
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 59

Determining Covers in Combinational Circuits

Ljubomir Cvetković1 and Darko Dražić2

 1 Teacher Training College
Sremska Mitrovica, 22000, Serbia

2 Teacher Training College

Sremska Mitrovica, 22000, Serbia

Abstract
In this paper we propose a procedure for determining 0– or 1–
cover of an arbitrary line in a combinational circuit. When
determining a cover we do not need Boolean expression for the
line; only the circuit structure is used. Within the proposed
procedure we use the tools of the cube theory, in particular, some
operations defined on cubes. The procedure can be applied for
determining 0– and 1– covers of output lines in programmable
logic devices. Basically, this procedure is a method for the
analysis of a combinational circuit.
Keywords: Combinational Circuit, Cover, Logical Relation,
Cube.

1. Introduction

Traditionally, 0– or 1– cover of a line in a combinational
circuit is determined using Boolean expression. There are
well-known procedures for determining covers in the case
when the function is given in the form of a minimal
disjunctive normal form or minimal conjunctive normal
form. In the case of disjunctive normal form a cube is
associated to each elementary product and it represents the
set of vectors on which this product has value 1. The 1–
cover is determined on the basis of the correspondence
between elementary products and cubes.

Getting 0– or 1– cover on the basis of truth table or Binary
Decision Tree is a difficult task, especialy in the case of a
great number of variables.

Since we need Boolean expression for determining the
cover of a line in a combinational circuit, some methods of
minimization are quoted.

The Quine–McCluskey method is a program–based
method that is able to carry out the exhaustive search for
removing shared variables. The Quine–McCluskey method
is a two step method which comprises of finding Prime
Implicants and selecting a minimal set of Prime Implicants
[5]. Each Boolean function can be represented by its

disjunctive normal form (DNF). A lot of Boolean function
research has been devoted to minimal DNFs ([1], [8] and
[9]). The generation of prime implicants (PIs) of a given
function is an important first step in calculating its
minimal DNF, and early interest in PIs was mainly
inspired by this problem.

Generally, minimization of functions with a large number
of input variables is a very time–consuming process and
the results are often suboptimal. Most of the practical
applications rely on heuristic minimization methods [6]
with a complexity which is roughly quadratic in the
number of products.

Using general DT structure, a new worst case algorithm to
compute all prime implicants is presented in [4]. This
algorithm has a lower time complexity than the well–
known Quine–McCluskey algorithm and is the fastest
corresponding worst case algorithm so far.

A SOP representation based on a “ternary tree” is well
known. Compared to BDDs where the size can grow
exponentially with the number of input variables, size of
ternary tree grows only linearly with the number of inputs
in the worst case. The first simple ternary tree
minimization algorithms were proposed in [2], [3].

A method proposed in [7] utilizes data derived from
Monte–Carlo simulations for any Boolean function with
different count of variables and product term complexities.
The model allows design feasibility and performance
analysis prior to the circuit realization.

2. Preliminary considerations

Our procedure for determining covers in combinational
circuits uses cube theory and therefore we provide
necessary definitions.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 60

A cube is a vector a1a2...an, where ai0,1,X and X is a
variable of the set 0,1 (i=1,2,…,n). Hence, a cube is a
set of vectors from 0,1n. Elements a1,a2,...,an are
coordinates of the cube. A cube has rank r, if it contains r
coordinates equal to X. A cube of rank r is called r–cube.

A set of cubes is called 0– cover (1– cover) of line i if it
contains all input vectors generating signal of value 0
(value 1) on this line.

Definition 1. The intersection of cubes A = a1a2...an and B
= b1b2...bn is the cube C = c1c2...cn, where ci = ai  bi, i =
1,2,...,n. The intersection operation  is defined on the set
0,1,X by Table 1. In Table 1 the symbol  denotes
that the operation  is not defined. The intersection of
cubes A and B is defined, if for any ai and bi the
intersection operation is defined, i.e. ai  bi  .

Table 1: Operation 

 0 1 X

0 0  0

1  1 1

X 0 1 X

Definition 2. The cut of cube sets Q1 and Q2 is denoted
by Q1  Q2 and is the set of all cuts of a cube from Q1
with a cube from Q2 .

Definition 3. The union of cube sets Q1 and Q2 is
denoted by Q1  Q2. It contains all cubes from both Q1
and Q2 .

Definition 4. A cube B = b1b2...bn is said to be a part of
the cube A = a1a2...an, if all vectors of B belong also to A.
Obviously, B is a part of A only if for any ai  X we have
ai =bi.

Definition 5. If a cube B is a part of the cube A and if
both cubes belong to the same set of cubes, then B can be
deleted from the considered set of cubes. This
modification is called cube absorption. In particular, we
say that A absorbs B. As noted, this is possible if for any ai
 X we have ai =bi.

Suppose that a cube generates a signal s0,1 at a line i
in combinational circuit which will be denoted by i=s. We
shall say that the cube satisfies relation i=s, i.e. represents
its solution.

Consider arbitrary lines i and j in combinational circuit.

Let si,sj 0,1 be the signals at i and j, respectively. Then
the following lemmas hold:

Lemma 1. If cubes A and B satisfy relations i=si and j=sj

respectively, then the cube C=A  B satisfies relation
(i=si)  (j=sj).

Proof. The proof follows from the fact that the cut of
cubes is equivalent to the cut of sets of vectors represented
by these cubes.

Lemma 2. Let Si, Sj be sets of cubes satisfying i=si, j=sj,
respectively, then all cubes of the set Si  Sj satisfy
relation (i=si)  (j=sj), while all cubes of the set Si  Sj
satisfy relation (i=si)  (j=sj).

Proof. The proof immediately follows from the definition
of the union and the cut of cube sets.

Let (0)
i

uS and (1)
i

uS be cube sets generating signal

values 0 and 1 on the input lines ui, i=1,2,...,n of a logical
element, considered either separately or within a
combinational circuit. Based on Lemma 2 and properties
of logical elements, one can formulate the following
corollaries.

Corollary 1. In the case of elements OR and NOR the cut

 (0)
nuS ... (0)

2uS (0)
1u

S  represents the set of cubes

generating on the output line v signal value 0 for element
OR, and signal value 1 for element NOR. The union

 (1)
nuS ... (1)

2uS (1)
1u

S  represents the set of cubes

generating on the output line v signal value 1 for element
OR, and signal value 1 for element NOR.

Corollary 2. In the case of elements AND or NAND the

union (1)
nuS ... (1)

2uS (1)
1u

S  represents the set of

cubes generating on the output line v signal value 1 for
element AND, and signal value 0 for element NAND. The

cut (0)
nuS ... (0)

2uS (0)
1u

S  represents the set of cubes

generating on the output line v signal value 0 for element
AND, and signal value 1 for element NAND.

3. Determining a Cover

0– or 1– cover of input lines of the combinational circuit
and of output lines of elements of the first level are
determined directly (using basic rules for the logic
elements).

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 61

0– or 1– cover of an arbitrary line of the combinational
circuit, which is an output line of an element of the second
or higher level is determined by the following two steps:
1. For an arbitrary line i, for which we want to determine

a cover, we write logical relation defining conditions
for generating the signal of given value. This logical
relation is written on the basis of basic laws for the
considered element. The left hand side of the relation
determines signal values on all input lines of the
element whose output line is the line i. For each line on
the left hand side of the logical relation, we write a
new logical relation defining conditions for generating
the signal of expected value. We keep writing logical
relations until we come to relations on whose left hand
sides only input lines of the network or output lines of
the first level appear.

2. For each line in left hand sides of the relation
determined in step 1 we determine the distance in the
following way. Input lines of the combinational circuit
have the greatest distance r. For all lines at distance r–1
we determine cube sets generating expected signal
values on these lines. Next, for all lines at distance r–2
we determine cube sets generating expected signal
values on these lines using cube sets obtained for lines
at distance r–1. We continue in this way until we get
the cover for line i.

Example 1. Determine 1–cover of line i in the
combinational circuit of Fig. 1.

Fig. 1 Combinational circuit.

1. Logical relation defining conditions for generating the
signal of value 1 reads:

 1)(i 1)g(1)(f  (1)

Signals f=1 and g=1 are defined on the left hand side of
the relation. The following logical relations define
conditions for generating signals f=1 and g=1:

1)(f1)(c1)(b1)(a  (2)
1)(g1)(e1)(d  (3)

Since output lines a,b,c,e of the first level and input line d
have appeared on the left hand side of the above relations,
we proceed to step 2.
2. We determine distances for all lines appearing on the
left hand side of logical relations obtained in step 1. Input
lines of the circuit 1– 9 have the gratest distance. Lines
a,b,c,d and e are at distance 2. Lines f and g are at distance
1.

We construct the table Table 2.

Table 2: Line at distance 1

Necessary signal values at lines at distance 1 are f=1 and
g=1.

By the relation Eq. (2) we get 1– cover of line f:

By the relation Eq. (3) we get 1– cover of line g:

By the relation Eq. (1) and using operation  we get 1–
cover of line i:

If at least one cube can be deleted from a cover while the
remaining cubes still form a cover, then the cover is
redundant. In the other case the cover is irredundant.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 62

The proposed procedure can be applied to combinational
circuits with branchings of input and internal lines as well.
Programmable logic devices (PLA, PAL and ROM)
represent two– level combinational circuits. A PLA whith
n input lines, m internal lines and p output lines is
represented in Fig.2.

Fig. 2 Programmable logic array

Programmable elements are denoted by symbol “”. We
apply the following way of marking programmable points
at PLA:
(i,j1) - cross point of internal line i and a bit line

 j1 in AND array (i=1,2,...,m, j=1,2,...,n)
(i,j0) - cross point of internal line i and a bit line

 j0 in AND array (i=1,2,...,m, j=1,2,...,n)
 (i,j) -cross point between the lines i and j in OR

 array (i=1,2,...,p, j=1,2,...,m)

We propose the following procedure for determining 0– or
1–cover of a given output line i(2)=1,2,...,p.

1. We determine the set of test cubes Q2(i), i=1,2,…,p,
which yields 0– or 1– cover of the line i(2)=1,2,...,p, when
applied on input lines of the OR array 1,2,...,m. We have
i(2)=0 or i(2)=1, depending on whether 0– or 1– cover is
determined. When determining the set Q2(i), we assign the
coordinate X (X0,1) to input lines of the OR array
1,2,...,m which do not have cross points with the line i(2).

2. The values from the set Q2(i), i=1,2,…,p, obtained
within step 1, are assigned using backtracking to output
lines of the AND array i(1), i=1,2,…,m (when
backtracking the signal complementation may occur). On
the basis of signal values on the output lines of the AND
array, the set of test cubes Q1(i), i=1,2,...,m, is directly
determined.

Using the cut  of cubes we have:

Q= Q1(1) Q1(2) … Q1(m) (4)

Expanding the set of test cubes Q we obtain the input
vectors representing 0– or 1– cover of line i(2).

Example 2. Determine 1– cover of line 1(2) for the PAL
of Fig. 3.

Fig. 3 Programmable array logic

We assign signal values 1 to the points (1,1) and (1,2). We
get test cubes set

Q2(1)=11XX

We go back towards output lines of the AND array and
assign to these lines the values from Q2(1), as presented in
Fig4.

Fig. 4 Signals at output lines of the AND array

For lines 1(1) and 2(1) we determine:
Q1(1)=0XX Q1(2)=X00, X01, X10.

We apply the cut of cubes:

Q = Q1(1) Q1(2)=000, 001, 010.

Vectors 000, 001 and 010 represent a 1– cover of line 1(2).

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 63

4. Conclusion

The described procedure for determining covers is
basically a method for the analysis of combinational
circuits. When determining a cover we do not need an
analitycal expression; only the circuit structure is used. In
particular, we do not need disjunctive normal forms, what
is of some theoretical and practical importance. The
simplification is in the fact that the cover is determined by
moving from inputs towards output lines of the
combinational circuit using only the operation of the cut of
cubes. In addition, we present a procedure for determining
covers of output lines for programmable logic devices.
Within proposed procedures the cube theory plays an
essential role.

References
[1] P. Clote, and E. Kranakis, Boolean Functions and

Computation Models, Berlin Heidelberg: Springer Verlag,
2002.

[2] P. Fišer, P. Rucký, and I. Váňová, ”Fast Boolean Minimizer
for Completely Specified Functions”, Proc. 11th IEEE
Design and Diagnostics of Electronic Circuits and Systems
Workshop (DDECS ’08), Bratislava, 2008, pp. 122-127.

[3] Petr Fišer, and David Toman, ”A Fast SOP Minimizer for
Logic Functions Described by ManyProduct Terms”,
Proceedings of 12th Euromicro Conference on Digital
System Design (DSD’09), Patras, 2009, pp. 757-764.

[4] M. Friedel, S. Nikolajewa, and T. Wilhelm, ”The
Decomposition Tree for analyses of Boolean functions”,
Math. Struct. in Comp. Science, vol. 18, 2008, pp. 411–426.

[5] E.J McCluskey, ”Minimization of Boolean functions”, The
Bell System Technical Journal, 35, No. 5, Nov. 1956, pp.
1417-1444.

[6] A. Mishchenco, and T. Sasao, ”Large-Scale SOP
minimization Using Decomposition and Functional
Properties”, DAC 2003, pp. 149-154.

[7] P.W. Chandana Prasad, and Azam Beg, and Ashutosh Kumar
Singh, ”Effect of Quine-McCluskey Simplification on
Boolean Space Complexity”, IEEE Conference on
Innovative Technologies in Intelligent Systems & Industrial
Applications, Bandar Sunway, 2009.

[8] Y. Wang, and C. McCrosky, and X. Song, ”Single-faced
Boolean Functions and their Minimization”, Computer
Journal 44 (4), 2001, pp. 280–291.

[9] I. Wegener, Branching Programs and Binary Decision
Diagrams – Theory and Application, SIAM Monographs on
Discrete Mathematics and Applications, Society for
Industrial & Applied, 2000.

Ljubomir Cvetković: received the PhD degree from the University
of Belgrade (Faculty of Electrical Engineering) in 2005. He is
currently a professor in Teacher Training College in Sremska
Mitrovica in Serbia. His major research interests include Digital
VLSI architecture, Fault-tolerance and Fault detection. He has
published about 20 publications in journals and international
conferences and has written 3 books.

Darko Dražić: received the BSc degree from the University of
Belgrade (Faculty of Organizational Sciences) in 2005. He is
currently a PhD student on software engineering at Faculty of
Organizational Sciences. His research interests include Computer
architecture, Information system, Audio and video processing.

