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Abstract 
Despite the extensive use of the agent technology in the Supply 
Chain Management field, its integration with Advanced Planning 
and Scheduling (APS) tools still represents a promising field with 
several open research questions. Specifically, the literature falls 
short in providing an integrated framework to analyze, specify, 
design and implement simulation experiments covering the 
whole simulation cycle. Thus, this paper proposes an agent-based 
strategy to convert the ‘analysis’ models into ‘specification’ and 
‘design’ models combining two existing methodologies proposed 
in the literature. The first one is a recent and unique approach 
dedicated to the ‘analysis’ of agent-based APS systems. The 
second one is a well-established methodological framework to 
‘specify’ and ‘design’ agent-based supply chain systems. The 
proposed conversion strategy is original and is the first one 
allowing simulation analysts to integrate the whole simulation 
development process in the domain of distributed APS. 
Keywords: Advanced Planning and Scheduling (APS), Agent-
Based Simulation, Methodological Framework, Analysis, 
Specification and Design, FAMASS. 

1. Introduction 

Advanced Planning and Scheduling (APS) systems 
comprise a set of techniques for the supply chain planning 
over short, intermediate, and long-term time periods. They 
employ advanced mathematical algorithms or logic to 
perform optimization or simulation on finite capacity 
scheduling, sourcing, capital planning, resource planning, 
forecasting, demand management, and other. APS 
simultaneously considers a range of constraints and 
business rules to provide real-time planning and 

scheduling, decision support, available-to-promise, and 
capable-to-promise capabilities. In addition, these systems 
often generate and evaluate multiple ‘what-if’ scenarios 
[1]. 

The use of these sophisticated optimization approaches in 
complex real-life supply chain situations has recently 
become possible mainly due to the increased computing 
power of companies [2]. 

Despite the contribution of APS systems to the supply 
chain planning domain, some criticism exists in this area 
[3]. Traditional APSs are basically monolithic systems that 
cannot model and take into account the complex everyday 
interactions and information exchanges between partners. 
For example, APS systems are deficient in handling 
sophisticated interaction mechanisms that allow the 
implementation of delegation and coordination 
approaches, which are methodologies based on 
negotiation, and cooperation strategies [4, 5]. As a result, 
the focus on relationships in a multi-tier environment has 
only recently been claimed by the APS community [6]. 

To cope with this problem, recent advances in supply 
chain planning have arisen in the area of agent technology. 
This technology is able to capture the distributed nature of 
supply chain entities (e.g. customers, manufacturers, 
logistics operators etc.) and mimic their business 
behaviours (e.g. making advanced production decisions 
and negotiating with other supply chain members), thus 
supporting their collaborative planning process. Because 
of these abilities, among several others described in the 
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literature, agent-based supply chain systems have great 
potential for simulating complex and realistic scenarios [7, 
4; 9, 10, 11]. Distributed APS systems employing agent-
based technology are referred to in this paper as distributed 
APS systems [12]. 

Distributed APS systems are normally developed through 
the use of modelling and simulation frameworks and, 
usually, these frameworks provide principles, steps, 
methods and tools for creating a model. They help people 
understand the simulation problem to be modelled and 
translate it into a computing model normally used in 
simulation experiments in the supply chain planning area. 

In order to create such models, these frameworks guide 
simulation modellers through one or several development 
steps [13]. The first modelling step is analysis, where one 
defines an abstract description of the modelled supply 
chain planning system containing functional and non-
functional requirements. Next, during specification, the 
information derived from the analysis is translated into a 
formal model. As the analysis phase does not necessarily 
allow obtaining a formal model, the specification 
examines the analysis requirements and builds a model 
based on a formal approach. After, in the design phase one 
creates a data-processing model that describes the 
specification model in more detail. In the case of an agent-
based system, design models are close to how agents 
operate. Finally, during implementation, the design model 
is translated into a specific software platform or it is 
programmed [13]. 

The problem behind these modelling frameworks is that 
normally simulation systems are implemented as directed 
by pre-stated requirements with little explicit focus on 
system analysis, specification, design and implementation 
in an integrated manner [14]. According to a recent 
literature review [15], to the best of our knowledge there 
are no integrated modelling approaches covering the whole 
developed process in this area. Moreover, there is one 
unique ‘analysis’ modelling, the FAMASS (FORAC 
Architecture for Modelling Agent-based Simulations for 
Supply chain planning) framework, dedicated to the 
distributed APS domain, and which was proposed by us 
recently [21, 22, 23]. 

Despite its contribution to the literature, FAMASS is 
limited to the identification and mapping of functional 
requirements of distributed APS simulations, i.e. the 
‘analysis’ phase only. If the simulation analysts desire to 
go further in the modelling process, they have to employ 
another ‘specification’ and ‘design’ methodology. This can 
be laborious, since analysts need to thoroughly master 
FAMASS and another methodology. 

In order to facilitate FAMASS analysts in converting their 
analysis models into specification and design models, this 
paper proposes an agent-based deployment strategy. This 
strategy enlarges the FAMASS scope to the other 
modelling phases, thus covering the entire modelling 
cycle. By doing so, analysis can go smoother and quicker 
through this cycle. 

To do so, we were inspired by the specification and design 
principles of the Labarthe et al. [9] framework, a recent 
and largely cited development in the field of 
methodological agent-oriented framework for supply chain 
management simulation. Since the focus of this framework 
is on supply chain management as a general concept (and 
not specialized in APS systems), we had to perform some 
minor adaptations to this approach. Despite these 
adaptations, the main ideas of Labarthe et al. [9] are 
explicitly considered in the deployment strategy. The 
Labarthe et al. framework is adopted here because it 
covers the specification and design phases properly at the 
business and agent levels, just as FAMASS does, which 
facilitates the deployment process. 

This deployment strategy demonstrates that the analysis 
phase of FAMASS can be integrated with other existing 
approaches specialized in specification and design 
modelling. Furthermore, it allows us to avoid the research 
effort needed to develop a totally new specification and 
design methodology for the domain, although it would be 
suitable (and even desirable) for future research initiatives. 

This paper is organized as follows: a literature review in 
modelling and simulation for distributed APS systems is 
presented in Section 2. Section 3 introduces the FAMASS 
approach, while Section 4 summarizes the Labarthe et al. 
[9] framework. Next, the deployment process is explained 
in Section 5. Finally, Section 6 outlines some final 
remarks and suggests future work. 

2. Modelling and Simulation Frameworks for 
distributed APS 

The use of agent technology in Supply Chain Management 
is a fruitful field. From the inaugural work of Fox et al. 
[16] until today, a large variety of works have appeared to 
propose different ways of encapsulating supply chain 
entities and performing simulation experiments. 

Two types of modelling approaches can be identified in 
the literature. The first type proposes generic approaches 
for modelling agent-based supply chain systems in general 
terms, while the second type proposes a modelling 
framework that specifically takes into consideration 
Advanced Planning and Scheduling (APS) tools when 
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planning, i.e. the incorporate optimization procedures or 
finite capacity planning models when performing supply 
chain planning. APS systems emerged in the last decade to 
provide a suite of planning and scheduling modules for the 
firm’s internal supply chain, from the raw materials source 
to the consumers and covering decisions ranging from the 
strategic to the operational level [17]. 

In the first type of approach (general agent-based models), 
examples of relevant contributions include Labarthe et al. 
[9], Van der Zee, and Van der Vorst [18], MaMA-S [13]. 
One of the most cited works in the domain is Labarthe et 
al. [9], which propose a methodological framework for 
modelling customer-centric supply chains in the context of 
mass customization. They define a conceptual model for 
supply chain modelling and show how the multi-agent 
system can be implemented using predefined agent 
platforms. Van der Zee and Van der Vorst [18] propose an 
agent framework derived from an object-oriented approach 
to explicitly model control structures of supply chains. 
MaMA-S [13] provides a multi-agent methodology for a 
distributed industrial system, which is divided into five 
main phases and two support phases. The authors propose 
formal methods for the specification, design and 
implementation phases, but the analysis phase is not 
tackled by them. 

This second type of modelling approach provides more 
sophisticated models of supply chains by incorporating 
Advanced Planning and Scheduling routines [12]. These 
approaches, sometimes called d-APS systems (for 
distributed APS), are composed of semi-autonomous APS 
tools, each dedicated to a specialized planning area and 
that can act together in a collaborative manner employing 
sophisticated interaction schemas. 

Examples of this kind of work are Egri et al. [19], 
Lendermann et al. [20] and Swaminathan et al. [11]. Egri 
et al. [19] is a Gaia-based approach for modelling 
advanced distributed supply chain planning for mass 
customization. They develop a model for representing 
roles and interactions of agents based on the SCOR 
(Supply-Chain Operations Reference) model. Lendermann 
et al. [20] developed an approach to couple discrete-event 
simulation and APS for collaborative supply chain 
optimization, based on the HLA (High Level Architecture) 
technology for distributed simulation synchronization. 
Swaminathan et al. [11] provide a supply chain modelling 
framework containing a library of modular and reusable 
software components, which represents different kinds of 
supply chain agents, their constituent control elements and 
their interaction protocols. 

These simulation and modelling approaches have greatly 
contributed to the domain, however, in spite of these 

advances, there exists a relevant gap in this field related to 
the initial developing step of such simulation systems, the 
analysis phase [12]. Most of the researched works in the 
literature suggest approaches for specification and design, 
and some for implementation, but the analysis phase is not 
explicitly treated [12, 13, 14, 21]. Most of these works 
suppose that the analysis phase furnishes the necessary 
information and concentrate their discussions on further 
phases, mainly specification and design. The first work 
dedicated to the analysis of distributed APS systems using 
the agent-based paradigm is FAMASS [21]. Despite its 
contribution to the agent-based modelling of distributed 
APS systems, FAMASS does not cover the specification 
and design phases of the development process. This is an 
interesting research gap in the literature. Section 3 details 
the FAMASS approach for the analysis phase, while 
Section 4 presents a frequently cited method for 
specification and design of agent-based supply chain 
systems from Labarthe et al. [9]. Next, Section 5 combines 
these two approaches in order to create a deployment 
strategy to translate analysis models into specification and 
design. 

3. The FAMASS Approach 

The FAMASS (FORAC Architecture for Modelling 
Agent-based Simulation for Supply chain planning) is the 
first and unique modelling approach dedicated to the 
analysis phase of distributed APS simulations [21, 22, 23]. 
This approach was recently tested in Santa-Eulalia et al. 
[24]. 

It is organized into two abstraction levels: Supply 
chain: refers to the supply chain planning problem, i.e. the 
business viewpoint; Agent: the supply chain domain 
problem is translated into an agent-based view (Figure 1). 

At these two abstraction levels, four modelling approaches 
are proposed, namely the General Problem Analysis 
(GPA), the Distributed Planning Analysis (DPA), the 
Social Agent Organization Analysis (SAOA) and the 
Individual Agent Organization Analysis (IAOA), as 
schematized in Fig. 1.  
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Fig. 1: Four main modelling approaches proposed for analysis of supply 
chain and agent levels [23]. 
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These four modelling approaches are explained in the 
following subsections. 

3.1 General Problem Analysis (GPA) 

GPA is the first modelling effort where simulation 
analysts have to think about the simulation problems. The 
GPA is based on Santa-Eulalia et al. [12], in which a 
discussion about the simulation objective and the problem 
structure is provided. 

Basically, the GPA proposes that the simulation 
analysis has to take two main aspects into consideration: 
general aspects and experimental aspects. General aspects 
represent macro definitions of the simulation problem, 
including the object and environment to be simulated, the 
simulation questions, hypotheses and objectives. 
Experimental aspects are related to the design of 
experiments, where one defines the factors, uncertainties 
and key performance indicators of the simulation. 

These elements refer to the general definition of the 
simulation problem, according to what is desired to be 
studied, and it will guide the whole development process. 

This general definition is then organized through some 
formalisms from SysML (Systems Modeling Language) 
[25]. In this case, some Requirements Diagrams help the 
analysts organize the GPA. An example of how this can be 
done is provided in [23]. 

3.2 Distributed Planning Analysis (DPA) 

The DPA identifies what the desired supply chain 
planning entities are, as well as their roles. These entities 
are identified according to their mission in the supply chain 
and their planning functions at different decision levels. 

To identify the main supply chain planning entities, 
FAMASS employs the concepts of supply chain integration 
proposed by Shapiro [26]. The author states that supply 
chain management refers to integrated planning relying on 
three basic dimensions: i) Intertemporal dimension: refers 
to different decision levels, i.e. strategic, tactical and 
operational decision levels; ii) Functional dimension: 
stands for different planning functions in a supply chain, 
which can be related to procurement, manufacturing, 
distribution and sales; iii) Spatial dimension: refers to the 
fact that supply chains are composed of geographically 
dispersed units of analysis. 

This gives rise to the notion of a Supply Chain Block. A 
Supply Chain Block can be defined as a supply chain 
planning entity, which is a functional unit capable of: 
performing part of the supply chain planning decisions or 
their totality; or performing the execution of the supply 
chain decisions (part of them or their totality). These 
entities have a certain degree of autonomy and are able to 
interact with each other. Possible Supply Chain Blocks for 
covering the integrated supply chain planning dimensions 

are proposed in the framework of Fig. 2, which is called the 
supply chain planning cube. 
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Fig. 2: Supply Chain Planning Cube [23]. 

A vertical slice of the supply chain planning cube for 
one spatial unit of analysis (e.g. facilities) is similar to the 
planning matrix proposed by Meyr and Stadtler [27], 
except for the execution level. The supply chain planning 
cube is an evolution of the planning matrix, due to the fact 
that it represents the possibility of collaboration among 
different traditional APS systems. It also includes 
execution entities. 

Based on the supply chain cube, one has to perform 
requirements determination for the simulation aspects. This 
cube serves as a metamodel to help simulation analysts 
identify their simulation requirements. For example, the 
analysts decide which kind of Supply Chain Blocks will be 
needed in their simulation experiments, providing the basic 
architectural aspects of the simulation system. Then, their 
requirements are organized through UML-based use cases 
and requirements diagrams from SyML. An example of the 
DPA is provided in Santa-Eulalia et al. [23]. 

3.3 Social Agent Organization Analysis (SAOA) 

So far, the concept of Supply Chain Block has been 
used to represent entities responsible for part of the supply 
chain planning. Together they compose a population of 
entities interacting with each other, having a collective co-
existence within the planning system. When these entities 
incorporate attitudes, orientations and behaviours 
comprising the interests, needs or intentions of other 
Supply Chain Blocks, they can be seen as social entities. 
They can exhibit complex actions that take into account the 
collectivity. A way to represent social entities is to model 
them as agents, thus creating multi-agent societies. 

The general logic indicated that a Supply Chain Block 
can be directly translated into agents by adding agent 
abilities to them. This is based on the agentification 
definition of Shen et al. [28], who explain that the 
agentification process can be functional-based (i.e. white 
Supply Chain Block) or physical-based (i.e. gray Supply 
Chain Block). 
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However, in some situations a Supply Chain Block can 
be transformed into more than one agent, for example when 
specialization is required, in which case a planning agent 
can be specialized according to certain generic 
responsibility orientations, such as products, processors, 
processes or projects, to obtain faster or more precise 
responses for certain given situations. In other situations, 
apart from agents proceeding from the supply chain 
planning cube, different intermediary agents can be created 
to perform activities related to, e.g. the coordination of the 
agents’ society. In addition, the agentification process can 
also include the representation of information sources, 
interfaces and other services. 

The importance of this discussion relies on the notion 
that agentification is the basis for two mutually dependent 
aspects in agent-based systems which define the metamodel 
for the SAOA: 

• Social structures: represent the agent system 
architecture [24] characterizing the blueprint of 
relationships, giving a high level view of how groups 
solve problems and the role each agent plays within 
the structure. There are diverse types of social 
structures, such as hierarchical, federated and 
autonomous. 

• Social protocols: are agents’ abilities concerning social 
aspects, normally related to cooperation principles (i.e. 
agents have to cooperate in order to plan the entire 
supply chain). Diverse abilities can be considered, like 
communication, grouping and multiplication, 
coordination, collaboration by sharing tasks and 
resources and conflict resolution through negotiation 
and arbitration. 

Different social structures and protocols are provided in 
Santa-Eulalia [22]. 

Similar to the DPA, these two aspects of the SAOA 
serve as a metamodel to help simulation analysis identify 
their requirements for the simulation model. For example, 
different social protocols can be tested in the simulation. 
Then, requirements can be organized through agent-based 
use cases from AUML (Agent Unified Modelling 
Language) and requirements diagrams from SysML. An 
example of the SAOA is provided in Santa-Eulalia et al. 
[23]. 

3.4 Individual Agent Organization Analysis (IAOA) 

As mentioned by Ferber [29], the task of assigning roles 
to every individual agent is normally regarded as the last 
phase in constructing an organization. The logic is that as 
soon as one knows what the functions to be assigned are, 
one defines individual specializations. These local 
assignments influence social protocols functioning inside 
their respective social structures. In addition, it also 
influences the local performance of the supply chain 
planning entities. This is the main idea of the IAOA. 

At the individual level, agents can be organized 
according to different internal architectures but there is 
little consensus on how to conceive the internal 
architectures of agents [30] in the literature. In order to 
cope with this, the metamodel for the IAOA proposes that 
whatever the state of mind of an agent is (cognitive, 
reactive or hybrid), and whatever internal architecture an 
agent employs, an agent can be described simply according 
to its ‘abilities’. This is the central point when performing 
simulation. An ‘ability’ can be defined as the quality of 
being able to perform an action, or facilitate the action’s 
accomplishment. ‘Abilities’ allow for the implementation 
of actions and the determination of the system’s behaviour, 
as well as the determination of its related performance. 

Based on this notion, the metamodel defines two 
elements:  

• The Response Space: stands for a collection of general 
abilities available for the agents, including very simple 
reactive abilities or sophisticated cognitive ones. For 
example, one agent can have a simple ability to 
monitor the inventory levels of the supply chain, or a 
complex ability to perform production planning 
employing an optimization method. 

• Capacity to Produce an Adapted Response: represents 
the aptitude to choose which abilities have to be 
transformed into actions at a given time to respond to a 
given situation. This capacity can vary from 
elementary to complex. The simplest possible capacity 
is related to a reactive ‘if-then’ mechanism, where no 
cognition is necessary. For example, if the inventory 
level drops to a given threshold, the agent uses its 
procurement ability to start a procurement action. As 
the agent becomes more intelligent, more complex 
responses can be made for some given situations. For 
example, the linear “if-then” logic can be substituted 
by more complex approaches based on action 
optimization and learning. 

Based on these two elements of the metamodel, one can 
carry out requirements determination for the simulation 
model, selecting the desired requirements in terms of 
agents’ abilities. Similar to the SAOA, the IAOA’s 
requirements are organized through agent-based use cases 
from AUML and requirements diagrams from SysML [23]. 

FAMASS is detailed in Santa-Eulalia et al. [21, 22, 23]. 
An application of this approach is presented in Santa-
Eulalia et al. [24]. 

4. Labarthe et al.’s Methodological 
Framework 

The Labarthe et al. [9] framework is schematized in Fig. 3 
and is briefly described afterwards. 
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Fig. 3: Summarizing the Labarthes et al. [9] framework. 

The authors propose the modelling steps indicated in Fig. 
3. Their contribution corresponds to two abstraction levels: 
conceptual modelling and operational modelling. 
Conceptual modelling is performed in two steps, the 
Domain Model and the Conceptual Agent Model. 

4.1 Domain Model (DM) 

The Domain Model (DM) creates an abstraction of the 
supply chain. Inspired from the NetMAN approach [31, 
32], Labarthe et al. [9] create two sub-models: a Structural 
Model and a Dynamic Model. 

The Structural Model, which is based on responsibility 
networks [33], defines the structure of the supply chain, 
i.e. its ‘actors’ and their related responsibilities, and it also 
depicts the material flows among all ‘actors’. The 
Dynamic Model complements the Structural Model by 
defining the behaviour of each ‘actor’ and its related 
interaction modes. 

4.2 Conceptual Agent Model (CAM) 

The Conceptual Agent Model (CAM) remodels the 
Domain Model guided by the agentification process. From 
the Structural and Dynamic models, a unique agent model 
is created. A Conceptual Agent Model specifies the 
‘agents’, the ‘objects’ transacted between them and the 
nature of the agent’s interactions (‘physical interactions’ 
and ‘informational interactions’). In this case, each ‘actor’ 
specified in the Structural Model produces a specific 
agent. Also, any activity of an actor generates a specific 
agent in close interaction with the agent associated to the 
actor concerned, which is regrouped in the same partition. 
In addition, any exchange of information from the 
Dynamic Model generates a message-based informational 
interaction; and any material flow from the dynamic model 
leads to a physical type interaction.  

After, at the Operational Level, Labarthe et al. [9] 
proposes the Operational Agent Model (OAM). 

4.3 Operational Agent Model (OAM) 

The Operational Agent Model (OAM) is based on the 
Conceptual Agent Model, and it aims to build a computer 
model of the studied supply chain which will be later 
implemented on a simulation platform. First, the 
Operational Agent models the software architecture (at the 
social level). Next, it models the internal agent architecture 
(individual level), dealing with knowledge, behaviours and 
interactions among agents. 

After creating the Domain Model, the Conceptual Agent 
Model and the Operational Agent Model, a Multi-Agent 
System is implemented at the Exploitation level and a set 
of Experimental Plans supports the realization of 
simulation experiments (the black modelling approaches 
shown in Fig. 3). The author illustrated the Exploitation 
level though the implementation of a case study in a 
simulation environment. 

This is only a summarized review of Labarthe et al. [9]’s 
work. For further details about this framework and its 
applications, the reader is referred to Labarthe et al. [9, 35, 
36] and Labarthe [34]. 

5. The Deployment Process 

As explained in the introduction, the original framework of 
Labarthe et al. [9] had to be slightly adapted to be suitable 
to the distributed APS domain. 

The first adaptation occurs at the Domain Modelling. The 
main reason for not strictly employing the Labarthe et al. 
[9] Domain Model is because it is based on the 
responsibility network [33], which uses the definition of 
centre, i.e. a business entity – a decisional one – linked at 
the physical level by material flow. Centres do not 
correspond exactly to our semi-autonomous units, the 
Supply Chain Blocks (defined in subsection 3.2), which 
are based on the supply chain cube. We adapted the 
Labarthe et al. [9] model and thus proposed a modelling 
approach where the ‘centres’ are substituted by Supply 
Chain Blocks. 

Another relevant difference refers to the fact that we 
separate the Operating System (i.e. the Execution layer) 
and the Decision System (i.e. the Strategic, Tactical and 
Operational layers) in the Domain Model, which is not 
done in the Labarthe et al. [9] Domain Model. They 
distinguish these two layers later, in the Operational Agent 
Model. We decided to separate them earlier because both 
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systems have to be identified in regard to the supply chain 
cube introduced in subsection 3.2. If we did not consider 
entities of the Operating System at this step, the Domain 
Model would be incomplete for a distributed APS, 
according to the definition of the supply chain cube. 
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Fig. 4: Deploying process. 

Fig. 4 depicts the general idea of the deployment process. 
From the analysis phase, the Distributed Planning Analysis 
models are the basis for the creation of the Domain Model. 
The Domain Model represents the supply chain under 
study and how advanced planning decisions are 
articulated. Next, the Conceptual Agent Model is naturally 
created from the Domain Model, but the Social Agent 
Organization Analysis is also used as an important 
reference. The Social Agent Organization Analysis 
provides the Social Structures for the Conceptual Agent 
Model and it reflects the agentification process used 
during the Social Agent Organization Analysis. Finally, 
the Operational Agent Model is created from the 
Conceptual Agent Model. However, relevant information 
about social protocols requirements comes from the Social 
Agent Organization Analysis, while requirements 
concerning the agents’ abilities come from the Internal 
Agent Organization Analysis. 

It is interesting to note, in Fig. 4, that the Domain Model 
and Conceptual Agent Model roughly correspond to the 
specification phase, while the Operational Agent Model 
can be considered equivalent to the design phase. The 
Domain Model and Conceptual Agent Model are the first 
formal models to describe the supply chain and the agent 
domain. The Operational Agent Model is closely related to 
how agents operate. 

To sum up, FAMASS proposes a set of abstract notions 
for distributed APS systems, while Labarthe et al. [9] 
provide a formal and detailed description of how the 
system should work. 

The following subsection discusses the Domain Model 
generation. 

5.1 Domain Model (DM) 

The objective of the Domain Model is to identify what is 
to be modelled in the supply chain. As seen in Fig. 4, the 
Distributed Problem Analysis (DPA) can be translated 
directly into the Domain Model. 

Table 1 and Table 2 provide a translation strategy to create 
FAMASS Structural and Dynamic Models based on 
Labarthe et al. [9]. 

Table 1: Structural Model. 
Element Labarthe et al. FAMASS Counterpart 

Central 
elements 

Main element: a network of 
Centres [33] (roles and 
responsibilities) and their 
interactions. 
 
Roles: Processor, producer, 
assembler, fulfiller, distributor, 
retailer, transporters, 
customer. Roles define the 
nature of the responsibility 
set. 
 

Responsibilities: examples, 
packing, grouping, sales, etc. 

 
Organizational level: supply 
chain, enterprise, business 
unit, cells, resources. 

Main element: a network of 
Supply Chain Blocks and their 
interactions (interactions are 
simple representations of Supply 
Chain Block’s relations). A 
Supply Chain Block is used 
instead of centres. 
 
Roles: From the “spatial” axis of 
the supply chain cube 
(subsection 3.2), we identify the 
Supply Chain Blocks and their 
roles: vendors, facilities, clients 
and consumers. 
 
Responsibilities: one can 
identify responsibilities from the 
‘functional’ axis of the supply 
chain cube (subsection 3.2): 
procurement, manufacturing, 
distribution and sales. 
 

Organizational levels: strategic, 
tactic, operational, execution for 
vendors, facilities, clients and 
consumers (i.e., the 
intertemporal axis). 

Modelling 
formalism 

Responsibility networks of 
Montreuil and Lefrançois [33]. 

Class diagrams and class tables 
(from AUML – Agent Unified 
Modelling Language). The 
concept is the same as for 
responsibility network, but it is 
represented using AUML 
formalisms. Centres are classes; 
roles are roles in each class; 
responsibilities are operations in 
each class; organizational levels 
are stereotypes of the classes; 
business processes are 
operations in each class. 

Modelling 
process 

Identify decision elements of 
the supply chain and the 
physical interactions among 
them. 

We identify the elements from 
the execution and decision 
systems and we add only the 
physical interactions. 
Informational interactions are 
added in the dynamic model 
(later on in the modelling 
process). 

 
 
 
 
 
 
 



IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 

 
 

14 

Table 2: Dynamic Model. 
Element Labarthe et al. FAMASS Counterpart 

Central 
elements 

Describes (in time) the 
system behaviour and 
the elements that 
compose it. Uses the 
responsibility network to 
recognize [33] the 
coordination modes by 
identifying the physical 
and informational 
relations used according 
to the environmental 
stimulus. 

Describes the same 
elements, but with the 
possibility to add more 
information based on 
different experimental 
definitions, i.e. different 
configurations of the Supply 
Chain Blocks, and different 
performance indicators and 
uncertainties. 

Modelling 
formalism 

NetMan [31, 32] 
approach plus a 
representation of the 
decoupling point position.  
The decoupling point 
position is mentioned 
here because it is an 
important issue in the 
Labarthe et al. [9] 
framework. 

Class diagrams and class 
tables (AUML). All flows are 
represented by arrows. The 
decoupling point is 
represented in the class 
name. Centre models are 
represented by arrows as 
well. Stock holding (raw 
material, work-in-process or 
final products) is 
represented in the 
operations of each class. 

Modelling 
process 

Apart from the physical 
flow identified previously, 
the modelling process 
describes the 
informational flow 
exchanged according to 
the dynamics of the 
environment. 
Four informational flow 
types for coordination are 
identified: i) needs 
expression; ii) offers 
expression; iii) 
information about 
coordination; and iv) 
information sharing by 
models exchanges. In 
addition, the decoupling 
point is positioned and 
inventories are mapped 
(raw material, work-in-
process and final 
product). 
It identifies two models 
(for models exchange): 
the network model and 
the centre model. 

The same flows are 
identified, as well as 
inventory positions and 
decoupling point position. 
They are described in the 
class tables. 

 
The most important difference between Labarthe et al. [9] 
and FAMASS is the use of centre for the former and the 
use of Supply Chain Block for the latter. Supply Chain 
Block is used instead of centres in FAMASS because 
decision entities are central elements. Labarthe [34, p.119] 
explains that a centre represents a decision process, but 
centre definitions are closely associated to physical entities 
of the execution system, i.e. there is a direct relation 
between a centre and an entity of the execution system. 
Later in the Labarthe et al. [9] modelling process, the 
decision system is introduced more formally in the 
Operational Agent Model. We separate the decision 
system from the execution system in the Domain Model, 
since we know that they are relevant for experimental 

definitions in distributed APS systems. Another difference 
is related to the fact that we employ a unique modelling 
formalism based on an AUML approach, coherent with the 
analysis phase of FAMASS, which employs only UML-
inspired formalisms.  

The next sub-section transforms the Domain Model into a 
Conceptual Agent Model. 

5.2 Conceptual Agent Model (CAM) 

The Conceptual Agent Model represents the agentification 
process of the Labarthe et al. [9] approach. The 
agentification process defines the agent society based on 
the Domain Model, i.e. which agents are created from the 
centres (in our case, Supply Chain Block) and how they 
are organized. Labarthe et al. [9] propose rules for creating 
agents (i.e., each centre becomes an actor-agent and each 
centre activity becomes an activity-agent). As discussed 
before, FAMASS converts each Supply Chain Block into 
an agent. It also verifies whether some agents are 
extinguished (e.g. merged with another agent) or whether 
new agents are introduced (e.g. a mediator). This 
information is obtained during the Social Agent 
Organization Analysis (SAOA). 

As indicated in Fig. 4, the Conceptual Agent Model is 
generated from the Domain Model and the SAOA (in this 
case, the social structures). Using Labarthe et al. [9] rules, 
the Domain Model provides the basic classes’ definition 
and, using the SAOA, it can be verified if new agent 
classes are derived from the Domain Model and if 
different social structures have to be tested and considered 
in the Conceptual Agent Model. Social Protocols from 
SAOA are not used in Conceptual Agent Modelling. 

The Strategy for creating a Conceptual Agent Model is 
shown in Table 3. 
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Table 3: Conceptual Agent Models. 
Element Labarthe et al. FAMASS Counterpart 

Central 
elements 

Actor-agent: centre. 
 
Activity-agent: represents a 
process of transformation, 
distribution, or stock keeping. 
 
Object: products. 
 
Informational interaction: 
same as in Domain Model. 
 
Physical interaction: same as 
in Domain Model. 

Actor-agent: agents representing an 
organizational unit of the supply chain 
(i.e. vendors, facilities, clients or 
customers), related to the ‘spatial’ 
axis. Actor-agents group several other 
agents, the activity-agents. 
 
Activity-agent: agents from the 
decision system, representing the 
processes of procurement, 
manufacturing distribution and sales. 
These agents are at three different 
decision levels and they are related to 
the ‘functional’ axis. 
 
Objects: defined products. This is the 
first time products are specified. 
 
Information interactions: they come 
from the Domain Model. 
 
Physical Interactions: they come 
from the Domain Model. 

Modelling 
formalism 

A graphical modelling 
formalism [34] that models the 
two types of agents and their 
interactions. The CAM model 
is derived from the DM model. 

Adapted class diagrams, tables and 
package diagrams. The adaptation of 
the class diagrams refers to the 
insertion of objects (products), 
represented by simple square boxes in 
the link between two classes. 

Modelling 
process 

1. From centre to actor-
agent: each centre creates an 
actor-agent. 
 
2. Physical interactions 
between actor-agents: 
physical flow is specified by an 
arrow linking agents and 
indicating their respective 
exchanged objects. 
 
3. Informational interactions 
between actor-agents: similar 
to 2, but for information flow. 
 
4. Organizational frontiers 
definition: establishes the 
organization frontiers for the 
actor-agents and places the 
physical flows between the 
organizations. 
 
5. Definition of the activity-
agents: each activity of a 
centre is transformed into an 
activity-agent. 
 
6. Physical interactions 
between activity-agents: 
specify the physical flow 
between the activity-agents 
and their related objects 
exchanged. 
 
7. Informational interactions 
between activity-agents: 
same as 6, plus the interaction 
between actor-agents and 
activity-agents. 

Similar process, with the following 
differences: 
- Actor-agents and activity-agents: in 

the classes, use role definitions to 
indicate if it is an actor-agent or an 
activity-agent; 

- Interactions: links between classes. 

 
It is important to note that an actor-agent coordinates a 
population of other activity-agents in the Labarthe et al. 
[9] approach. In the case of FAMASS, we decided to use 
the notion of actor-agent only as an aggregation of agents 
inside the same organization using a package diagram. 

The next sub-section transforms the Conceptual Agent 
Model into an Operational Agent Model. 

5.3 Operational Agent Model (OAM) 

According to Labarthe [34], the OAM represents 
implementable models. These models involve a choice 
between two different agent architectures, i.e. the 
cognitive and the reactive architectures. We believe that 
most of the time it is not possible to completely distinguish 
cognitive agents from deliberative agents, meaning that 
normally agents can be seen as a hybrid state within the 
cognitive-reactive continuum. In Labarthe et al. [9]’s 
work, agents from the decision system assume a cognitive 
agent architecture, composing a cognitive agent society. 
Based on this society, the author then creates a reactive 
society responsible for the transformation process 
(execution system), linked with the cognitive society. 

As we believe that the agents from the decision system can 
also assume reactive behaviours (see subsection 3.2), we 
prefer not to use this agent architecture notation for the 
Operational Agent Model. Instead, we create two societies 
(decision agents and execution agents) from the 
Conceptual Agent Model and start to define all agents’ 
behaviours and agents’ protocols in detail, as done by 
Labarthe et al. [9], which is not contradictory to Labarthe 
et al.’s [9] work. As explained before, instead of 
separating into decision and execution societies at the 
Operational Agent Model, our approach does it at the 
beginning of the specification phase, i.e. at the Domain 
Model. 

In sum, our Operational Agent Model is generated from 
the Conceptual Agent Model, the Social Agent 
Organization Analysis and the Internal Agent Organization 
Analysis, as illustrated in Fig. 5. 
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2'(3#"-4%)*+,#(-*
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Fig. 5: Creating an Operational Agent Model. 

From the Conceptual Agent Model we represent two 
societies, the decision agents and the execution agents. 
This is the starting point of the Operational Agent Model. 
After, we obtain requirements about agent protocols from 
the Social Agent Organization Analysis, and we obtain 
requirements about agent abilities from the Internal Agent 
Organization Analysis. 
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Table 4 summarizes the deployment strategy for the 
Operational Agent Model. 

Table 4: Operational Agent Models. 
Element Labarthe et al. FAMASS Counterpart 

Central 
elements 

Multi-agent system architecture: 
a cognitive and a reactive agent 
society are represented. A cognitive 
agent, together with its 
corresponding reactive agent, form 
the ‘agent-actor’. It is a generic 
architecture to represent entities 
capable of taking their own 
decisions and acting accordingly. 
 
Specification of the software 
agent: knowledge, behaviour and 
interactions of each agent are 
defined. For the behaviours, the 
following entities are defined: a) 
external event: concerning the 
communication aspect with external 
entities of the multi-agent system; 
b) internal event: concerning 
internal activities of an agent; c) 
passive state: waiting state; d) 
active state, being an elementary 
action or a composite action. 

Multi-agent system 
architecture: cognitive 
agents are seen as decision 
agents (from the decision 
system); reactive agents are 
represented by execution 
agents (from the execution 
system). 
 
Specification of the 
software agent: same 
elements, i.e. knowledge, 
behaviour and interactions. 

Modelling 
formalism 

For the multi-agent system 
architecture, Labarthe [34] 
proposes his own graphical 
modelling formalism. For the 
specification of the software agent 
for cognitive behaviours, the Agent 
Behaviour Representation (ABR) 
formalism [37] is used. For reactive 
agent behaviours, AUML 
formalisms are used, specifically 
state charts. For interactions, 
protocol diagrams from AUML are 
used. 

We used only adapted 
diagrams from AUML. For 
behaviours and knowledge 
representation, we employ 
Activity Diagrams. For 
interactions, we use Protocol 
Diagrams. 
 

Modelling 
process 

1. Create a society of cognitive 
agents. Incorporate the 
informational flow. 

2. Create a society of reactive 
agents. Incorporate the physical 
flow and the related exchanged 
objects (products). 

3. Define the responsibility links 
between cognitive and reactive 
agents. 

5. Specify agent behaviour of the 
cognitive society using the Agent 
Behaviour Representation (ABR) 
formalism. 

6. Specify agent’s behaviour of the 
reactive society using statecharts. 

7. Specify agents’ interactions 
through protocol diagrams. 

Same process, but with 
different formalisms from 
AUML. 

 
The next sub-section provides some final remarks and 
conclusions about the proposed deployment strategy. 

6. Final Remarks and Future Works 

This paper presents a conversion strategy from the 
FAMASS analysis models into specification and design 
models inspired by the methodological agent-based 
framework of Labarthe et al. [9]. This strategy facilitates 
the FAMASS analysts in converting their models and 

going faster and smoother through the whole modelling 
process.  

In addition, this deployment strategy demonstrates that the 
analysis phase of FAMASS can be integrated with other 
existing approaches specialized in specification and design 
modelling. With this as an impetus, other methodological 
frameworks could be inspected in the future so as to verify 
that FAMASS concepts adhere to other frameworks. 

Furthermore, the proposed strategy allows us to avoid the 
research effort needed to develop a totally new 
specification and design methodology for the domain, 
although it would be suitable and desirable for future 
research initiatives. With regard to this, a forthcoming 
research effort will work on extending the FAMASS 
analysis approach, so as to cover the whole FAMASS life-
cycle from analysis to simulation. In this way the proposed 
deploying strategy launches the basis for this FAMASS-
extended version of a complete architecture to deal with 
agent-based simulations in the context of distributed APS 
systems. Future versions of the FAMASS approach are to 
be published shortly. 
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