
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 219

SPC for Software Reliability: Imperfect Software Debugging
Model

Dr. Satya Prasad Ravi1, N.Supriya2 and G.Krishna Mohan3

1 Associate Professor, Dept. of Computer Science & Engg., Acharya Nagrjuna University
Nagarjuna Nagar, Guntur, Andhrapradesh, India

2 Assistant Professor, Dept. of Computer Science, Adikavi Nannaya university
Rajahmedndry-533105, Andhrapradesh,India

3 Reader, Dept. of Computer Science, P.B.Siddhartha college

Vijayawada, Andhrapradesh, India

Abstract
Software reliability process can be monitored efficiently by
using Statistical Process Control (SPC). It assists the software
development team to identify failures and actions to be taken
during software failure process and hence, assures better
software reliability. In this paper, we consider a software
reliability growth model of Non-Homogenous Poisson Process
(NHPP) based, that incorporates imperfect debugging problem.
The proposed model utilizes the failure data collected from
software development projects to analyze the software reliability.
The maximum likelihood approach is derived to estimate the
unknown point estimators of the model. We investigate the
model and demonstrate its applicability in the software reliability
engineering field.
Keywords: Statistical Process Control, Software reliability,
mean value function, imperfect debugging, Probability limits,
Control Charts.

1. Introduction

Software reliability assessment is important to evaluate
and predict the reliability and performance of software
system, since it is the main attribute of software. To
identify and eliminate human errors in software
development process and also to improve software
reliability, the Statistical Process Control concepts and
methods are the best choice. SPC concepts and methods
are used to monitor the performance of a software process
over time in order to verify that the process remains in the
state of statistical control. It helps in finding assignable
causes, long term improvements in the software process.
Software quality and reliability can be achieved by
eliminating the causes or improving the software process
or its operating procedures [6].

The most popular technique for maintaining process
control is control charting. The control chart is one of the
seven tools for quality control. Software process control is
used to secure the quality of the final product which will
conform to predefined standards. In any process,
regardless of how carefully it is maintained, a certain
amount of natural variability will always exist. A process
is said to be statistically “in-control” when it operates with
only chance causes of variation. On the other hand, when
assignable causes are present, then we say that the process
is statistically “out-of-control.”
The control charts can be classified into several categories,
as per several distinct criteria. Depending on the number
of quality characteristics under investigation, charts can be
divided into univariate control charts and multivariate
control charts. Furthermore, the quality characteristic of
interest may be a continuous random variable or
alternatively a discrete attribute. Control charts should be
capable to create an alarm when a shift in the level of one
or more parameters of the underlying distribution or a
non-random behavior occurs. Normally, such a situation
will be reflected in the control chart by points plotted
outside the control limits or by the presence of specific
patterns. The most common non-random patterns are
cycles, trends, mixtures and stratification [7]. For a
process to be in control the control chart should not have
any trend or nonrandom pattern.
SPC is a powerful tool to optimize the amount of
information needed for use in making management
decisions. SPC provides real time analysis to establish
controllable process baselines; learn, set, and dynamically
improves process capabilities; and focus business areas

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 220

which need improvement. The early detection of software
failures will improve the software reliability. The selection
of proper SPC charts is essential to effective statistical
process control implementation and use. The SPC chart
selection is based on data, situation and need [4].
The control limits can then be utilized to monitor the
failure times of components. After each failure, the time
can be plotted on the chart. If the plotted point falls
between the calculated control limits, it indicates that the
process is in the state of statistical control and no action is
warranted. If the point falls above the UCL, it indicates
that the process average, or the failure occurrence rate,
may have decreased which results in an increase in the
time between failures. This is an important indication of
possible process improvement. If this happens, the
management should look for possible causes for this
improvement and if the causes are discovered then action
should be taken to maintain them. If the plotted point falls
below the LCL, It indicates that the process average, or the
failure occurrence rate, may have increased which results
in a decrease in the failure time. This means that process
may have deteriorated and thus actions should be taken to
identify and causes may be removed. It can be noted here
that the parameter a, b should normally be estimated with
the data from the failure process.
The control limits for the chart are defined in such a
manner that the process is considered to be out of control
when the time to observe exactly one failure is less than
LCL or greater than UCL. Our aim is to monitor the
failure process and detect any change of the intensity
parameter. When the process is normal, there is a chance
for this to happen and it is commonly known as false
alarm. The traditional false alarm probability is to set to be
0.27% although any other false alarm probability can be
used. The actual acceptable false alarm probability should
in fact depend on the actual product or process [9].

2. Literature Survey

This section presents the theory that underlies a
distribution and maximum likelihood estimation for
complete data. If ‘t’ is a continuous random variable with
pdf:),,,;(21 ktf . where

k ,,, 21 are k

unknown constant parameters which need to be estimated,
and cdf: tF . Where, The mathematical relationship

between the pdf and cdf is given by:
dt

tFd
tf)(. Let

‘a’ denote the expected number of faults that would be
detected given infinite testing time in case of finite failure
NHPP models. Then, the mean value function of the finite
failure NHPP models can be written as:)()(taFtm ,

where F(t) is a cumulative distribution function. The

failure intensity function)(t in case of the finite failure

NHPP models is given by:)(')(taFt .

2.1 NHPP model

The Non-Homogenous Poisson Process (NHPP) based
software reliability growth models (SRGMs) are proved
quite successful in practical software reliability
engineering [3]. The main issue in the NHPP model is to
determine an appropriate mean value function to denote
the expected number of failures experienced up to a
certain time point. Model parameters can be estimated by
using Maximum Likelihood Estimate (MLE).
Various NHPP SRGMs have been built upon various
assumptions. Many of the SRGMs assume that each time a
failure occurs, the fault that caused it can be immediately
removed and no new faults are introduced. Which is
usually called perfect debugging. Imperfect debugging
models have proposed a relaxation of the above
assumption [8].
Let 0, ttN be the cumulative number of software

failures by time ‘t’. m(t) is the mean value function,
representing the expected number of software failures by
time ‘t’. t is the failure intensity function, which is

proportional to the residual fault content. Thus

)1(bteatm and))((
)(

tmab
dt

tdm
t .

Where ‘a’ denotes the initial number of faults contained in
a program and ‘b’ represents the fault detection rate. In
software reliability, the initial number of faults and the
fault detection rate are always unknown. The maximum
likelihood technique can be used to evaluate the unknown
parameters. In NHPP SRGM t can be expressed in a

more general way as tmtatb
dt

tdm
t

)(.

Where ta is the time-dependent fault content function

which includes the initial and introduced faults in the
program and tb is the time-dependent fault detection

rate. A constant ta implies the perfect debugging

assumption, i.e no new faults are introduced during the
debugging process. If we assume that, when the detected
faults are removed, then there is a possibility to introduce
new faults with a constant rate ‘ ’. Then the mean value

function is [2] given as bte
a

tm

 11

1
)(.

2.2 ML (Maximum Likelihood) Parameter
Estimation

The idea behind maximum likelihood parameter
estimation is to determine the parameters that maximize

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 221

the probability (likelihood) of the sample data. The
method of maximum likelihood is considered to be more
robust (with some exceptions) and yields estimators with
good statistical properties. In other words, MLE methods
are versatile and apply to many models and to different
types of data. Although the methodology for maximum
likelihood estimation is simple, the implementation is
mathematically intense. Using today's computer power,
however, mathematical complexity is not a big obstacle. If
we conduct an experiment and obtain N independent

observations, Nttt ,,, 21 . Then the likelihood function is

given by[1] the following product:

N

i
kikN tfLtttL

1
212121),,,;(,,,|,,,

Likely hood function by using λ(t) is:

 L =

n

i
it

1

)(

The logarithmic likelihood function is given by:

N

i
kitfL

1
21),,,;(lnln

Log L = log (

n

i
it

1

)()

which can be written as

n

i
ni tmt

1

)()(log

The maximum likelihood estimators (MLE) of

k ,,, 21 are obtained by maximizing L or ,

where is ln L . By maximizing , which is much easier
to work with than L, the maximum likelihood estimators
(MLE) of

k ,,, 21 are the simultaneous solutions of

k equations such that:
0

j
, j=1,2,…,k

The parameters ‘a’ and ‘b’ are estimated using iterative
Newton Raphson Method, which is given as

)('

)(
1

n

n
nn xg

xg
xx

3. Illustrating the MLE Method

3.1 parameter estimation

To estimate ‘a’ and ‘b’ , for a sample of n units, first
obtain the likelihood function: assuming 05.0 .

N

i

btabeL
1

1

Take the natural logarithm on both sides, The Log
Likelihood function is given as:

Log L =])(log[
1

n

i
it =

n

i

btabe
1

1]log[

 =

n

i

btbt e
a

abe
1

11 1
1

)log(

Taking the Partial derivative w.r.t ‘a’ and equating to ‘0’.

(i.e 0
log

a

L)
 nbte

n
a

11

1

Taking the Partial derivative w.r.t ‘b’ and equating to ‘0’.
(i.e 0

log
)(

b

L
bg)

 01

1

1

1
1

n

i
ibt

n t
e

tn

b

n
bg

n

Taking the partial derivative again w.r.t ‘b’ and equating

to ‘0’. (i.e 0
log

)('
2

2

b

L
bg)

 0
1

1
'

221

122

b

n

e

etn
bg

n

n

bt

bt
n

The parameter ‘b’ is estimated by iterative Newton
Raphson Method using

)('

)(
1

n

n
nn bg

bg
bb

. which is

substituted in finding ‘a’.

3.2 Distribution of Time between failures

Based on the inter failure data given in Table 1, we
compute the software failures process through Mean
Value Control chart. We used cumulative time between
failures data for software reliability monitoring using
Exponential distribution.

Table:1 Time between failures of a software
Failure
Number

Time between
failure(h)

Failure
Number

Time between
failure(h)

1 30.02 16 15.53
2 1.44 17 25.72
3 22.47 18 2.79
4 1.36 19 1.92
5 3.43 20 4.13
6 13.2 21 70.47
7 5.15 22 17.07
8 3.83 23 3.99
9 21 24 176.06
10 12.97 25 81.07
11 0.47 26 2.27
12 6.23 27 15.63
13 3.39 28 120.78
14 9.11 29 30.81
15 2.18 30 34.19

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 222

Assuming an acceptable probability of false alarm of
0.27%, the control limits can be obtained as [5]:

 99865.01
1

1 1

 bt
U eT

 5.01
1

1 1

 bt
C eT

 00135.01
1

1 1

 bt
L eT

 ‘

a ’ and ‘

b ’ are Maximum Likely hood
Estimates (MLEs) of parameters and the values can be
computed using iterative method for the given cumulative
time between failures data shown in table 1. Using ‘a’ and
‘b’ values we can compute)(tm .

These limits are converted to)(Utm ,)(Ctm and)(Ltm

form. They are used to find weather the software process
is in control or not by placing the points in Mean value
chart shown in Figure 1. A point below the control limit

)(Ltm indicates an alarming signal. A point above the

control limit)(Utm indicates better quality. If the points

are falling within the control limits it indicates the
software process is in stable condition [6]. The values of
control limits are as follows.

31.69529)(Utm

15.86907)(Ctm

0.042846)(Ltm

Table:2 successive differences of cumulative mean values

No
Cum

Failures
m(t)

Successive
differences

No
Cum

failures
m(t)

Successive
differences

1 30.02 2.9599655 0.135198384 16 151.78 12.5083594 1.596922361
2 31.46 3.09516389 2.033545566 17 177.5 14.1052818 0.165718931
3 53.93 5.12870945 0.118607302 18 180.29 14.2710007 0.113215983
4 55.29 5.24731676 0.296929927 19 182.21 14.3842167 0.241267574
5 58.72 5.54424668 1.113786929 20 186.34 14.6254843 3.675758395
6 71.92 6.65803361 0.422372776 21 256.81 18.3012427 0.776290028
7 77.07 7.08040639 0.309784217 22 273.88 19.0775327 0.175623745
8 80.9 7.3901906 1.634899415 23 277.87 19.2531564 5.940013828
9 101.9 9.02509002 0.958006905 24 453.93 25.1931703 1.820658724
10 114.87 9.98309692 0.033999962 25 535 27.013829 0.044702692
11 115.34 10.0170969 0.446045517 26 537.27 27.0585317 0.299430566
12 121.57 10.4631424 0.239128039 27 552.9 27.3579622 1.884814636
13 124.96 10.7022704 0.630337689 28 673.68 29.2427769 0.378342482
14 134.07 11.3326081 0.148225045 29 704.49 29.6211194 0.379762003
15 136.25 11.4808332 1.027526243 30 738.68 30.0008814

Figure 1 is obtained by placing the differences between
cumulative failure data shown in Table 2 on y axis, failure
number on x axis and the values of control limits are
placed on Mean Value chart. The Mean Value chart shows
that the 10th failure data has fallen below)(Ltm which

indicates the failure process. It is significantly early

detection of failures using Mean Value Chart. The
software quality is determined by detecting failures at an
early stage. The remaining failure data are shown in
Figure 1 are in stable. No failure data fall outside the

)(Utm . It does not indicate any alarm signal.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 223

UCL 31.695289517
CL 15.869068007

LCL 0.042846470

0.01000

0.04000

0.16000

0.64000

2.56000

10.24000

40.96000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

su
cc
e
ss
iv
e
 d
if
fe
re
n
ce
s

Date/Time/Period

Mean Value Chart

Figure: 1 Mean Value Chart

4. Conclusion

The given 30 inter failure times are plotted through the
estimated mean value function against the failure serial
order. The parameter estimation is carried out by Newton
Raphson Iterative method for Exponential model. The
graphs have shown out of control signals i.e below the
LCL. Hence we conclude that our method of estimation
and the control chart are giving a +ve recommendation for
their use in finding out preferable control process or
desirable out of control signal. By observing the Mean
value Control chart we identified that the failure situation
is detected at 10th point of Table-2 for the corresponding

)(tm , which is below)(Ltm . It indicates that the failure

process is detected at an early stage compared with Xie et
a1, (2002) control chart [5], which detects the failure at
23rd point for the inter failure data above the UCL. Hence
our proposed Mean Value Chart detects out of control
situation at an earlier instant than the situation in time
control chart. The early detection of software failure will
improve the software Reliability. When the time between
failures is less than LCL, it is likely that there are
assignable causes leading to significant process
deterioration and it should be investigated. On the other
hand, when the time between failures has exceeded the
UCL, there are probably reasons that have lead to
significant improvement.

References
 [1] Hoang Pham, “Handbook Of Reliability Engineering”,

Springer: Apr 2003, edition1.
[2] Huan-Jyh Shyur “A stochastic software reliability model with

imperfect-debugging and change-point”- The journal of
systems and software 66 (2003) 135-141.

[3] J.D. Musa., A. Iannino., K. Okumoto., 1987. “Software
Reliability: Measurement Prediction Application”. McGraw-
Hill, New York.

[4] J. F. MacGregor and T. Kourti “Statistical process control of
multivariate processes”.

[5] M Xie, T.N Goh, P.Ranjan “Some effective control chart
procedures for reliability monitoring” -Reliability
engineering and System Safety 77 143 -150¸ 2002.

[6] M. Kimura, S. Yamada, S. Osaki.”Statistical Software
reliability prediction and its applicability based on mean time
between failures”.

[7] M.V.Koutras, S.Bersimis, P.E.Maravelakis “Statistical
process control using shewart control charts with
supplementary Runs rules” Springer Science + Business
media 9:207-224, 2007.

[8] M.Ohba “Software Reliability Analysis Models” IBM
Journal Research Development Vol.29,No. 4, pp. 428-442,
July 1984.

[9] Swapna S. Gokhale and Kishore S.Trivedi, 1998. “Log-
Logistic Software Reliability Growth Model”. The 3rd IEEE
International Symposium on High-Assurance Systems
Engineering. IEEE Computer Society.

Author’s profile:

First Author
Dr. R. Satya Prasad received Ph.D. degree in Computer Science
in the faculty of Engineering in 2007 from Acharya Nagarjuna
University, Andhra Pradesh. He received gold medal from Acharya
Nagarjuna University for his out standing performance in Masters

Degree. He is currently working as Associate
Professor and H.O.D, in the Department of
Computer Science & Engineering, Acharya
Nagarjuna University. His current research is
focused on Software Engineering. He has
published several papers in National &
International Journals.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 224

Second Author
Mrs. N.Supriya Working as Assistant professor in the department
of Computer Science, Adikavi Nannaya university, Rajahmedndry.
She is at present pursuing Ph.D at Acharya Nagarjuna University.
Her research interests lies in Softwrare Engineering and Data
Mining.

Third Author
Mr. G. Krishna Mohan is working as a Reader in
the Department of Computer Science,
P.B.Siddhartha College, Vijayawada. He
obtained his M.C.A degree from Acharya
Nagarjuna University in 2000, M.Tech from
JNTU, Kakinada, M.Phil from Madurai Kamaraj
University and pursuing Ph.D at Acharya
Nagarjuna University. His research interests lies

in Data Mining and Software Engineering.

