 

Lemma 1. If siq
j is created by message m from p to q (p  

q) for all p, q  P and then q takes its latest checkpoint in 
siq

l(j  l), lge(m) need not be maintained in Sendlgp for q’s 
future recovery in the sender-based message logging. 
 
Proof : We prove this lemma by contradiction. Assume 
that lge(m) in Sendlgp is useful for q’s future recovery in 
case of the condition. If q fails, it restarts execution from 
its latest checkpointed state for its recovery in the sender-
based message logging. In this case, p need not retransmit 
m to q because devq

i(m) occurs before the checkpointed 
state. Thus, lge(m) in Sendlgp is not useful for q’s recovery. 
This contradicts the hypothesis.    
 

Theorem 1. The first step of the proposed algorithm 
removes only the log information that will not be used for 
future recoveries in sender-based message logging any 
longer. 
 
Proof: Let us prove this theorem by contradiction. Assume 

Module STEP2(sizeOflogSpace) 
participatingProcs ←  ; 
while sizeOflogSpace > 0 do 

if(there is r st ((r  P) ^ (r is not an element of  
participatingProcs) ^ (LogSizep[r]  0)^  
(max LogSizep[r]))) then  
sizeOflogSpace ← sizeOflogSpace – LogSizep[r] ; 
participatingProcs ← participatingProcs ∪ {r} ; 

T: for all u  participatingProcs do  
MaximumRsn ← (max e(m).rsn) st  

((e(m)  Sendlgp)^(u = e(m).rid)) ; 
send Request(MaximumRsn) to u ; 

while participatingProcs   do  
receive Reply(rsn) from u st (u  participatingProcs) ; 
for all e(m)  Sendlgp st (u = e(m).rid) do 

remove e(m) from Sendlgp ; 
LogSizep[u] ← 0 ; 
participatingProcs ← participatingProcs ∪ {u} ; 

 
Module CHECKLRSNINLCHKPT(Request(MaximumRsn), 
q) 

if(RsnVectorp[p] < MaximumRsn) then 
CHECKPOINTING() ; 

send Reply(RsnVectorp[p]) to q ;  

Module MSG-SEND(data) OF SENDER Psndr 
wait until (EnableSsndr = ) ; 
Ssnsndr ← Ssnsndr + 1 ; 
if(data is destined to a process Prcvr in another area not 
playing the role of area representative) then 

send m(Ssnsndr, data) with RsnVectorsndr to the 
representative of Prcvr ; 

else  send m(Ssnsndr, data) with RsnVectorsndr to Prcvr ; 
Sendlgsndr ← Sendlgsndr ∪ {(rcvr, Ssnsndr, -1, data)} ; 
LogSizesndr[rcvr] ← LogSizesndr[rcvr] + size of (rcvr, Ssnsndr, 
-1, data) ; 
 

Module MSG-RECV1(m, RsnVector) OF Representative RAi 
if(m is a message destined to another process Prcvr in  

its managing area) then 
send m with RsnVector to Prcvr ; 
call MAX-RSNS&PURGE-MSGS(Ai, RsnVector) at  

itself ; 
SendlgAi  ← SendlgAi ∪ {(rcvr, m.ssn, -1, m.data)} ; 
LogSizeAi[rcvr] ← LogSizeAi[rcvr] + size of (rcvr, m.ssn,  
-1, m.data) ; 

else  call MSG-RECV2(m, RsnVector) at itself ; 
 
Module MSG-RECV2(m(sid, ssn, data), RsnVector) OF RECEIVER 
Prcvr 

if(SsnVectorrcvr[m.sid] < m.ssn) then 
Rsnrcvr ← Rsnrcvr + 1 ; 
SsnVectorrcvr[m.sid] ← m.ssn ; 
EnableSrcvr ← EnableSrcvr ∪ {(Rsnrcvr)} ; 
if(m is a message sent directly from its original sender  

Pm.sid) then 
send ack(m.ssn, Rsnrcvr, RsnVectorrcvr) to m.sid ; 

else  send ack(m.ssn, Rsnrcvr, RsnVectorrcvr) to the  
representative of Prcvr ; 

call MAX-RSNS&PURGE-MSGS(rcvr, RsnVector) at  
itself ; 

deliver m.data to its corresponding application ; 
else  discard m ; 

 
Module RSN-RCVR(ack(ssn, rsn, rid, RsnVector)) OF PROCESS P 

find e  SendlgP st ((e.rid = ack.rid) ^ (e.ssn = ack.ssn)) ; 
e.rsn ← ack.rsn ; 
send confirm(ack.rsn) to ack.rid ; 
call MAX-RSNS&PURGE-MSGS(P, RsnVector) at itself ; 

 
Module MAX-RSNS&PURGE-MSGS(pid, RsnVector) 

for all k  other processes in the system do 
if(RsnVectorpid[k] < RsnVector[k]) then 

RsnVectorpid[k] ← RsnVector[k] ; 
for all e  Sendlgpid st ((e.rid = k) ^(e.rsn   

RsnVector[k])) do 
Sendlgpid ← Sendlgpid - {e} ; 
LogSizepid[k] ← LogSizepid[k] - size of e ; 
 

Module RSN-CONFIRM(m) OF RECEIVER Prcvr 
EnableSrcvr ← EnableSrcvr – {(m.rsn)} ; 

 
Module CHECKPOINTING() OF RECEIVER P 

RsnVectorP [P] ← RsnP ; 
take its local checkpoint on the stable storage ; 
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that our algorithm removes the log information useful for 
future recoveries. As mentioned in section III.A, the 
algorithm forces each process p to remove log information 
from its volatile memory only in the following case. 
 
Case 1: p receives a message m from another process q. In 
this case, RsnVectorq was piggybacked on m. Thus, p 
removes from Sendlgp all lge(l)s such that for k  P (k  p), 
lge(l).rid is k and lge(l).rsn is less than or equal to 
max(RsnVectorp[k], RsnVectorq[k]), which is the rsn of the 
last message delivered to k before k has taken its latest 
checkpoint. In here, message l need no longer be replayed 
in case of failure of process k because of its latest 
checkpoint. Thus, lge(l) isn’t useful for its future 
recoveries. 
 
Therefore, the first step of the proposed algorithm removes 
only useless log information for sender-based message 
logging in any case. This contradicts the hypothesis.  
 � 
 
Theorem 2. Even if every process has performed the 
second step of the proposed algorithm in the sender-based 
message logging, the system can recover to a globally 
consistent state despite process failures. 
 
Proof: the second step of the proposed algorithm removes 
the useful log information in the storage buffer of every 
process in the following cases. 
 
Case 1: Process p for all p  P removes any lge(m) in 
Sendlgp. 
In this case, it sends a request message with the rsn of the 
last message, sent from p to lge(m).rid, to lge(m).rid. 
When lge(m).rid receives the request message with the rsn 
from p, it checks whether the rsn is greater than 
RsnVectorlge(m).rid[lge(m).rid]. 
 
Case 1.1: The rsn is greater than 
RsnVectorlge(m).rid[lge(m).rid]. 
In this case, lge(m).rid takes a checkpoint. Afterwards, 
lge(m) becomes useless for the sender-based message 
logging by lemma 1. 
 
Case 1.2: The rsn is less than or equal to 
RsnVectorlge(m).rid[lge(m).rid]. 
In this case, lge(m).rid took its latest checkpoint after 
having received m. Thus, lge(m) is useless for the sender-
based message logging by lemma 1. 
 

Thus, all the useful log information for the sender-based 
message logging is always maintained in the system in all 
cases. Therefore, after every process has performed the 
second step of the proposed algorithm, the system can 
recover to a globally consistent state despite process 

failures.  

5. Performance Evaluation 

5.1 Simulation Environment 

To evaluate performance of our algorithm (2-step) with 
that of the traditional one (Tradi) [6], some experiments 
are performed in this paper using a discrete-event 
simulation language. First, one performance index is used 
for evaluating the effectiveness of the first step of the 
proposed algorithm; the average elapsed time required 
until the volatile memory buffer for message logging of a 
process is full(Tfull). The performance index Tfull is 
measured under the condition that the two algorithms 
perform no forced garbage collection procedure, i.e., incur 
no additional messages and no forced checkpoints. Second, 
the following performance indexes are used for comparing 
forced garbage collection overheads of both the second 
step of algorithm 2-step and algorithm Tradi; the average 
number of additional messages (NOAM) and the average 
number of forced checkpoints (NOFC) required for 
garbage collection per process. 

A simulated system consists of four areas where there 
are each one representative node and four normal nodes. In 
each area, five nodes including representative are 
connected through a 100Mbps wired multi-access LAN. 
All representatives communicate with each other through a 
10Mbps wired WAN. For simplicity of this simulation, it 
is assumed each node has one process executing on it and 
20 processes are initiated and completed together. For the 
experiments, it is also assumed that the size of each 
application message ranges from 50 to 200 Kbytes and the 
size of the memory buffer for logging of every process is 
10Mbytes. 

Each process takes its local checkpoint with an interval 
following an exponential distribution with a mean 
Ckpttime=3 minutes. The simulation parameter is the mean 
message sending rate, Tinterval, following an exponential 
distribution. All simulation results shown in this section 
are averages over a number of trials. 
 

5.2 Simulation Results 

Figure 3 shows the average elapsed time of the two 
algorithms required until the volatile memory buffer for 
message logging of a process is full for the specified range 
of the Tinterval values. In this figure, as their Tintervals of 
algorithms 2-step and Tradi increase, their corresponding 
Tfulls also increase. The reason is that as each process sends 
messages more slowly, the size of its message log also 
increases at a lower rate. However, as it is expected, Tfull of 
algorithm 2-step is significantly higher than that of 
algorithm Tradi. In particular, as Tinterval increases, the 
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increasing rate of the first rises much faster than that of the 
latter. This benefit of our algorithm results from its 
desirable feature as follows: it enables a process p to 
autonomously and locally eliminate useless log 
information from the buffer by only carrying a vector 
RsnVectorp on each sent message whereas the traditional 
algorithm does not so. 

Figure 4 shows NOAM for the various Tinterval values. In 
this figure, we can see that NOAMs of the two algorithms 
increase as Tinterval decreases. The reason is that forced 
garbage collection should frequently be performed because 
the high inter-process communication rate causes the 
storage buffer of each process to be overloaded quickly. 
However, NOAM of algorithm 2-step is much lower than 
that of algorithm Tradi. Algorithm 2-step reduces about 
38%-50% of NOAM compared with algorithm Tradi. 

Figure 5 illustrates NOFC for the various Tinterval values. 
In this figure, we can also see that NOFCs of the two 
algorithms increase as Tinterval decreases. The reason is that 
as the inter-process communication rate increases, a 
process may take a forced checkpoint when it performs 
forced garbage collection. In the figure, NOFC of 
algorithm 2-step is lower than that of algorithm Tradi. 
Algorithm 2-step reduces about 25% - 51% of NOFC 
compared with algorithm Tradi. 

Therefore, we can conclude from the simulation results 
that, regardless of the specific checkpointing and 
communication patterns, algorithm 2-step enables the 
garbage collection overhead occurring during failure-free 
operation to be significantly reduced compared with 
algorithm Tradi. 
 

 

Fig. 3 Average elapsed time required until the volatile memory buffer for 
message logging of a process is full according to Tinterval 

 

 
Fig. 4  NOAM vs. Tinterval 

 

Fig. 5  NOFC vs. Tinterval 

6. Conclusions 

This paper presents a novel message purging algorithm to 
effectively eliminate the volatile log information at sender 
processes on demand without the violation of the system 
consistency. The first step of the algorithm gets rid of 
needless logged messages from the corresponding senders’ 
volatile memories only by piggybacking a vector on their 
sent messages. This advantageous feature results in no 
additional message and forced checkpoint. If additional 
empty buffer space for the volatile logging is needed even 
after the first step has executed, the next step of this 
proposed algorithm is performed to address this limitation. 
This step uses a vector for saving the size of the log 
information required to recover every other process and 
enables the information to be efficiently removed while 
satisfying the consistency condition.  
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