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Abstract 
In this paper we propose a procedure for determining 0– or 1–
cover of an arbitrary line in a combinational circuit. When 
determining a cover we do not need Boolean expression for the 
line; only the circuit structure is used. Within the proposed 
procedure we use the tools of the cube theory, in particular, some 
operations defined on cubes. The procedure can be applied  for 
determining 0– and 1– covers of output lines in programmable 
logic devices. Basically, this procedure is a method for the 
analysis of a combinational circuit. 
Keywords: Combinational Circuit, Cover, Logical Relation, 
Cube. 

1. Introduction 

Traditionally, 0– or 1– cover of a line in a combinational 
circuit is determined using Boolean expression. There are 
well-known procedures for determining covers in the case 
when the function is given in the form of a minimal 
disjunctive normal form or minimal conjunctive normal 
form. In the case of disjunctive normal form a cube is 
associated to each elementary product and it represents the 
set of vectors on which this product has value 1. The 1–
cover is determined on the basis of the correspondence 
between elementary products and cubes. 
 
Getting 0– or 1– cover on the basis of truth table or Binary 
Decision Tree is a difficult task, especialy in the case of a 
great number of variables. 
 
Since we need Boolean expression for determining the 
cover of a line in a combinational circuit, some methods of 
minimization are quoted. 
 
The Quine–McCluskey method is a program–based 
method that is able to carry out the exhaustive search for 
removing shared variables. The Quine–McCluskey method 
is a two step method which comprises of finding Prime 
Implicants and selecting a minimal set of Prime Implicants 
[5]. Each Boolean function can be represented by its 

disjunctive normal form (DNF). A lot of Boolean function 
research has been devoted to minimal DNFs ([1], [8] and 
[9]). The generation of prime implicants (PIs) of a given 
function is an important first step in calculating its 
minimal DNF, and early interest in PIs  was mainly 
inspired by this problem.  
 
Generally, minimization of functions with a large number 
of input variables is a very time–consuming process and 
the results are often suboptimal. Most of the practical 
applications rely on heuristic minimization methods [6] 
with a complexity which is roughly quadratic in the 
number of products. 
 
Using general DT structure, a new worst case algorithm to 
compute all prime implicants is presented in [4]. This 
algorithm has a lower time complexity than the well–
known Quine–McCluskey algorithm and is the fastest 
corresponding worst case algorithm so far. 
 
A SOP representation based on a “ternary tree” is well 
known. Compared to BDDs where the size can grow 
exponentially with the number of input variables, size of 
ternary tree grows only linearly with the number of inputs 
in the worst case. The first simple ternary tree 
minimization algorithms were proposed in [2], [3].  
 
A method proposed  in [7] utilizes data derived from 
Monte–Carlo simulations for any Boolean function with 
different count of variables and product term complexities. 
The model allows design feasibility and performance 
analysis prior to the circuit realization. 

2. Preliminary considerations 

Our procedure for determining covers in combinational 
circuits uses cube theory and therefore we provide 
necessary definitions. 
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A cube is a vector a1a2...an, where ai0,1,X and   X is a 
variable of the set 0,1 (i=1,2,…,n). Hence, a cube is a 
set of vectors from 0,1n. Elements a1,a2,...,an are 
coordinates of the cube. A cube has rank r, if it contains r 
coordinates equal to X. A cube of rank r is called  r–cube. 
 
A set of cubes is called 0– cover (1– cover) of line i  if it 
contains all input vectors generating signal of value 0 
(value 1) on this line. 
 
Definition 1. The intersection of cubes A = a1a2...an and B 
= b1b2...bn  is the cube C = c1c2...cn, where ci = ai  bi, i = 
1,2,...,n. The intersection operation  is defined on the set  
0,1,X  by Table 1. In Table 1 the symbol    denotes 
that the operation  is not defined. The intersection of 
cubes A and B is defined, if for any ai and bi the 
intersection operation is defined, i.e. ai  bi  . 

Table 1: Operation   

 0 1 X 

0 0  0 

1  1 1 

X 0 1 X 
 

Definition 2. The cut of cube sets Q1  and Q2  is denoted 
by Q1  Q2 and is the set of all cuts of a cube from Q1 
with a cube from  Q2 . 
 
Definition 3. The union of cube sets Q1  and Q2  is 
denoted by Q1  Q2. It contains all cubes from both Q1  
and Q2 . 
 
Definition 4. A cube B = b1b2...bn  is said to be a part of 
the cube A = a1a2...an, if all vectors of B belong also to A. 
Obviously, B is a part of A only if for any ai  X we have 
ai =bi. 
 
Definition 5. If a cube B is a part of the cube A and if 
both cubes belong to the same set of cubes, then B can be 
deleted from the considered set of cubes. This 
modification is called  cube absorption. In particular, we 
say that A absorbs B. As noted, this is possible if for any ai 
 X we have ai =bi. 

 
Suppose that a cube generates a signal s0,1 at a line i 
in combinational circuit which will be denoted by i=s. We 
shall say that the cube satisfies relation i=s, i.e. represents 
its solution. 
 
Consider arbitrary lines i and j in combinational circuit. 

Let si,sj 0,1 be the signals at i and j, respectively. Then 
the following lemmas hold: 
 
Lemma 1. If cubes A and B satisfy relations i=si and j=sj 

respectively, then the cube C=A  B satisfies relation 
(i=si)  (j=sj). 
 
Proof. The proof follows from the fact that the cut of 
cubes is equivalent to the cut of sets of vectors represented 
by these cubes. 
 
Lemma 2. Let Si, Sj be sets of cubes satisfying i=si, j=sj, 
respectively, then all cubes of the set Si  Sj satisfy 
relation (i=si)  (j=sj), while all cubes of the set Si  Sj 
satisfy relation (i=si)  (j=sj). 
 
Proof. The proof immediately follows from the definition 
of the union and the cut of cube sets. 
 

Let (0)
i

uS  and (1)
i

uS  be cube sets generating signal 

values 0 and 1 on the input lines ui, i=1,2,...,n of a logical 
element, considered either separately or within a 
combinational circuit. Based on Lemma 2 and properties 
of logical elements, one can formulate the following 
corollaries. 
 
Corollary 1. In the case of elements OR and NOR the cut 

  (0)
nuS    ...   (0)

2uS    (0)
1u

S   represents the set of cubes 

generating on the output line v signal value 0 for element 
OR, and signal value 1 for element NOR. The union 

  (1)
nuS    ...   (1)

2uS   (1)
1u

S   represents the set of cubes 

generating on the output line v signal value 1 for element 
OR, and signal value 1 for element NOR. 
 
Corollary 2. In the case of elements AND or NAND the 

union   (1)
nuS    ...   (1)

2uS   (1)
1u

S   represents the set of 

cubes generating on the output line v signal value 1 for 
element AND, and signal value 0 for element NAND. The 

cut   (0)
nuS    ...   (0)

2uS    (0)
1u

S     represents the set of cubes 

generating on the output line v signal value 0 for element 
AND, and signal value 1 for element NAND. 

3. Determining a Cover  

0–  or 1– cover of input lines of the combinational circuit 
and of output lines of elements of the first level are 
determined directly (using basic rules for the logic 
elements). 
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0–  or 1– cover of an arbitrary line of the combinational 
circuit, which is an output line of an element of the second 
or higher level is determined by the following two steps: 
1. For an arbitrary line i, for which we want to determine 

a cover, we write logical relation defining conditions 
for generating the signal of given value. This logical 
relation is written on the basis of basic laws for the 
considered element. The left hand side of the relation 
determines signal values on all input lines of the 
element whose output line is the line i. For each line on 
the left hand side of the logical relation, we write a 
new logical relation defining conditions for generating 
the signal of expected value. We keep writing logical 
relations until we come to relations on whose left hand 
sides only input lines of the network or output lines of 
the first level appear. 

2. For each line in left hand sides of the relation 
determined in step 1 we determine the distance in the 
following way. Input lines of the combinational circuit 
have the greatest distance r. For all lines at distance r–1 
we determine cube sets generating expected signal 
values on these lines. Next, for all lines at distance r–2 
we determine cube sets generating expected signal 
values on these lines using cube sets obtained for lines 
at distance r–1. We continue in this way until we get 
the cover for line i.  

 
Example 1. Determine 1–cover of line i in the 
combinational circuit of Fig. 1. 

 

 

Fig. 1 Combinational circuit. 

1. Logical relation defining conditions for generating the 
signal of value 1 reads: 

 1)(i    1)g(   1)(f     (1) 
 

Signals f=1 and g=1 are defined on the left hand side of 
the relation. The following logical relations define 
conditions for generating signals f=1 and g=1: 

1)(f1)(c1)(b1)(a     (2) 
1)(g1)(e1)(d      (3) 

 
Since output lines a,b,c,e  of the first level and input line d 
have appeared on the left hand side of the above relations, 
we proceed to step 2. 
2. We determine distances for all lines appearing on the 
left hand side of logical  relations obtained in step 1. Input 
lines  of the circuit 1– 9 have the gratest distance. Lines 
a,b,c,d and e are at distance 2. Lines f and g are at distance 
1. 
 
We construct the table Table 2. 

Table 2: Line at distance 1 

 
 

Necessary signal values at lines at distance 1 are f=1 and 
g=1. 
 
By the relation Eq. (2) we get 1– cover of line f: 

 
 
By the relation Eq. (3) we get 1– cover of line g: 

 
 
By the relation Eq. (1) and using operation  we get 1–
cover of line i: 

 
 
If at least one cube can be deleted from a cover while the 
remaining cubes still form a cover, then the cover is 
redundant. In the other case the cover is irredundant. 
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The proposed procedure can be applied  to combinational 
circuits with branchings of input and internal lines as well. 
Programmable logic devices (PLA, PAL and ROM) 
represent two– level combinational circuits. A PLA whith 
n input lines, m internal lines and p output lines is 
represented in Fig.2. 

 

 

Fig. 2 Programmable logic array 

Programmable elements are denoted by symbol “”. We 
apply the following way of marking programmable points 
at PLA: 
(i,j1) - cross point of internal line i and a bit line 

 j1 in AND array (i=1,2,...,m, j=1,2,...,n) 
(i,j0) - cross point of internal line i and a bit line 

 j0 in AND array (i=1,2,...,m, j=1,2,...,n) 
 (i,j) -cross point between the lines i and j in OR 

 array (i=1,2,...,p, j=1,2,...,m) 
 
We propose the following procedure for determining 0– or 
1–cover of a given output line i(2)=1,2,...,p. 
 
1. We determine the set of test cubes Q2(i), i=1,2,…,p, 
which yields 0–  or 1– cover of the line i(2)=1,2,...,p, when 
applied on input lines of the OR array 1,2,...,m. We have 
i(2)=0 or i(2)=1, depending on whether 0–  or 1– cover is 
determined. When determining the set Q2(i), we assign the 
coordinate X (X0,1)  to input lines of the OR array 
1,2,...,m which do not have cross points with the line i(2).  
 
2. The values from the set Q2(i), i=1,2,…,p, obtained 
within step 1, are assigned using backtracking to output 
lines of the AND array i(1), i=1,2,…,m (when 
backtracking the signal complementation may occur). On 
the basis of signal values on the output lines of the AND 
array, the set of test cubes Q1(i), i=1,2,...,m, is directly 
determined. 
 
Using the cut  of cubes we have: 

Q= Q1(1) Q1(2) … Q1(m)   (4) 
 
Expanding the set of test cubes Q we obtain the input 
vectors representing 0–  or 1– cover of line i(2). 
 
Example 2. Determine 1– cover of line 1(2) for the PAL 
of Fig. 3. 
 

 

Fig. 3 Programmable array logic 

We assign signal values 1 to the points (1,1) and (1,2). We 
get test cubes set 

Q2(1)=11XX 
 
We go back towards output lines of the AND array and 
assign to these lines the values from Q2(1), as presented in 
Fig4. 

 

Fig. 4 Signals at output lines of the AND array 

For lines 1(1) and 2(1) we determine: 
Q1(1)=0XX Q1(2)=X00, X01, X10. 

 
We apply the cut of cubes: 

Q = Q1(1) Q1(2)=000, 001, 010. 
 
Vectors 000, 001 and 010 represent a 1– cover of line 1(2). 
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4. Conclusion 

The described procedure for determining covers is 
basically a method for the analysis of combinational 
circuits. When determining a cover we do not need an 
analitycal expression; only the circuit structure is used. In 
particular, we do not need disjunctive normal forms, what 
is of some theoretical and practical importance. The 
simplification is in the fact that the cover is determined by 
moving from inputs towards output lines  of the 
combinational circuit using only the operation of the cut of 
cubes. In addition, we present a procedure for determining 
covers of output lines  for programmable logic devices. 
Within proposed procedures the cube theory plays an 
essential role. 
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