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Abstract 
DNA microarray analysis has become the most widely used 
functional genomics approach in the bioinformatics field. 
Microarray gene expression data often contains missing values 
due to various reasons. Clustering gene expression data 
algorithms requires having complete information. This means 
that there shouldn't be any missing values. In this paper, a 
clustering method is proposed, called "Clustering Local Least 
Square Imputation method (ClustLLsimpute)", to estimate the 
missing values. In ClustLLsimpute, a complete dataset is 
obtained by removing each row with missing values. K clusters 
and their centroids are obtained by applying a non-parametric 
clustering technique on the complete dataset.  Similar genes to 
the target gene (with missing values) are chosen as the smallest 
Euclidian distance to the centroids of each cluster. The target 
gene is represented as a linear combination of similar genes. 
Undertaken experiments proved that this algorithm is more 
accurate than the other algorithms, which have been introduced 
in the literature. 

Keywords: Missing Values, Imputation, Microarray, 
Regression.  

1. Introduction 

In the last decade, molecular biologists have been using 
DNA microarrays as a tool for analyzing information in 
gene expression data. During the laboratory process, some 
spots on the array may be missing due to various factors 
e.g. insufficient resolution, image corruption, or simply 
due to dust or scratches on the slide. Repeating the 
experiments is often very costly or time consuming. As a 
result, molecular biologists, statisticians, and computer 
scientist have made attempts to recover the missing gene 
expressions by some ad-hoc and systematic methods. 
Microarray gene expression data have been formulated as 
gene expression matrix E with m rows, which correspond 
to genes, and n columns, which correspond to experiments.  
 

 
Many analysis methods, such as Principal  component 
analysis, singular value decomposition or clustering 
analysis, require complete matrices. Missing log2 
transformed data are often replaced by zeros [1] or, less 
often, by an average expression over the row, or ‘row 
average’. This approach is not optimal, since these 
methods do not take into consideration the correlation 
structure of the data. Thus, many analysis techniques, as 
well as other analysis methods such as hierarchical 
clustering, k-means clustering, and self-organizing maps, 
may benefit from using more accurately estimated missing 
values. 
There is not a lot of work in the literature that deals with 
missing value estimation for microarray data, but much 
work has been devoted to similar problems in other fields. 
The question has been studied in contexts of non-response 
issues in sample surveys and missing data in experiments 
[11]. Common methods include filling in least squares 
estimates, iterative analysis of variance methods [3] 
randomized inference methods, and likelihood-based 
approaches [21]. An algorithm similar to the nearest 
neighbors was used to handle missing values in CART-
like algorithms [8]. Most commonly applied statistical 
techniques for dealing with missing data are model-based 
approaches. Local least squares imputation as k-nearest 
neighbor imputation (KNNimpute) [2] and an estimation 
method based on Bayesian principal component analysis 
(BPCA) have been introduced [5].  
In this paper, a local least squares imputation is proposed, 
where a target gene that has missing values is represented 
as a linear combination of similar genes. A k-means 
clustering algorithm has been used to cluster the complete 
microarray matrix. Rather than using all available genes in 
the data, only the genes with high similarity with the target 
gene are used in the proposed method which has the 
smallest Euclidian distance between the target gene and 
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the centeroid of each cluster. The rest of the paper is 
organized as follows: 
Section 2 includes a description of a mathematical model 
of local least squares imputation based on regression 
model. Section 3, discusses the proposed k-means 
algorithm which is used in the clustering process. Section 
4, introduces the proposed PCA as a solution for the initial 
number of clusters parameter and the initial centeroid for 
each  of the clusters. Section 5, explains the proposed 
novel imputing algorithm based on the previous solutions. 
The results of numerical experiments are given in Section 
6. Section 7 concludes the paper. 
 

2. Local Least Squares Imputation 

A matrix  א ܩ  Թൈ denotes a gene expression data 
matrix with m genes and n experiments, and assume݉ ب
݊ . In the matrix ܩ  , a row ݃

் א  Թଵൈ  represents 
expressions of the ith gene for n experiments. In order to 
recover the total of q missing values in any locations of a 
target gene g, the k-nearest neighbor genes of g, 

݃௦
் א  Թଵൈ, 1  ݅  ݇, 

are found. In this process of finding the similar genes, the 
q components of each gene at the q locations of missing 
values in g are ignored. Then, based on these k-nearest 
neighbor genes, a matrix א ܣ  Թൈሺିሻ , a matrix 
ܤ א  Թൈ , and a vector  ݓ א  Թሺିሻൈଵ  are formed. The 
ith row vector ܽ

் of the matrix A consists of the ith nearest 
neighbor genes  ݃௦

் א  Թଵൈ , 1  ݅  ݇,  with their 
elements at the q missing locations of missing values of g 
excluded. Each column vector of the matrix B consists of 
the values of the jth location of the missing values (1 ≤ j ≤ 
q) of the k vectors ݃௦

் . The elements of the vector ݓ are 
the n − q elements of the gene vector ݃ whose missing 
items are deleted. After the matrices A and B and a vector 
w are formed, the least squares problem is formulated as 

min୶ԡATx െ wԡଶ,                                      (1) 

Then, the vector ݑ ൌ ൫ߙଵߙଶ ڮ ൯ߙ
்

of q missing values 
can be estimated as 

ݑ ൌ ݔ்ܤ ൌ  (2)                                 , ݓሻற்ܣሺ்ܤ

where ሺ்ܣሻற is the pseudo inverse of ்ܣ. 
For example, assume that the target gene g has two 
missing values in the 1st and the 10th positions among total 
10 experiments. If the missing value is to be estimated by 
the k similar genes, each element of the matrix A and B, 
and a vector w are constructed as 

ۉ

ۇ

݃ଵ
்

݃ଶ
்

ڭ
݃௦ೖ

் ی

ۊ ൌ

ۉ

ۇ

ଵߙ ଵݓ ଶݓ … ௦ݓ ଶߙ

ଵ,ଵܤ ଵ,ଵܣ ଵ,ଶܣ … ଵ,௦ܣ ଵ,ଶܤ

ڭ
,ଵܤ

ڭ
,ଵܣ

ڭ
,ଶܣ

ڭ
…

ڭ ڭ
,௦ܣ ی,ଶܤ

 ,ۊ

where ߙଵ and ߙଶ are the missing values and ݃௦భ
் , … , ݃௦ೖ

்  are 
the k genes that are most similar to g. The known elements 
of w can be represented by 

ݓ ଵܽଵݔ  ؆  ݔଶܽଶ  ڮ   ,ܽݔ
 
where ݔ are the coefficients of the linear combination, 
found from the   least squares formulation (1). And, the 
missing values in g can be estimated by 

ଵߙ ൌ ଵݔଵ,ଵܤ  ଶݔଶ,ଵܤ  ڮ   ,ݔ,ଵܤ
ଶߙ ൌ ଵݔଵ,ଶܤ  ଶݔଶ,ଶܤ  ڮ   ,ݔ,ଶܤ

where α1 and α2 are the first and the second missing values 
in the target gene. For estimating missing values of each 
gene, we need to build the matrices A and B and a vector 
w, and solve the least squares problem of  Eq. (1). 
 
3. K-Means Clustering 
 
K-means [7] is one of the simplest unsupervised learning 
algorithms that solve the well known clustering problem. 
The procedure follows a simple and easy way to classify a 
given data set through a certain number of clusters 
(assume k clusters) fixed a priori. The main idea is to 
define k centroids; one for each cluster. These centroids 
should be placed in an accurate way because different 
locations cause different results. As a result, the best 
choice is to place them as much as far away as possible 
from each other. The next step is to take each point 
belonging to a given data set and associate it with the 
nearest centroid. When no point is pending, the first step is 
completed and an early group page is done. At this point 
we need to re-calculate k new centroids as new centers of 
the clusters resulting from the previous step. After we have 
these k new centroids, a new binding has to be done 
between the same data set points and the nearest new 
centroid. A loop has been generated. As a result of this 
loop we may notice that the k centroids change their 
location step by step until no more changes are done. 
Finally, this algorithm aims at minimizing an objective 
function, in this case a squared error function. The 
objective function 

J ൌ ∑ ∑ ቛx୧
ሺ୨ሻ െ c୨ቛ

ଶ
୬
୧ୀଵ

୩
୨ୀଵ ,                        (3) 
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where ฮݔ
ሺሻ െ ܿฮ

ଶ
is a chosen distance measure between a 

data point ݔ
ሺሻ and  ܿ  the cluster centre , is an indicator of 

the distance of the n data points from their respective 
cluster centers. 
The algorithm is composed of the following steps: 

1- Place K points into the space represented by the 
objects that are being clustered. These points 
represent initial group centroids. 

2- Assign each object to the group that has the 
closest centroid. 

3- When all objects have been assigned, recalculate 
the positions of the K centroids. 

4- Repeat Steps 2 and 3 until the centroids are 
longer moving. This produces a separation of the 
objects into groups from which the metric to be 
minimized can be calculated. 

4. Principal Component Analysis 

Principal component analysis (PCA) is probably the most 
popular multivariate statistical technique and it is used by 
almost all scientific disciplines. It is also likely to be the 
oldest multivariate technique. In fact, its origin can be 
traced back to Pearson [14] or even Cauchy [7]. 
The modern instantiation was formalized by Hotelling [9] 
who also coined the term principal component. PCA 
analyzes a data table representing observations described 
by several dependent variables, which are, in general, 
inter-correlated. Its goal is to extract the important 
information from the data table and to express this 
information as a set of new orthogonal variables called 
principal components. PCA also represents the pattern of 
similarity of the observations and the variables by 
displaying them as points in maps [11][8]. 
The data table to be analyzed by PCA comprises I 
observations described by J variables and it is represented 
by the ܫ ൈ  , . Theݔ matrix X, whose generic element is ܬ
matrix X has rank L where ܮ  ݉݅݊ሼܫ,  .ሽܬ

The matrix X  has the following singular value 
decomposition [19][2]: 

ܺ ൌ ܲ∆்ܳ                                          (4) 

where P (Principal  direction) is the ܫ ൈ  matrix of left ܮ
singular vectors, Q (Principal  components) is the ܬ ൈ  ܮ
matrix of right singular vectors, and  is the diagonal 
matrix of singular values. Eq. (4) can also be rewritten as 

X ൌ ∑ δℓpℓqℓ
TL

ℓୀଵ                                      (5) 

with ℓ being the rank of X and δℓ , pℓ and qℓ being 
(respectively) the ℓ୲୦ singular value, left and right singular 

vectors of X. This shows that X can be reconstituted as a 
sum of L rank one matrices (i.e., the δℓpℓqℓ

T terms). The 
first of these matrices gives the best reconstitution of X by 
a rank one matrix, the sum of the first two matrices gives 
the best reconstitution of X with a rank two matrix, and so 
on, and, in general, the sum of the first M matrices gives 
the best reconstitution of  X with a matrix of rank M. 
The goals of PCA are to (a) extract the most important 
information from the data table, (b) compress the size of 
the data set by keeping only this important information, (c) 
simplify the description of the data set, and (d) analyze the 
structure of the observations and the variables. 
In order to achieve these goals, PCA computes new 
variables called principal components which are obtained 
as linear combinations of the original variables. 
The first principal component is required to have the 
largest possible variance. Therefore, this component will 
"explain" or "extract" the largest part of the inertia of the 
data table. The second component is computed under the 
constraint of being orthogonal to the first component and 
to have the largest possible inertia. The other components 
are computed likewise.  The values of these new variables 
for the observations are called factor scores, these factors 
scores can be interpreted geometrically as the projections 
of the observations onto the principal components. 
In PCA, the components are obtained from the singular 
value decomposition of the data table I. Specially, with 
X ൌ P∆QT, the I ൈ L  matrix of factor scores, denoted F is 
obtained as 

F ൌ P∆,                                        (6)  

The matrix Q gives the coefficients of the linear 
combinations used to compute the factors scores. This 
matrix can also be interpreted as a projection matrix 
because multiplying X by Q gives the values of the 
projections of the observations on the principal 
components. This can be shown by combining Eq.(4) and 
Eq.(6) as 

F ൌ P∆ ൌ P∆QQT ൌ XQ,                  (7) 

The components can also be represented geometrically by 
the rotation of the original axes. The matrix Q is also 
called a loading matrix. The matrix X can be interpreted as 
the product of the factors score matrix by the loading 
matrix as: 
 

X ൌ FQT with FTF ൌ ∆ଶ and QQT ൌ I,        (8) 
 
This decomposition is often called the bilinear 
decomposition of X . 
 
5. The proposed algorithm 
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In this section, a Local Least Squares imputation that 
depends on the Clustering model will be introduced. 
Clustering complete data sets into K clusters with K 
centroid per each clusters will also be discussed. Target 
gene that has missing values represented as a linear 
combination of similar genes. The similar genes are the 
clusters whose centroids have the smallest Euclidian 
distance to the target gene. 

5.1. Getting number of clusters 

Clustering algorithms are unsupervised learning processes 
i.e. users are usually required to set some parameters for 
these algorithms. These parameters vary from one 
algorithm to another, but most clustering algorithms 
require a parameter that either directly or indirectly 
specifies the number of clusters. This parameter is 
typically either k, the number of clusters to return, or some 
other parameter that indirectly controls the number of 
clusters to return, such as an error threshold. Setting these 
parameters requires either detailed prior knowledge of the 
data, or time-consuming trial and error. The latter case still 
requires that the user has sufficient domain knowledge to 
know what a good clustering “looks” like. However, if the 
data set is very large or is multidimensional, human 
verification could become difficult. It is necessary to have 
an algorithm that can efficiently determine a reasonable 
number of clusters to return from any clustering algorithm. 
The following proposed algorithm will identify the correct 
number of clusters to return from a clustering algorithm. 
The algorithm is composed of the following steps: 

 ܧ .1
ൈwill be the complete microarray matrix by 

removing each gene row with missing value. 
2. By Eq. (4) get  the eigengene  matrix  ∆ൈ  with 

ଵߪ  ଶߪ  ڮ  ߪ  0 . 

3. Compute ߩ௧ ൌ
∑ ఙೕ

మ
ೕసభ

∑ ఙ
మ

సభ
ݐ , ൌ 1, ڮ ,  ݍ

4. Choose the  eigengenes that contribute ߩ௧ to be 
about 70%-75% of the total expression level as 
the number of clusters K  .  

5.2. Getting initial centroids of clusters 

The k-means algorithm starts by initializing the K cluster 
centers. Two simple approaches to cluster center 
initialization are either to select the initial values 
randomly, or to choose the first K samples of the data 
points. However, testing different initial sets is considered 
impracticable criteria, especially for large number of 
clusters [14]. Therefore, different methods have been 
proposed in literature [5][8][4]. When random 
initialization is used, different runs of K-means typically 
produce different clusters groups and the resulting clusters 

are often poor. Another problem with the basic K-means 
algorithm given earlier is that empty clusters can be 
obtained. This paper proposes that principal components 
are actually the continuous solution of the cluster 
membership indicators in the K-means clustering method. 
The main basis of PCA-based dimension reduction is that 
PCA picks up the dimensions with largest variances Eq. 
(5). Mathematically, this is equivalent to finding the best 
low rank approximation of the data via the singular value 
decomposition Eq. (6). As a result, the first component is 
used as an index indicator to the K initial centroids. 

The algorithm is composed of the following steps: 

ܧ .1
ൈwill be the complete microarray matrix by 

removing each gene row with missing value. 
2. By Eq. (4) get ܲ, ∆  . 
3. Compute first component by  Eq.(6). 
4. Sort first component vector. 
5. Let the first K component indexes of ܧ be the 

first K initial centroids.  

5.3. Clustering  

K-means clustering algorithm, as shown in section 3, has 
been used as a clustering algorithm for our proposed 
imputation algorithm. After applying this algorithm, K of 
disjoint subsets ܣ, ݆ ൌ 1, ڮ , ݇ are obtained. Each cluster 
ݔ  is identified by its centroidܣ א  ࣬, ݆ ൌ 1, ڮ , ݇. 

 
5.4. Imputing.  

K-nearest neighbor method (KNNimpute) does not 
introduce an optimal and restricted method to find the 
nearest neighbor. Bayesian Principal  Component (BPCA), 
depends on a probabilistic model. This model requires 
certain statistical parameters that must be known before. 
Local Least Squares Imputation (LLSimpute), depends on 
K coherent genes that have large absolute values of 
Pearson correlation coefficients. This can be costly in 
calculations. This paper proposes Local Least Squares 
imputation. This method represents a target gene that has 
missing values as a linear combination of similar genes. 
The similar genes are the cluster whose centroid has the 
smallest Euclidian distance to the target gene.  
The algorithm is composed of the following steps: 

1. ܺൈ will be the original microarray matrix. 
2. ݃ଵൈ will be the target gene (with q missing 

elements). 
3. By using algorithm proposed in section 5.1 get K.
4. By using algorithm proposed in section  5.2 get K 
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centroids. 
5. By using algorithm proposed in section 5.3 get K 

clusters. 
6. Get the nearest cluster ܥൈ to the target gene. 

6.1. From  ܥൈ ݃݁ܣ ݐൈሺିሻ with columns 
corresponding to complete elements of ݃. 

6.2. From  ܥൈ ݃݁ݐ ൈܤ   with columns 
corresponding to missing elements of ݃. 

 ଵൈሺିሻ with columns corresponding toݓ .7
complete elements of ݃ . 

8. Solve Eq. 2 to get estimated q missing values of  .
9. Repeat steps from 2 to 8 until estimation of all 

missing genes.  

6. Results and Discussion 

Six microarray datasets were obtained for the purpose of 
comparison. The first data set was obtained from ߙ-factor 
block release that was studied for identification of cell-
cycle regulated genes in  Saccharomyces cerevisiae[19]. A 
complete data matrix of 4304 genes and 18 experiments 
(ALPHA) that does not have any missing value to assess 
missing value estimation methods. The second data set of 
a complete matrix of 4304 genes and 14 experiments 
(ELU) is based on an elutriation data set [19]. The 4304 
genes originally had no missing values in the ߙ -factor 
block release set and the elutriation data set. The third data 
set was from 784 cell cycle regulated genes, which were 
classified by Spellman et al. [19] into five classes, for the 
same 14 experiments as the second data set. The third data 
set consists of  2856 genes and 14 experiments (CYC-a). 
The fourth data set of 242 genes and 14 experiments 
(CYC-b). The fifth data set is from a study of response to 
environmental changes in yeast [6]. It contains 5431 genes 
and 13 experiments that have time-series of specific 
treatments (ENV). The sixth data set is the cDNA 
microarray data relevant to human colorectal cancer 
(CRC)[21]. This data set contains 758 genes and 205 
primary CRCs that include 127 non-metastatic primary 
CRCs, 54 metastatic primary CRCs to the liver and 24 
metastatic primary CRCs to distant organs exclusive of the 
liver, and 12 normal colonic epithelia (CRC). 
This is a challenging data set with multiple experiments 
with no time course relationships. The ALPHA, ELU, and 
CRC are the same data sets that were used in the study of 
BPCA [5] and LLsimpute[8]. 
The performance of the missing value estimation is 
evaluated by normalized root mean squared 
error(NRMSE) : 

 
ܧܵܯܴܰ ൌ  ඥ݉݁ܽ݊ሾሺݕ௨௦௦ െ ௦ሻଶሿݕ ௦ሿൗݕሾ݀ݐݏ ,         (9) 
 
Where ݕ௨௦௦  and ݕ௦  are vectores whose elements are 
the estimated values and the known answer values, 
respectively, for all missing entries. 
The similarity between the target genes and the closest 
centroid is defined by the reciprocation of the Euclidian 
distance calculated for non-missing components. 
 
 6.1. Experimental results 

In the experiments, we randomly removed some 
percentage, i.e. missing rate, of expression level to create 
missing values  (between 1 and 20% of the data were 
deleted). Each method was then used to recover the 
introduced missing values for each data set, and the 
estimated values were compared to those in the original 
data set. 
From the plots of NRMSE values (Fig. 1) achieved by all 
five methods on six datasets, we can see that KNNimpute 
method always performs the worst and ClustLLsimpute 
always performs the best. For all the other three methods, 
they perform equally well on env-dataset and crc-dataset 
but ClustLLsimpute performs better than the other three. 
In fact, from Figures 1(b) and 1(e), it is hard to tell which 
one of them performs better than the other three except 
ClustLLsimpute which is outperform. All other three 
methods again perform equally well on elu-, cyc-a-, and 
alpha-datasets when the missing rate is small, i.e. less than 
5% (cf. Figures 1(a), 1(d), and 3(f)) and also 
ClustLLsimpute is outperform all of them. However, the 
performances differ when the missing rate is large. Our 
method ClustLLsimpute performs very close to other three 
as in Figures 1(f)  with 20% rate, though still a little better. 
From these results, it is deduced that the  ClustLLsimpute 
method performs better than both BPCA and LLSimpute, 
the two most recent imputation methods [3][25]. 

7. Conclusions 

This paper proposes a novel version of Local Least 
Squares Imputation (ClustLLsimpute) method to estimate 
the missing values in microarray data. In ClustLLsimpute, 
the complete dataset is clustered by using a novel 
clustering k-nearest clustering method to obtain k-clusters 
and its centroids. The number of nearest neighbors for 
every target gene is automatically determined as the 
cluster with the nearest centroid, rather than pre specified 
in most existing imputation methods. The experimental 
results on six real microarray datasets show that 
ClustLLsimpute outperforms the four most well known 
recent imputation methods BPCA, LLSimpute, , 
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ILLSimpute and KNNimpute, on all datasets with 
simulated missing values. 
 

 
 

 
Fig. 1 NRMSE comparison for ILLsimpute, BPCA, LLSimpute, 
KNNimpute and ClustLLsimpute on six datasets with various percent of 

missing values.  
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