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Abstract  
Software reliability process can be monitored efficiently by 
using Statistical Process Control (SPC). It assists the software 
development team to identify failures and actions to be taken 
during software failure process and hence, assures better 
software reliability. In this paper, we consider a software 
reliability growth model of Non-Homogenous Poisson Process 
(NHPP) based, that incorporates imperfect debugging problem. 
The proposed model utilizes the failure data collected from 
software development projects to analyze the software reliability. 
The maximum likelihood approach is derived to estimate the 
unknown point estimators of the model. We investigate the 
model and demonstrate its applicability in the software reliability 
engineering field. 
Keywords: Statistical Process Control, Software reliability, 
mean value function, imperfect debugging, Probability limits, 
Control Charts. 

1. Introduction 

Software reliability assessment is important to evaluate 
and predict the reliability and performance of software 
system, since it is the main attribute of software. To 
identify and eliminate human errors in software 
development process and also to improve software 
reliability, the Statistical Process Control concepts and 
methods are the best choice. SPC concepts and methods 
are used to monitor the performance of a software process 
over time in order to verify that the process remains in the 
state of statistical control. It helps in finding assignable 
causes, long term improvements in the software process. 
Software quality and reliability can be achieved by 
eliminating the causes or improving the software process 
or its operating procedures [6]. 

 
The most popular technique for maintaining process 
control is control charting. The control chart is one of the 
seven tools for quality control. Software process control is 
used to secure the quality of the final product which will 
conform to predefined standards. In any process, 
regardless of how carefully it is maintained, a certain 
amount of natural variability will always exist. A process 
is said to be statistically “in-control” when it operates with 
only chance causes of variation. On the other hand, when 
assignable causes are present, then we say that the process 
is statistically “out-of-control.” 
The control charts can be classified into several categories, 
as per several distinct criteria. Depending on the number 
of quality characteristics under investigation, charts can be 
divided into univariate control charts and multivariate 
control charts. Furthermore, the quality characteristic of 
interest may be a continuous random variable or 
alternatively a discrete attribute. Control charts should be 
capable to create an alarm when a shift in the level of one 
or more parameters of the underlying distribution or a 
non-random behavior occurs. Normally, such a situation 
will be reflected in the control chart by points plotted 
outside the control limits or by the presence of specific 
patterns. The most common non-random patterns are 
cycles, trends, mixtures and stratification [7]. For a 
process to be in control the control chart should not have 
any trend or nonrandom pattern. 
SPC is a powerful tool to optimize the amount of 
information needed for use in making management 
decisions.  SPC provides real time analysis to establish 
controllable process baselines; learn, set, and dynamically 
improves process capabilities; and focus business areas 
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which need improvement. The early detection of software 
failures will improve the software reliability. The selection 
of proper SPC charts is essential to effective statistical 
process control implementation and use. The SPC chart 
selection is based on data, situation and need [4]. 
The control limits can then be utilized to monitor the 
failure times of components. After each failure, the time 
can be plotted on the chart. If the plotted point falls 
between the calculated control limits, it indicates that the 
process is in the state of statistical control and no action is 
warranted. If the point falls above the UCL, it indicates 
that the process average, or the failure occurrence rate, 
may have decreased which results in an increase in the 
time between failures. This is an important indication of 
possible process improvement. If this happens, the 
management should look for possible causes for this 
improvement and if the causes are discovered then action 
should be taken to maintain them. If the plotted point falls 
below the LCL, It indicates that the process average, or the 
failure occurrence rate, may have increased which results 
in a decrease in the failure time. This means that process 
may have deteriorated and thus actions should be taken to 
identify and causes may be removed. It can be noted here 
that the parameter a, b should normally be estimated with 
the data from the failure process. 
The control limits for the chart are defined in such a 
manner that the process is considered to be out of control 
when the time to observe exactly one failure is less than 
LCL or greater than UCL. Our aim is to monitor the 
failure process and detect any change of the intensity 
parameter. When the process is normal, there is a chance 
for this to happen and it is commonly known as false 
alarm. The traditional false alarm probability is to set to be 
0.27% although any other false alarm probability can be 
used. The actual acceptable false alarm probability should 
in fact depend on the actual product or process [9].  

2. Literature Survey 

This section presents the theory that underlies a 
distribution and maximum likelihood estimation for 
complete data. If ‘t’ is a continuous random variable with 
pdf: ),,,;( 21 ktf   . where 

k ,,, 21  are k 

unknown constant parameters which need to be estimated, 
and cdf:  tF . Where, The mathematical relationship 

between the pdf and cdf is given by:   
dt

tFd
tf )( . Let 

‘a’ denote the expected number of faults that would be 
detected given infinite testing time in case of finite failure 
NHPP models. Then, the mean value function of the finite 
failure NHPP models can be written as: )()( taFtm  , 

where F(t) is a cumulative distribution function. The 

failure intensity function )(t  in case of the finite failure 

NHPP models is given by: )(')( taFt  .  

2.1 NHPP model 

The Non-Homogenous Poisson Process (NHPP) based 
software reliability growth models (SRGMs) are proved 
quite successful in practical software reliability 
engineering [3]. The main issue in the NHPP model is to 
determine an appropriate mean value function to denote 
the expected number of failures experienced up to a 
certain time point. Model parameters can be estimated by 
using Maximum Likelihood Estimate (MLE). 
Various NHPP SRGMs have been built upon various 
assumptions. Many of the SRGMs assume that each time a 
failure occurs, the fault that caused it can be immediately 
removed and no new faults are introduced. Which is 
usually called perfect debugging. Imperfect debugging 
models have proposed a relaxation of the above 
assumption [8]. 
Let   0, ttN  be the cumulative number of software 

failures by time ‘t’. m(t) is the mean value function, 
representing the expected number of software failures by 
time ‘t’.  t  is the failure intensity function, which is 

proportional to the residual fault content. Thus 

  )1( bteatm   and   ))((
)(

tmab
dt

tdm
t  . 

Where ‘a’ denotes the initial number of faults contained in 
a program and ‘b’ represents the fault detection rate. In 
software reliability, the initial number of faults and the 
fault detection rate are always unknown. The maximum 
likelihood technique can be used to evaluate the unknown 
parameters. In NHPP SRGM  t can be expressed in a 

more general way as         tmtatb
dt

tdm
t 

)( . 

Where  ta  is the time-dependent fault content function 

which includes the initial and introduced faults in the 
program and  tb  is the time-dependent fault detection 

rate. A constant  ta  implies the perfect debugging 

assumption, i.e no new faults are introduced during the 
debugging process. If we assume that, when the detected 
faults are removed, then there is a possibility to introduce 
new faults with a constant rate ‘  ’.  Then the mean value 

function is [2] given as   bte
a

tm 





 11

1
)( . 

2.2  ML (Maximum Likelihood) Parameter 
Estimation 

The idea behind maximum likelihood parameter 
estimation is to determine the parameters that maximize 
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the probability (likelihood) of the sample data. The 
method of maximum likelihood is considered to be more 
robust (with some exceptions) and yields estimators with 
good statistical properties. In other words, MLE methods 
are versatile and apply to many models and to different 
types of data. Although the methodology for maximum 
likelihood estimation is simple, the implementation is 
mathematically intense. Using today's computer power, 
however, mathematical complexity is not a big obstacle. If 
we conduct an experiment and obtain N independent 

observations, Nttt ,,, 21  . Then the likelihood function is 

given by[1] the following product: 
 

  



N

i
kikN tfLtttL

1
212121 ),,,;(,,,|,,,    

Likely hood function by using λ(t) is:  

 L =


n

i
it

1

)(                                              

The logarithmic likelihood function is given by: 
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which can be written as   



n

i
ni tmt
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)()(log   

The maximum likelihood estimators (MLE) of 

k ,,, 21  are obtained by maximizing L or  , 

where is ln L . By maximizing , which is much easier 
to work with than L, the maximum likelihood estimators 
(MLE) of 

k ,,, 21  are the simultaneous solutions of 

k equations such that:  
0




j
,  j=1,2,…,k 

The parameters ‘a’ and ‘b’ are estimated using iterative 
Newton Raphson Method, which is given as
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3. Illustrating the MLE Method 

3.1 parameter estimation 

To estimate ‘a’ and ‘b’ , for a sample of n units, first 
obtain the likelihood function: assuming 05.0 . 
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Take the natural logarithm on both sides, The Log 
Likelihood function is given as:     
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Taking the Partial derivative w.r.t ‘a’ and equating to ‘0’.     

(i.e 0
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Taking the partial derivative again w.r.t ‘b’ and equating 
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The parameter ‘b’ is estimated by iterative Newton 
Raphson Method using 

)('
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1

n

n
nn bg
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bb 

. which is 

substituted in finding ‘a’. 

3.2 Distribution of Time between failures 

Based on the inter failure data given in Table 1, we 
compute the software failures process through Mean 
Value Control chart. We used cumulative time between 
failures data for software reliability monitoring using 
Exponential distribution.     

Table:1 Time between failures of a software 
Failure 
Number 

Time between 
failure(h) 

Failure 
Number 

Time between 
failure(h) 

1 30.02 16 15.53 
2 1.44 17 25.72 
3 22.47 18 2.79 
4 1.36 19 1.92 
5 3.43 20 4.13 
6 13.2 21 70.47 
7 5.15 22 17.07 
8 3.83 23 3.99 
9 21 24 176.06 
10 12.97 25 81.07 
11 0.47 26 2.27 
12 6.23 27 15.63 
13 3.39 28 120.78 
14 9.11 29 30.81 
15 2.18 30 34.19 
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Assuming an acceptable probability of false alarm of 
0.27%, the control limits can be obtained as [5]: 

   99865.01
1

1 1 


  bt
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a ’ and ‘


b ’ are Maximum Likely hood 
Estimates (MLEs) of parameters and the values can be 
computed using iterative method for the given cumulative 
time between failures data shown in table 1. Using ‘a’ and 
‘b’ values we can compute )(tm . 

        
                   

These limits are converted to )( Utm , )( Ctm and )( Ltm  

form. They are used to find weather the software process 
is in control or not by placing the points in Mean value 
chart shown in Figure 1. A point below the control limit 

)( Ltm  indicates an alarming signal. A point above the 

control limit )( Utm indicates better quality. If the points 

are falling within the control limits it indicates the 
software process is in stable condition [6]. The values of 
control limits are as follows. 

31.69529)( Utm  

15.86907)( Ctm  

0.042846)( Ltm  

 

Table:2 successive differences of cumulative mean values 

 

No 
Cum 

Failures 
m(t) 

Successive  
differences 

No 
Cum 

failures 
m(t) 

Successive 
differences 

1 30.02 2.9599655 0.135198384 16 151.78 12.5083594 1.596922361 
2 31.46 3.09516389 2.033545566 17 177.5 14.1052818 0.165718931 
3 53.93 5.12870945 0.118607302 18 180.29 14.2710007 0.113215983 
4 55.29 5.24731676 0.296929927 19 182.21 14.3842167 0.241267574 
5 58.72 5.54424668 1.113786929 20 186.34 14.6254843 3.675758395 
6 71.92 6.65803361 0.422372776 21 256.81 18.3012427 0.776290028 
7 77.07 7.08040639 0.309784217 22 273.88 19.0775327 0.175623745 
8 80.9 7.3901906 1.634899415 23 277.87 19.2531564 5.940013828 
9 101.9 9.02509002 0.958006905 24 453.93 25.1931703 1.820658724 
10 114.87 9.98309692 0.033999962 25 535 27.013829 0.044702692 
11 115.34 10.0170969 0.446045517 26 537.27 27.0585317 0.299430566 
12 121.57 10.4631424 0.239128039 27 552.9 27.3579622 1.884814636 
13 124.96 10.7022704 0.630337689 28 673.68 29.2427769 0.378342482 
14 134.07 11.3326081 0.148225045 29 704.49 29.6211194 0.379762003 
15 136.25 11.4808332 1.027526243 30 738.68 30.0008814   

 
Figure 1 is obtained by placing the differences between 
cumulative failure data shown in Table 2 on y axis, failure 
number on x axis and the values of control limits are 
placed on Mean Value chart. The Mean Value chart shows 
that the 10th failure data has fallen below )( Ltm which 

indicates the failure process. It is significantly early 

detection of failures using Mean Value Chart. The 
software quality is determined by detecting failures at an 
early stage. The remaining failure data are shown in 
Figure 1 are in stable. No failure data fall outside the 

)( Utm . It does not indicate any alarm signal. 
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Figure: 1 Mean Value Chart 

4. Conclusion 

The given 30 inter failure times are plotted through the 
estimated mean value function against the failure serial 
order. The parameter estimation is carried out by Newton 
Raphson Iterative method for Exponential model. The 
graphs have shown out of control signals  i.e below the 
LCL. Hence we conclude that our method of estimation 
and the control chart are giving a +ve recommendation for 
their use in finding out preferable control process or 
desirable out of control signal. By observing the Mean 
value Control chart we identified that the failure situation 
is detected at 10th  point of Table-2 for the corresponding 

)( tm , which is below )( Ltm . It indicates that the failure 

process is detected at an early stage compared with Xie et 
a1, (2002) control chart [5], which detects the failure at 
23rd point for the inter failure data above the UCL. Hence 
our proposed Mean Value Chart detects out of control 
situation at an earlier instant than the situation in time 
control chart. The early detection of software failure will 
improve the software Reliability. When the time between 
failures is less than LCL, it is likely that there are 
assignable causes leading to significant process 
deterioration and it should be investigated. On the other 
hand, when the time between failures has exceeded the 
UCL, there are probably reasons that have lead to 
significant improvement. 
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