
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 388

Semantic Search in Wiki using HTML5 Microdata
for Semantic Annotation

Pabitha P1, Vignesh Nandha Kumar K R2, Pandurangan N2, Vijayakumar R2 and Rajaram M3

1 Assistant Professor, Dept of Computer Technology, MIT Campus, Anna University

Chennai 600 044, Tamilnadu, India.

 2 Student, Computer Science and Engineering, Anna University
Chennai 600 044, Tamilnadu, India.

3 Professor, Anna University of Technology, Tirunelveli

Abstract

Wiki, the collaborative web authoring system makes Web a huge
collection of information, as the Wiki pages are authored by
anybody all over the world. These Wiki pages, if annotated
semantically, will serve as a universal pool of intellectual
resources that can be read by machines too. This paper presents
an analytical study and implementation of making the Wiki
pages semantic by using HTML5 semantic elements and
annotating with microdata. And using the semantics the search
module is enhanced to provide accurate results.

Keywords: HTML5, Microdata, Search, Semantics,
Annotation, Wiki

1. Introduction

Wikipedia contains vast amount of information and
resources. Though it provides vast amount of
information,they can be only understandable only by
humans. We can make them machine understandable by
including the semantic contents in the wiki engine.
Thereby,we can make search efficient and optimization.

2. Literature survey

2.1 Semantic web

The term semantic web coined by Tim Berners-Lee, is not
a separate web but an extension of the current one, in
which information is given well-defined meaning, better
enabling computers and people to work in cooperation.

Conventional web contains a large pool of information
that is human readable but not interpretable by computers.
Semantic web extends it by annotating the web pages with
semantic description. This allows computers to retrieve
information from the web automatically and to manipulate
them.

2.2 Ontology

An ontology is the formal explicit specification of shared
conceptualization. A conceptualization refers to an
abstract model of some phenomenon in the world that
identifies the relevant concepts of that phenomenon.
Explicit means that the type of concepts used and the
constraints on their use are explicitly defined. Formal
refers to the fact that the ontology should be machine
understandable.

2.3 Wiki

A wiki is a Web-based system that enables collaborative
editing of Web pages. The most important properties of
wikis are their openness and flexibility. Their openness
lets each user participate in content creation, and their
flexibility supports different users’ working styles without
imposing technological constraints. Wikis provide a Web-
based text editor with a simple mark-up language to create
content and to link easily between pages as well as a
versioning system to track content changes and full-text
search for querying the wiki pages.

2.4 Semantic wiki

A semantic wiki tries to extend a normal wiki’s flexibility
to address structured data. To this end, it supports
metadata in the form of semantic annotations of the wiki
pages themselves, they can and of the link relations
between wiki pages. The annotations usually correspond
to an ontology that defines the properties that can be
associated with different object types.

Semantic Wiki offers:

 a simple formalism for semantically annotating links

and wiki articles or other kinds of content.
 a semantic search for querying by not only keyword

but also semantic relations between objects and

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 389

 possibly an additional automatic or semi-automatic
extraction of metadata from wiki articles to simplify
the annotation process – for example, by
topic(EUprojects)or even indirectly (meeting minutes
of EU projects)

3. HTML5

HTML5 is the 5th major revision of the core language of
the World Wide Web: the Hypertext Mark-up Language
(HTML), initiated and developed mainly by WHATWG
(Web Hypertext Applications Technology Working
Group).Started with the aim to improve HTML in the area
of Web Applications, HTML5 introduces a number of
semantic elementswhich include: <section>, <nav>,
<article>, <aside>, <hgroup>, <header>, <footer>, <time>
and <mark>.

These are some of the tags that have been introduced just
to bring semantics in web pages, with no effect on the way
it is displayed. They behave much like a grouping element
such as <div> as far as displaying them is concerned. This
means if an old browser cannot recognize these tags it will
handle them much similar to the way a grouping element
is handled. The semantic elements tell the browsers and
web crawlers clearly the type of content contained within
the element. For instance states explicitly that the figures
within the element represent a time.

4. Microdata

Apart from the semantic elements HTML5 introduces
Microdata – the way of annotating web pages with
semantic metadata using just DOM attributes, rather than
separate XML documents. Microdata annotates the DOM
with scoped name/value pairs from custom vocabularies.
Anyone can define a microdata vocabulary and start
embedding custom properties in their own web pages.
Every microdata vocabulary defines a set of named
properties. For example, a Person vocabulary could define
properties like name and photo. To include a specific
microdata property on your web page, you provide the
property name in a specific place. Depending on where
you declare the property name, microdata has rules about
how to extract the property value. Defining your own
microdata vocabulary is easy. First, you need a
namespace, which is just a URL. The namespace URL
could actually point to a working web page, although
that’s not strictly required. Let’s say I want to create a
microdata vocabulary that describes a person. If I own the
data- vocabulary.org domain, I’ll use the URL http://data-
vocabulary.org/Person as the namespace for my microdata
vocabulary. That’s an easy way to create a globally unique
identifier: pick a URL on a domain that you control. In
this vocabulary, I need to define some named properties.

Let’s start with three basic properties:
 • name (your full name)
 • photo (a link to a picture of you)
 • url (a link to a site associated with you, like a weblog
or a Google profile)
 Some of these properties are URLs, others are plain text.
Each of them lends itself to a natural form of markup,
even before you start thinking about microdata or
vocabularies or whatnot. Imagine that you have a profile
page or an ―about page. Your name is probably marked
up as a heading, like an <h1> element. Your photo is
probably an element, since you want people to see
it. And any URLs associated your profile are probably
already marked up as hyperlinks, because you want
people to be able to click them. For the sake of discussion,
let’s say your entire profile is also wrapped in a <section>
element to separate it from the rest of the page content.
Thus:
<section itemscope itemtype= "http://data-
vocabulary.org/Person">

 <div itemprop="title" class="title"> President
 </div>
 <div itemprop="name" class="name">
 Mark Pilgrim
 </div>

</section>
The major advantage of Microdata is its interoperability,
i.e any RDF representation of an ontology can be mapped
to HTML5 microdata.

5. Existing System

MediaWiki is a free software wiki package written in
PHP, originally for use on Wikipedia. It is now used by
several other projects of the non-profit Wikimedia
Foundation and by many other wikis. MediaWiki is an
extremely powerful, scalable software and a feature-rich
wiki implementation, that uses PHP to process and display
data stored in its MySQL database. Pages use
MediaWiki's wiki-text format, so that users without
knowledge of HTML or CSS can edit them easily.

5.1 MediaWiki Architecture

In the architecture of MediaWiki as shown in Fig.1 the top
two layers hardly have anything to do with semantic
annotation. The layers of concern are the Logic Layer and
the Data Layer; the major part lies in Logic Layer.
The following figure shows the architecture of
MediaWiki:

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 390

Fig. 1 Architecture of Mediawiki [12]

Logic Layer: This is the core part of MediaWiki that
accomplishes the above said tasks. The PHP scripts of
MediaWiki are to be edited to carry out these tasks. The
parser module (Fig. 6) is to be enhanced to convert
between Wiki and HTML markups. Also the data-
vocabulary referred in the pages must be validated and
appropriate flags must be set.

Data Layer: The MySQL database layout of Mediawiki is
so normalized that adding a new table needs no alterations
in any table [13]. The metadata about each page is stored
in the page table, whose layout is given in Fig.2

Fig. 2 Layout of the page table

The actual content of the page is stored in a separate table
named text whose layout is given in Fig.3

Fig. 3 Layout of the text table

Wiki Parser: Here is a sample Wiki markup:

The '''Wikimedia Foundation, Inc.''' is a [[Non-profit
organization|nonprofit]] [[Foundation
(nonprofit)|charitable organization]] For the Internal
Revenue Service (the IRS) to recognize an organization's
exemption, the organization must be organized as a trust,
a corporation, or an association.

The original HTML syntax markup corresponding to this
shown below:

<p>The Wikimedia Foundation, Inc. is a <a
href="/wiki/Nonprofit_organization" title="Non-profit
organization"> non-profit <a
href="/wiki/Foundation_(non-profit)" title="Foundation
(nonprofit)">charitable organization For the Internal
Revenue Service (the IRS) to recognize an organization's
exemption, the organization must be organized as a trust,
a corporation, or an association. </p>

Here, for instance, [[Non-profit organization|non-profit]]
corresponds to <a href="/wiki/Nonprofit_organization"
title="Nonprofit organization">non-profit. That
means the Wiki engine parses the Wiki markup entered by
the author and generates the corresponding HTML
markup.

6. Proposed system

The Wiki pages, if annotated semantically, will serve as a
universal pool of intellectual resources that can be read by
machines too.

Mediawiki follows a standard template for its web pages.
Thus a search engine or any other software that needs data
to be extracted from Wiki pages need not search the entire
web page; instead it is enough to search the variable data,
i.e. the contents excluding the fixed (template) part [2].
This project is to define a way of annotating the wiki
pages using a simple markup similar to that already
available for editing conventional wiki pages and to
define a set of vocabularies to represent the relationship
among Wiki pages. This involves developing a parser to
parse the markup and to replace it with actual HTML5
microdata for storing and the vice-versa while editing.

A parser to recognize the Semantic Wiki mark-up and to
generate the corresponding HTML5 markup has been
developed [1]. Thus the project includes:

 Defining a Wiki mark-up for representing ontology
 Extending the parser for translating this to

corresponding HTML5 mark-up
 Defining vocabularies that define entities related to

Wiki pages
Enhancing the search engine to take advantage of the

User layer Web browser

Network layer
Squid

Apache web-server

Logic layer
MediaWiki's PHP scripts

PHP

Data layer File system
MySQL Database

(program and content)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 391

Semantic definitions is being implemented.

To account for the semantic annotations in the pages,
we add a new table microdataobject whose layout is:

Fig. 4 Layout of the new table microdataobject

Block diagram:

Fig. 5 Block diagram of Semantic Mediawiki

Controller is the module that despatches the requests
from the user to the corresponding module. However the
Squid (proxy server) may serve the user with cached
results from previous requests.

Microdata vocabulary is the actual definition of the class
to which the object described in the page belongs to.
InHTML5 microdata this is referred to by the value of
itemtype attribute.

Editor module provides the interface through which a
user can edit or create wiki pages. If the user edits an
already existing page, the corresponding page is fetched
from the database and the HTML markup is converted
into wiki markup and is displayed in the editor interface.
After the user edits the contents and clicks Save page the
modified contents are given to the parser to be converted
to HTML markup.

6.1 Parser

Parser is the core module that is responsible for validating
the wiki markup and converting it to HTML markup to be
rendered as a web page. The Wiki markup may be a
control markup that does not affect the content of the page
– the one which updates the metadata alone, like minor
edits. For such cases the parser asks the database access
module to update the associated entries in the database.

A part of the newly added modules in Parser.php file:

function addSemantics($text) {

wfProfileIn(__METHOD__);

$atParaStart = preg_match('/^<p>\{__:/',$text);

$atParaEnd = preg_match('/__\}<\\/p>/',$text);

$pos = strpos($text,'{__:');

if($pos == false)

 return $text;

$pattern = array(

 '/(?<=\{__:)(\w+)/' =>

 'http://data-vocabulary.org/'.'\\1'.'">',

 '/\{__:/' => '<span itemscope itemtype="',

 '/ __\}/' => '',

 '/(?<=@)(\w+)(:")([^"]*)(")/' =>

 '\\1'.'">'.'\\3'.'',

 '/@(?=(\w+))/' => '<span itemprop="');

if($atParaStart==1) {

 $text = preg_replace('/^<p>\{__:/','{__:',$text);

 $pattern['/(?<=\{__:)(\w+)/'] = 'http://data-
vocabulary.org/'.'\\1'.'"><p>';

}

if($atParaEnd==1) {

 $text = preg_replace('/__\}<\\/p>/','__}',$text);

 $pattern['/ __\}/'] = '</p>'; } $text = preg_replace(
array_keys($pattern), array_values($pattern), $text);

wfProfileOut(__METHOD__);

return $text; }

The wiki markup to include microdata annotation is:

 {__:ItemType

 … @itempropName:”value” …

 __}

For instance, to include microdata annotation about a
person, the Wiki markup is as follows:

 {__:Person

 … @name:"Richard Stallman" …

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 392

 … @title:"President" …

 … @nickname:"RMS"

 __}

Here, the ellipsis are used to represent some arbitrary
content, just as placeholder; not part of the syntax. This
Wiki markup on passing the Parser module becomes:

<span itemscope

itemprop="http://data-vocabulary/Person">

 …Richard Stallman…

…President…

…RMS…

This approach differs from the earlier proposals of
semantic wiki using RDF (such as KawaWiki [4] and
Rhizome [5]) in simplicity. The user’s effort to annotate a
web page is reduced drastically as semantic HTML
elements and attributes serve the purpose of their XML
counterparts. Thus to make the e-resources most updated
as well as semantic without much strain HTML5
microdata suits best.

6.2 Mediawiki Search module

The search module of Mediawiki is organised as one base
class named SearchEngine and 6 subclasses.
SearchUpdate, one of the subclasses, is to update the
search index in the database whereas database specific
operations are carried out by the other 5 classes, one for
each of MySQL, MySQL4, PostgreSQL, SQLite, Oracle
and IBM-DB2.

In the base class, some functions are just declared as stub
and their actual implmenetation is done in the database-
specific subclasses.

The class diagram is as shown below:

Fig. 6 Class diagram of the search implementation

Flowchart:
The control flow of the search module in Mediawiki is
depicted in the following figure. It involves tasks such as
preprocessing and normalizing the search text, replacing
get arguments with corresponding prefixes, resolving
namespaces and so on.

Fig. 7 Flowchart of the search process

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 393

A snippet of the search code implemented is as follows:

function replacePrefixes($query){

 global $wgContLang;

 $parsed = $query;

 if(strpos($query,':') === false)

 { // nothing to do

 wfRunHooks(
'SearchEngineReplacePrefixesComplete', array(
$this, $query, &$parsed));

 return $parsed;

 }

 $allkeyword = wfMsgForContent('searchall').":";

 if(strncmp($query, $allkeyword,
strlen($allkeyword)) == 0){

 $this->namespaces = null;

 $parsed = substr($query,strlen($allkeyword));
} else if(strpos($query,':') !== false) {

 $prefix =
substr($query,0,strpos($query,':'));

 $index = $wgContLang->getNsIndex($prefix);

 if($index !== false){

 $this->namespaces = array($index);

 $parsed = substr($query,strlen($prefix)+1);
}

 else {

 $prefix =
substr($query,0,strpos($query,':')-1)

 $parsed = '{_:'.$prefix;

 } }

 if(trim($parsed) == '')

 $parsed = $query; // prefix was the whole
query

 wfRunHooks(
'SearchEngineReplacePrefixesComplete', array(
$this,

 $query, &$parsed));

 return $parsed;

}

public static function userNamespaces($user) {

 global $wgSearchEverythingOnlyLoggedIn;

 // get search everything preference, that can
be set to be read for logged-in users

 $searcheverything = false;

 if(($wgSearchEverythingOnlyLoggedIn && $user-
>isLoggedIn()) ||
!$wgSearchEverythingOnlyLoggedIn)

 $searcheverything = $user ->
getOption('searcheverything');

 // searcheverything overrides other options

 if($searcheverything)

 return
array_keys(SearchEngine::searchableNamespaces());

 $arr = Preferences::loadOldSearchNs($user);
$searchableNamespaces =
SearchEngine::searchableNamespaces();

 $arr = array_intersect($arr,
array_keys($searchableNamespaces)); // Filter

 return $arr;

}

APPLICATIONS AND SCOPE

There are two major classes of applications that
consume, and by extension, microdata:

 Web browsers
 Search engines

Browsers can provide enhanced features by detecting
the annotated elements. For instance it can provide to add
an event marked up as Event data-vocabulary directly to
the user’s Google calendar or export it to ICS format.

The other major consumer of is search engines. Instead
of simply displaying the page title and an excerpt of text,
the search engine could integrate some of that structured
information and display it. Full name, job title, employer,
address, may be even a little thumbnail of a profile photo.
It would definitely catch the attention of everyone.

Google supports microdata as part of their Rich
Snippets program [10]. When Google’s web crawler
parses your page and finds microdata properties that
conform to the http://data-vocabulary.org/Person
vocabulary, it parses out those properties and stores them
alongside the rest of the page data. Google even provides
a handy tool to see how Google – sees your
microdataproperties.

Fig. 8 Screen-shot of Output from Google Rich Snippets tool

And how does Google use all of this information? That

depends. There are no hard and fast rules about how
microdata properties should be displayed, which ones
should be displayed, or whether they should be displayed
at all. If someone searches for ―Mark Pilgrim, and

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 394

Google determines that this – about page should rank in
the results, and Google decides that the microdata
properties it originally found on that page are worth
displaying, then the search result listing might look
something like the one shown in the screen-shot below.

The output shown above can be tested at
http://www.google.com/webmasters/tools/richsnippets by
entering the URL
http://csmit.org/wiki/index.php?title=Richard_Stallman in
the input field.

CONCLUSION AND FUTURE WORK

The project enhances Mediawiki to recognize the new
Semantic Wiki markup developed and to produce
microdata annotations accordingly. Thus the huge
collection of Wiki pages can be made to serve as a pool of
various information, for not only human beings, but also
machines.

This can be further extended by making the entire
output to be in HTML5, making use of the semantic
elements. The search module of Mediawiki is to be
enhanced to take advantage of the semantic annotations to
provide accurate results with more helpful information
than just excerpt of text.

REFERENCES
[1] Vignesh Nandha Kumar K R, Pandurangan N, Vijayakumar R and

Pabitha P, Semantic Annotation of Wiki using Wiki markup for
HTML5 Microdata, International Journal of Engineering Science
and Technology, Vol. 2, Issue 12, pp. 7866-7873, 2010.

[2] Mohammed Kayed and Chia-Hui Chang, Member, IEEE,
―FiVaTech: Page-Level Web Data Extraction from Template
Pages, IEEE Transactions on Knowledge and Data Engineering,
Vol. 22, No.2, pp. 249-263, 2009.

[3] Amal Zouaq and Roger Nkambou, Member, IEEE, Evaluating the
Generation of Domain Ontologies in the Knowledge Puzzle Project,
IEEE Transactions on Knowledge and Data Engineering, Vol. 21,
No.11, pp. 15591572, 2008.

[4] Jinhyun Ahn, Jason J. Jung, Key-Sun Choi, Interleaving Ontology
Mapping for Online Semantic Annotation on Semantic Wiki,
IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology, 2008.

[5] Kensaku Kawamoto, Yasuhiko Kitamura, and Yuri Tijerino Kwansei,
Gakuin University, KawaWiki: A Semantic Wiki Based on RDF
Templates, Proceedings of the 2006 IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology
(WI-IAT 2006 Workshops)(WI-IATW'06 , 2006.

[6] Adam Souzis, Building a Semantic Wiki, IEEE Intelligent Systems,
Vol. 20, No. 5 September/October 2005.

[7] Spinning the Semantic Web, Edited by Dieter Fensel, James A.
Hendler, Henry Lieberman and Wolfgang Wahlster, Foreword by
Tim Berners-Lee.

[8] Sebastian Schaffert, Salzburg Research Forschungsgesellschaft ,
François Bry, Ludwig-Maximilian University of Munich , Joachim
Baumeister, University of Würzburg , Malte Kiesel, DFKI GmbH ,
Semantic Wikis, IEEE Software, 2008.

[9] Tim Berners-Lee, James Hendler and Ora Lassila, The Semantic Web,
Scientific American, May 2001.

[10] Mark Pilgrim, Developer advocate at Google, Inc. Apex, NC,
http://diveintohtml5.org/extensibility.html, 2010.

[11] Web Hypertext Applications Technology Working Group,
http://whatwg.org/specs/web-apps/current-work/multipage,
September 2010.

[12] Mediawiki manual
http://www.mediawiki.org/wiki/Manual:MediaWiki_architecture,
June 2010.

[13] http://www.mediawiki.org/wiki/Manual:Database_layout

