
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 150

 Empirical Evaluation of the Proposed eXSCRUM
Model: Results of a Case Study

M. Rizwan Jameel Qureshi

Faculty of Computing and Information Technology,
King Abdul Aziz University,

Ministry of Higher Education,
Jeddah, Kingdom of Saudi Arabia P.O.BOX 80221 Jeddah 21589

Abstract

Agile models promote fast development. XP and Scrum are
the most widely used agile models. This paper investigates
the phases of XP and Scrum models in order to identify
their potentials and drawbacks. XP model has certain
drawbacks, such as not suitable for maintenance projects
and poor performance for medium and large-scale
development projects. Scrum model has certain limitations,
such as lacked in engineering practices. Since, both XP and
Scrum models contain good features and strengths but still
there are improvement possibilities in these models.
Majority of the software development companies are
reluctant to switch from traditional methodologies to agile
methodologies for development of industrial projects. A
fine integration, of software management of the Scrum
model and engineering practices of XP model, is very much
required to accumulate the strengths and remove the
limitations of both models. This is achieved by proposing
an eXScrum model. The proposed model is validated by
conducting a controlled case study. The results of case
study show that the proposed integrated eXScrum model
enriches the potentials of both XP and Scrum models and
eliminates their drawbacks.

Key Words: XP, Scrum, Sprint, Backlog, Quality

1. Introduction
Several researchers have discussed traditional
development models during decades [1]. It is difficult
to have a single common definition for traditional
methodology. A traditional methodology is an
explicit way of structuring one’s thinking and actions
[1]. Traditional methodologies are considered as
heavyweight methodologies that are adopted for
software development. In fact, traditional
methodologies rely on a sequential series of steps that
include requirements gathering, designing and
building the solution, testing and deployment. In
order to define and document, the traditional
development methodologies, there is needed to
establish consistent requirements from the start of a
project. There are several development
methodologies that include Waterfall, Spiral Model
and Unified Process. In conventional software
development methodologies, planning is done during
the early stages of development that is strictly

followed throughout development cycle. Finalizing
the requirements during early phases may risk the
success of a project. If there is no interaction of client
with the development team during the development
of a release/s, vague requirements may be considered
by the team. This may leads to the failure of a project
or may maximize the development cost. The
traditional development methodologies stress on
extensive documentation increasing the burden on
development teams.
Due to above mentioned reasons, it is concluded that
traditional software development methodologies
cannot cope with the changing environment [2].
Therefore, new development methodologies were
required to tackle the dynamically changing
environment and requirements efficiently. Agile
development methodologies include best software
engineering practices that allows fast delivery of high
quality software. The development approach is
aligned with customer requirements and company
objectives. The requirements and their solutions are
built by collaboration of independent functional
teams. Agile software development methodologies
emphasize on direct interaction with the development
team. For the distributed environment, the main
modes of communications involve video
conferencing, voice and e-mail.
Agile framework is based on iterative software
development [3]. An independent working module is
built after the completion of iteration. According to
the authors [3], iteration must not consume more than
two weeks to complete a code. Code is tested by a
quality assurance team. The agile methodologies are
light weight in nature [4]. Agile methodologies are
suitable in changing environments because of new
practices and principles helping to develop a product
in short duration. XP model is one the most widely
accepted agile models. Though agile XP model have
several benefits but many software development
companies hesitate to transit from traditional
methodologies to agile XP model [5]. Main strengths
of XP are fast development, cost saving, high
satisfaction of client, test driven development
resulting in less errors and acceptance of changing

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 151

requirements. Following are few main limitations of
XP model. XP model:

 focuses on code centered approach rather
than design centered;

 recommends less documentation making it
suitable only for small projects and limiting
the opportunities and advantages of
reusability;

 suggests to documenting the project after
coding and this practice is very difficult and
time consuming;

 lacks in structured reviews that ultimately
results in lack of quality;

 Test driven approach is more time and cost
consuming as compared to structured
reviews.

 teams fully depend upon customer that may
sometime become a cause for the failure of
projects.

Scrum model is getting popularity from the last few
years. Main strength of the Scrum model is high
project management capability and its main
limitations are summarized as follows.

 Scrum is a combination of generic project
management practices and lacked in system
development life cycle (SDLC) phases about
engineering of a software

 As compared to XP model, Scrum demands
high quality professionals to build scrum
team

 Scrum lacks in the team activities to
complete iterations in contrast to XP that has
pair programming, continuous integration
and automated builds.

 Lack of unit testing in SCRUM could lead to
project failure.

Further paper is arranged as follows.
Section 2 focuses on the related work. Section 3 deals
with the motivation towards the eXScrum. Section 4
proposes a new eXScrum model. Section 5 presents
validation of the proposed new eXScrum model using
a case study.

2. Related Work
A lot of research work has been done on agile
development to explore and customize its practices
since 2001. The main objectives of research are the
issues raised during the implementation of phases and
relevant agile principles and methods to be practiced.
The authors [6] describe “knowledge engineering”, a
new approach of requirement analysis. This paper [7]
focuses on the importance of understanding the
requirements rather than jumping on the design and

modeling. The importance of agility in requirement
gathering and analysis is discussed in [7]. This
research [8] describes agile techniques of
requirement processes and proposed the “re-
consideration” of electronic documentation of
requirements in a project. A comparative analysis of
requirement engineering between traditional software
development methodologies and agile practices is
described in [9]. The authors [9] also focused on
advantages provides by the agile practices in
requirement engineering that positively impact on the
project velocity. The empirical study describes the
agile requirement practices along with the advantages
as well as challenges [10]. This research [11]
described the advantages of agile requirement
engineering and explored that how an “intranet”
project adopt agile practices to save time and cost.
The authors [12,13,14,15,16] discussed the issues
regarding architecture of agile models and their
customization. The weaknesses in documentation
phase of agile models are discussed to provide
solutions [17,18,19,20,21]. These papers
[22,23,24,25,26] focused on the testing issues using
agile practices. Many researchers [27,28, 29,30]
provide comparative analysis between agile software
models and their customization like:

 experience of XP practices wrapped up with
Scrum model;

 experience of satisfying the requirement of
CMM level 2 and ISO 9001 with the
combination of XP and Scrum models;

 experience of research context in building
the agile software development group.

Next section describes the motivation for the
eXScrum model to be proposed.

3. Motivation Towards eXScrum Model
A comparison of XP and SCRUM is provided in
Table 1. The comparison is based on the quality
parameters of agile practices and their level of
availability in both models.

Table 1: A Comparison of XP and Scrum

Quality Parameter XP Scrum

Engineering practices Yes No

Project management
practices

No Yes

Accept changes in
iteration at any time

Yes No

Requirement Yes No

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 152

prioritization

 Refactoring Yes No

Pair programming Yes No

Project size Small to
medium

Medium to
high

Test driven
development

Yes No

Self organization No Yes

Unit testing Yes No

Design approach Code centered Design
centered

Documentation level Less more

Team size <10 <10 and
multiple
teams

Code style Clean and
simple

Not specified

Technology
Environment

Quick feed back Not specified

Physical Environment Co-located and
limited

distribution

Not specified

Business culture Collaborative
and cooperative

Not specified

Project size Small to
medium

Medium to
high

Business culture Collaborative
and cooperative

Not specified

Table 1 shows the main limitations of both XP and
Scrum models. There is a desperate need of fusing
the both XP and Scrum models to remove their
shortcomings to solve the industry problem in major.

4. The Proposed eXScrum Model
The proposed eXScrum model is an improved
paradigm enriching with complete project
management and engineering practices of both Scrum
and XP models. The main characteristic of the
proposed eXScrum process model is that it provides a

complete product development cycle without
affecting the Scrum framework. All the engineering
practices of the XP model exist in Sprint cycle of the
Scrum model. Each phase of eXScrum model is
shown in figure 1. Sprint zero is used before the start
of the scrum development process. It is basically pre
Scrum activity but in ordinary Scrum process, no
clear guidelines or steps are defined. The Scrum
model starts from product backlog. The proposed
eXScrum process provides complete steps of the
sprint zero. The process starts with the creation of
product attributes and end resultant is product
backlog. The proposed eXScrum model starts with
product attributes which is much similar with user
stories by the customer. Product attributes include
salient features of a new product as required by the
product master. Each item of the product attribute
covers certain objectives as per client needs. Product
attributes includes definitions of customer
requirements that allows development team to
produce a reasonable estimate of the effort during the
implementation. Product attributes become part of the
product backlog after going through the processes of
estimation and prioritization.
The selected product attributes are estimated on the
basis of effort required to build and implementing
these attributes. The product attributes should be
focused on user needs and benefits as opposed to
specifying GUI layouts. The design focuses the
current requirements. The formats of the design
followed keep it simple (KIS) principle. In the
designing phase, two types of diagrams are
developed. These diagrams include class diagrams
and object diagram. The class diagram is used to
develop interfaces (front end), whereas object
diagram helps in building database (back end). Test
classes are also designed. The real development of
the product is done during this phase. The process of
coding requires coding standards, code ownership,
pair programming and continuous integration.
Coding process needs continuous testing and
refactoring. Code is tested frequently through unit
tests. Each feature/attribute of the product is
designed, implemented and tested individually with
in the sprint development cycle. As a new code
passes through testing, it is integrated to system. This
process continues until the whole system is built. The
process of continuous integration helps in reducing
implementation risks. Continuous integration ensures
that working module is available to use with new
features. Scrum Meeting is conducted before start of
the work daily. The duration of this meeting is 15
minutes. The main participants of this meeting are
scrum master, product owner and development team.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 153

Product
Attributes

Estimated Product
Attributes

New
Attributes

Product Backlog

Sprint Backlog Sprint Tasks

Incomplete Backlog

Sprint Release

-

-

-

-

-

Estimation

-

-

-

-

Prioritization

Sprint
Review

Sprint
Retrospective

Sprint
Planning

Product
Increment

Integration

Sprint
Development cycle

Testing

Coding

Design

Plan

Daily Scrum

Fig. 1 The Proposed eXScrum Model

Sprint Zero

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 154

After the completion of sprint iteration, the working
set of the product is released. This part of the product
is presented in sprint review meeting. All stake
holders are invited in the sprint review meeting. After
the successful completion of all product increments,
the whole product is launched with its full features.
At the end of each sprint, sprint review meeting is
conducted in which results of the new deliverable are
provided to stakeholders. The purpose of Sprint
review meeting is to ensure whether the required
goals are achieved or not. The approval of the
product increment depends upon the extent of the
customer satisfaction.
The product owner is participated throughout the
sprint development cycle of eXScrum model to
achieve high level of customer satisfaction. The
decision about next sprint backlog prioritization is
taken in this meeting. The working of the product
increment release is closely watched by all the
stakeholders during the sprint review meeting. Any
change or new suggestion, rises during sprint review
meeting, becomes the part of sprint retrospective.
The items of sprint retrospective become the part of
next sprint. Sprint retrospective helps a team to be
more successful to complete the next sprint. Only
those items are considered in backlogs that do not
disturb the normal working of the product increment.
Although this process limits the working of product
increment but it allows the opportunity to deliver a
successful product increment at the end of each
sprint.

5. Validation of the Proposed Model
The proposed eXScrum model is validated by
conducting a case study to develop a payroll
application for COMSATS Institute of information
Technology Lahore, Pakistan. Manger account
initiates the request for the development of Payroll
Management System. A team was selected
comprising of 6 members. The duration of project
was five weeks. The description of case study project
is provided in Table 2. The project was to complete
in four iterations. An intensive one week training
program was conducted to educate the team about the
proposed model, agile XP and Scrum practices and
principles before starting the project practically.

Table 2: Description of Case Study

Characteristics Description

Product Type Payroll Application

Size Medium

Project Type Average

Type of Case Study Controlled

Project Duration 5 weeks

Iterations 4

Team size 5 members

Programming Approach Object Oriented

Feed back Daily Feedback Require

Language Java

Development

Environment

Net Beans 6.9

Documents Ms Office XP

Other Tools Rational Rose

Testing J-Unit

Reports IReport

Web Server Apache Tomcat

The main Scrum practices introduced to the team are
sprint zero, product backlog, sprint backlog, sprint
planning meetings, daily scrum meeting, sprint
review meeting, and sprint retrospective. The main
XP practices introduced to team during training are
simple design, collective, pair programming,
following coding standards, continuous testing,
continuous integration and refactoring. Main tools
used during the case study project are Rational Rose,
Net Beans, My SQL, J-Unit, and IReport.

5.1 Empirical Analysis of the Case Study
The data is collected from four sprint releases. The
collected data is represented in Table 3. All the
columns represent cumulative/average data about
releases of the case study while all the rows represent
data of a particular attribute of the case study.
The first release (row one in the Table 3) was
completed in two weeks time, whereas each of
remaining three releases took one week duration. The
term ‘sprint release’ is used in eXScrum model that
shows the fact that system was released to actual
customer test.
The number of modules (row 2), built during
development process, are represented in each sprint
release. Total tasks defined in these modules are
represented in row 3. Each release shows number of
tasks defined in their respective columns. Total work
effort (row 4) of the project is remained constant
throughout all releases. However, the direct hours
dedicated to tasks (row 5) was reduced to 353 (h) in
the first the release and in 2nd and 3rd release it was
150 (h) to 170 (h) respectively, whereas task effort
was reduced to 120 (h) in 4th release. Comparing task
effort in percentage form (row 6), it was reduced

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 155

from the initial 88% in 1st release to 75-85% in 2nd
and 3rd releases respectively and was 60 % in 4th
release. This indicates an increase in over-head for
short development cycles.
Total number of interfaces built during the
development was 48. The number of interfaces for
the respective releases is represented in row 7. The
line of code (LOC) of the interfaces in all sprint
releases is 16820. Total number of classes built
during the development process was 71 and line of
code (LOC) of these classes remained 4240 (row 9 &
10). Total number of 24 test classes built for testing
purpose having 8335 line of code (LOC).
The amount of logical lines of code, the team
produced in a release, is represented in rows 11 and
12. Team’s productivity (row 13) varied somewhat
from 25.05 to 66.36 LOC/hour.

Test coverage is calculated as number of test LOC
per system total LOC. Row 14 represents test
coverage in percentage form. The results show that
test coverage varies at each sprint release. The
average test coverage as shown in row 13 is 51.81%
of total LOC that is quite satisfactory. Row 15 shows
integration data from the project which is used for
software configuration management (SCM). The
main purpose of software configuration management
(SCM) is for tracking and controlling changes in the
software.
Rows 16-17 are related to the quality of the system.
The results show that total defect density of the
system was relatively low. Post release defects per
KLOC were 0.431. The defect density was evaluated
as quite satisfactory that gives an indication of
quality product.

Table 3: Exploratory Data from all Sprint Releases

ID Item Release 1 Release 2 Release 3 Release 4 Total

1 Calendar Time (weeks) 2 1 1 1 5

2

Number of Modules (Items Sprint backlog) 8 4 5 3 20

3 Total Tasks defined 50 12 14 6 82

4 Total work effort (h) 400 200 200 200 1000

5 Task allocated actual hours 353 150 170 120 793

6 Task allocated actual (%) 88 75 85 60 77

7 Interfaces 30 5 7 6 48

8 Classes 54 7 7 3 71

9 Test Classes 14 4 5 7 30

10 Test Classes LOC 11518 1780 2296 4182 19776

11
Total LOC

21036

3758

4365

7963 37122

12
Total KLOC

21.036

3.758

4.365

7.963 37.122

13 Team Productivity (LOC/h) 59.59 25.05 25.68 66.36 46.81

14 Test Coverage (%) 54.75 47.37 52.60 52.52 51.81

15 Number of Integration 40 22 30 20 112

16 Post release defects 7 3 3 3 16

17 Post release defects /KLOC 0.333 0.798 0.687 0.377 0.431

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 156

18 Post release suggestions (Sprint Retrospective) 7 5 4 1 17

19 Pair programming % 80% 80% 80% 80% 80%

20 Customer involvement (sprint hrs/5 days (week)) 30% 28% 20% 22% 25%

21 Customer Satisfaction 80% 80% 90% 90% 85%

In addition, 17 improvement suggestions are raised
(row 18), i.e. new or improved user functionality.
Most of the suggestions are raised from the first two
releases.
Pair programming (row 19) was extensively
exercised in the product development. The scheme of
practicing pair programming was uniform throughout
the product development i.e. 80 %.
In this controlled case study, the client shared the
same office with the development team and thus was
present over 80% of the total time, the actual
customer involvement (row 20) was only 25% on
average. This is a significant result since onsite
customer is one of the most controversial topics in
extreme programming methodology.
The customer satisfaction is measured in terms of
satisfaction over number of modules of the product.
The row 21 represents customer satisfaction in
percentage form. Level of customer satisfaction
remained at 80 % from sprint releases 1st and 2nd
respectively. For releases 3rd and 4th the satisfaction
level raised to 90 %.

6. Conclusion
Scrum model is one among the choices of agile
methodologies that helps in managing projects
efficiently. Scrum does not provide much more about
how to engineer a product. XP model is also widely
accepted model but there are few limitations in this
model that need to be addressed. In this research, a
novel eXScrum model is proposed that is an extended
version of Scrum and XP models. The proposed
model is validated by conducting a controlled case
study. The results of case study show that the
resultant integration enriches the potentials of both
Scrum and XP models by eliminating their
drawbacks.

References
[1] P. A. Beavers, “Managing a Large “Agile” Software

Engineering Organization”, in Conference Agile 2007,
2007, pp. 296-303.

[2] Extreme Programming official website, (2011).
http://www.extremeprogramming.org/map/project.htm
l, visited: 7 May 2011.

[3] R. Green, T. Mazzuchi and S. Sarkani,
”Communication and Quality in Distributed Agile

Development: An Empirical Case Study”, WASET
2010, pp. 322-328.

[4] C. Juyun, “A hybrid model software development
method for large-scale projects”, Journal of Issues in
Information Systems, Vol. 10, No. 2, pp. 340-348.

[5] J.Langr,(2006).http://www.developer.com/design/artic
le.php/3650886/A-Brief-Introduction-to-Agile.htm,
Visited: 7 May 2011.

[6] Li, Jiang. and E. Armin, “A Framework for
Requirements Engineering Process Development
(FRERE).” Australian Software Engineering
Conference, pp. 507-516.

[7] Lucas, L. Laurie, W. William, K. and Annie, I. A.
(2004). Toward a Framework for Evaluating Extreme
Programming. Proc. 8th Int. Conf. Empirical
Assessment in Software Engineering, Edinburgh,
Scotland, 11-20.

[8] Pressman, R.S. (2009). Software Engineering,
McGraw Hill, USA.

[9] K. Schwaber, and M. Beedle, Agile Software
Development with Scrum, USA, Prentice Hall, 2002.

[10] Softhouse Consulting, (2010).
http://www.SofthouSe.Se, Visited: 7 May 2011.

[11] J. Sutherland, A. Viktorov, J. Blount and N. Puntikov,
“Distributed Scrum: Agile Project Management with
Outsourced Development Teams”, Annual Hawaii
International Conference on System Sciences, Hawaii,
2007, pp. 274a-274a.

[12] M. Kumar, N. Ajmeri and S. Ghaisas, “Towards
knowledge assisted agile requirements evolution”,
RSSE '10: Proceedings of the 2nd International
Workshop on Recommendation Systems for Software
Engineering, 2010, pp. 16-20.

[13] K. Orr, “Agile Requirements: Opportunity or
Oxymoron?”, IEEE Software, Vol. 21, No. 3, 2004,
pp. 71-73.

[14] N. Maiden and S. Jones, “Agile Requirements Can We
Have Our Cake and Eat It Too?”, IEEE Software, Vol.
27, No. 3, 2010, pp. 87-88.

[15] F. Paetsch, A. Eberlein and F. Maurer, “Requirements
Engineering and Agile Software Development”,
Proceedings of the Twelfth International Workshop on
Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2003, pp. 308-313.

[16] L. Cao, B. Ramesh, “Agile Requirements Engineering
Practices: An Empirical Study”, IEEE Software, Vol.
25, No. 1, 2008, pp. 60-67.

[17] T. J. Bang, “An agile approach to requirement
specification”, XP'07: Proceedings of the 8th
international conference on Agile processes in
software engineering and extreme programming,
2007, Vol. 4536/2007, pp 193-197.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 157

[18] D. Mancl, S. Fraser and B. Opdyke, “Architecture in
an agile world”, SPLASH/OOPSLA Companion,
2010, pp. 289-290.

[19] E. Hadar and G. M. Silberman, “Agile architecture
methodology: long term strategy interleaved with
short term tactics”, Companion to the 23rd ACM
SIGPLAN conference on Object-oriented
programming systems languages and applications,
2008, pp. 787-790.

[20] P. Kruchten, “Software architecture and agile software
development: a clash of two cultures?”, Proceedings
of the 32nd ACM/IEEE International Conference on
Software Engineering, Vol. 2, 2010, pp. 497-498.

[21] H. P. Breivold, D. Sundmark, P. Wallin and S.
Larsson, “What Does Research Say about Agile and
Architecture?”, Proceedings of the 2010 Fifth
International Conference on Software Engineering
Advances, 2010, pp. 32-37.

[22] J. Madison, “Agile Architecture Interactions”, IEEE
Software , Vol. 27, No. 2, 2010, pp. 41-48.

[23] J. Baptista, “Agile documentation with uScrum”,
Proceedings of the 26th annual ACM international
conference on Design of communication, 2008,
pp.275-276.

[24] T. Clear, “Documentation and agile methods: striking
a balance”, SIGCSE Bulletin, Vol. 35, No. 2, 2003,
pp. 12-13.

[25] T. Sauer, “Using Design Rationales for Agile
Documentation”, Proceedings of the Twelfth
International Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises, 2003, pp.
326-331.

[26] B. Selic, “Agile Documentation, Anyone?”, IEEE
Software , Vol. 26, No. 6, 2009, pp. 11-12 .

[27] S. W. Ambler, “Lessons in Agility From Internet-
Based Development”, IEEE Software, Vol. 19. No. 2,
2002, pp. 66-73.

[28] Y. Hu, “The Application and Research of Software
Testing on Agile Software Development”,
Proceedings of the 2010 International Conference on
E-Business and E-Government, 2010, pp. 5540-5543.

[29] S. Stolberg, “Enabling Agile Testing through
Continuous Integration”, Proceedings of the 2009
Agile Conference, 2009, pp.369-274.

[30] D. Talby, O. Hazzan, Y. Dubinsky and A. Keren,
“Agile Software Testing in a Large-Scale Project”,
IEEE Software, Vol. 23, No. 4, pp. 30-37.

