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Abstract 
 For many years, researchers tried and succeeded to develop 
agents that can adapt their behavior to face new opponent 
scenarios and beating them. So in this paper we introduce an 
experience exchanging model that allow a game engine to 
update all other engines with the game reaction against new 
surprising un-programmed opponent scenarios that face the 
computer player through exchanging new cases among engines 
case-based reasoning systems. We believe this will reveal game 
players from downloading a new engine of the game and 
loosing their saved episodes.  

Keywords: Real-Time Strategy Games, Case-based 
Reasoning, Feature Similarity. 

1. Introduction 
Artificial Intelligence (AI) [2][4][18] is the area of 
computer science focusing on creating intelligent 
machines. The ability to create intelligent machines has 
intrigued humans since ancient times. Today with the 
advent of the computer and 60 years of research into AI 
programming techniques, the dream of smart machines is 
becoming a reality.  
 
Researchers are creating systems as intelligent agents 
that can autonomously decide about the desired results 
without user interaction, script or even fixed execution 
plan. They can mimic human thought, understand speech 
and beat the best human chess-player. This has two 
benefits, first, they allow for a high-level definition of  
 

the problem. Secondly, agents are better reusable and 
more robust than fixed programs. These benefits make 
agents a suitable area for computer AI games.  

AI games has existed since1951 when Christopher 
Strachey wrote a checkers program [16][18]. As 3D 
rendering [16] hardware and resolution quality of game 
graphics improved, AI games had increasingly become 
one of the critical factors determining a game's success. 
From this we can refer to AI games as techniques used in 
computer and video games to produce the illusion of 
intelligence [16][18] in the behavior of non-player 
characters (NPCs). While the non-player character is a 
character that is controlled by the game master so it is a 
part of the program, but not controlled by a human. 

The real-time performance requirements of computer AI 
games, the demand for humanlike interactions [5], 
appropriate animation sequences, and internal state 
simulations for populations of scripted agents have 
impressively demonstrated the potential of academic AI 
research and AI games technologies. 

2. Background 
 

2.1 Real-Time Strategy Games  

A real-time strategy game (RTS) is a strategic war [5][9] 
game in which multiple players operate on a virtual 
battlefield, controlling bases and armies of military units. 
It typically ends with the destruction of the enemy.  
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The better balance you get among economy, technology, 
and army, the more chances you have to win.  

Although many studies exist on learning to win games 
with comparatively small search spaces, few studies exist 
on learning to win complex strategy games. Some 
researchers argued that agents require sophisticated 
representations and reasoning abilities to perform well in 
these environments, so they are challenging to construct.  

Fortunately, Ponsen and Spronck (2004) [14] developed 
a good representation for WARGUS, a moderately 
complex RTS game. They also employed a high-level 
language for game agent actions to reduce the decision 
space. Together, these constrain the search space of 
useful plans and state-specific sub-plans, allowing them 
to focus on the performance task of winning RTS games.  

Marthi, Russell, and Latham (2005) [11] applied 
hierarchical reinforcement learning (RL) in a limited 
RTS domain. This approach used reinforcement learning 
augmented with prior knowledge about the high-level 
structure of behavior, constraining the possibilities of the 
learning agent and thus greatly reducing the search 
space.  

Ponsen, Muñoz-Avila, Spronck and Aha (2006) [12] 
introduced the Evolutionary State-based Tactics 
Generator (ESTG), which focuses on the highly complex 
learning task of winning complete RTS games and not 
only specific restrained scenarios.  
 

2.2 Case-based Reasoning 

Case-based Reasoning (CBR) is a plausible generic 
model of an intelligence and cognitive science-based 
method by the fact that it is a method for solving 
problems by making use of previous, similar situations 
and reusing information and knowledge about such 
situations. CBR [13] combines a cognitive model 
describing how people use and reason from past 
experience with a technology for finding and presenting 
such experience. The processes involved in CBR can be 
represented by a schematic cycle as shown in figure (1). 

1. Retrieval is the process of finding the cases in the 
case-base that most closely match the current 
information known (new case) [1][8]. 

2. Reuse is the step where [1] matching cases are 
compared to the new case to form a suggested 
solution. 

3. Revision is the testing of the suggested [8] solution to 
make sure it is suitable and accurate.  

4. Retention is the storage of new cases for future 
reuse.  

 

 

2.2.1 Case-based Reasoning related to RTS 

 In this section we will try to summarize some case-
based reasoning researches on real-time and/or strategy 
games. Some CBR researches has targeted real-time 
individual games, as Goodman’s (1994) [7] projective 
visualization for selecting combat actions, and predicting 
the next action of a human playing Space Invaders.  

MAYOR (1996) [6] used a causal model to learn how to 
reduce the frequency of failed plan executions in 
SimCity, a real-time city management game. Where 
Ulam et al.’s (2004) [17] meta-cognitive approach 
performs failure-driven plan adaptation for Freeciv 
game. They employed substantial domain knowledge, 
and addressed a gaming sub-task (i.e., defend a city).  

Molineaux and Ponsen (2005) [2] relax the assumption 
of a fixed adversary, and develop a case-based approach 
that learns to select which tactic to use at each state. 
They implemented this approach in the Case-based 
Tactician (CAT). They reported learning curves that 
demonstrate its performance quickly improves with 
training, even though the adversary is randomly chosen 
for each WARGUS game. CAT is the first case-based 
system designed to win against random opponents in a 
RTS game.  

Santiago et.al.,(2007) proposed Darmok [15] as the base 
reasoning system, which is a case-based planning system 
designed to play real-time strategy (RTS) games. In 
order to play WARGUS, Darmok learns plans from 
expert demonstrations, and then uses case-based 
planning to play the game reusing the learnt plans. 

In this section, different concepts and topics related to 
RTS games were explained. All challenges that face RTS 
games were concerned with increasing game intelligence 
through improving tactics, reinforcement learning, player 
satisfaction and modeling opponents. But our concern 

Fig.1 Aamodt Case-based reasoning cycle [1]
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was different; we tried to increase game intelligence not 
through learning but through exchanging experiences 
between game engines. That we will try to explain in 
next section. 

3. Real-Time Strategy Experience 

Exchanger  Model [Real-See] 

As usual if you want to update any application you just 
need to download its update from its web site but what 
would you do if your engine of the application is more 
updated than the source itself ?!.Usually this cannot 
happen in ordinary applications, but here we are talking 
about RTS games which depend on agents trained by the 
recent RL techniques. This means that they can update 
themselves according to any changes in their 
environment.  
 
In this paper we introduce our model that allowed an 
RTS game engine to update all other engines with the 
game reaction against new surprising un-programmed 
opponent scenarios that face the computer player. We 
believe this will reveal game players from downloading a 
new engine of the game and loosing their saved episodes. 
But we first needed to discuss the existing case 
representations and whether we can use them or we will 
need one of our own. 
 
3.1 Proposed Case Representation 

Many case representations are depending on the game or 
the researcher point of view. We here tried to make use 
of the former representations to get a case representation 
that suits our model and could be applied in different 
RTS games. For example Aha et.al (2005) [2] defined a 
case C as a four-tuple:  

C = [BuildingState, Description, Tactic, Performance] 

Where we can consider the BuildingState as a part of the 
Description. We can also notice that they didn’t mention 
the goal of the case while it is an important factor in case 
retrieval. From all of this we proposed a case 
representation of our own to use it through our model  

C =<State, Action, Goal, Problems to avoid, 
Performance > 

• State is a vector composed of features representing 
game state that the system has already experienced. 

• Action set is a list of case actions the agent can take at 
that level in the architecture. 

• Goal: is a list of Goals to be achieved 

• Problems to avoid: is a list of Problems to avoid  
• Performance is a value in [0, 1], reflects the utility of  

choosing that tactic for that state. 
 
 

Our case representation concentrates on making case 
retrieval more accurate and easier depending first on the 
case state features then on goal and performance. We 
here used the famous Missionaries and Cannibals 
problem as an example of our proposed case 
representation as following:  

 State = <M, C, B, P> 
State  = <3, 3, 1, 2> 

Where      M: no. of missionaries 
                 C: no. of Cannibals 
                 B: no. of boats 
                 P: no. of people a boat can 
                      accommodate at a time 

 Actions 
 

    Move (D1, D2) 
    Return (D1, 0) 
    Move (S1, S2) 
    Return (S1, D1) 
    Move (S1. S3) 
    Return (D2,0) 
    Move (D2, D1) 
    Return (D2, 0) 
    Move (D2, D3) 
 Goals:  Cross the river  

 

 Problems to avoid :  Cannibals eat Missionaries  
 

  Performance: Less time to solve the problem equals higher  
 

performance. 
 

3.2 Real-See Model  

We supposed that n sets of cases from N engines were 
sent to the receiver engine figure (2). Each set consists of 
Mn cases. 

                                     case11 case12 . . .               case1m1 

                                     case21 case22 . . .               case2m2 

 

                                      casen1 casen2 . . .               casenmn 

These cases represent the input of the case comparator. 
The case comparator compare each case of them with the 
cases in the case-base that most closely match the current 
information known, and  if  it found a match it discards 
the received case and repeat the operation on the next  

n set of cases 



IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011 
ISSN (Online): 1694‐0814 
www.IJCSI.org    363 

 

 

                Fig.2 Real-See Model 

one till it finishes all the M*N cases. The cases that 
didn’t have a match in the case-base will be stored in the 
receiver engine case-base and the rest will be deleted. 

In Real-See model the case comparator plays the major 
role as it dose all the job. In the next section we will 
discuss the case comparator in details. 

3.2.1 Case Comparator   

The case comparator compare each received case with 
the cases in the case-base, in order to do that we will 
need to make use of the similarity metrics. If the case 
comparator did not found a similar case to the received 
one it will add it to the case-base but if it found a similar 
one it will act according to the similarity degree. 
 

Given a received case P, the matching of case P and a 
retrieved case C is guided by the similarity metric in 
equation (1).  
    

 

 

Where wi is the weight of a feature i, sim is the similarity 
function of features, and pi

 and ci are the values for 
feature i in the target and retrieved cases respectively.  

But before calculating cases P and C similarity, we first 
needed to calculate the value of individual features 
similarity, sim(pi,ci). The feature i similarity of both 
cases P and C is related to the distance between them. 
Many equations were used to calculate the feature 
similarity depending on the distance, for example  
 

o Euclidian distance [10][18] 

   d(P,C)= ∑ ඥ݌௜
ଶ െ ܿ௜

ଶ௞
௜ୀଵ                   (2) 

o Hamming distance [10][18]    

        H(P,C)  = k – (i=1,k)pi•ci –  (i=1,k)(1-pi)•(1-ci)   (3) 

o Absolute distance [18] 

         d(P,C)= ∑ ௜݌| െ ܿ௜|
௞
௜ୀଵ               (4) 

Here we chose to use the absolute distance divided by 

the feature values range specially that we are dealing 

with un-scaled discrete values not vectors, which is 

computed by: 

 Distance for Numeric features  

               di(P,C) = |pi – ci|/( pi + ci)              (5) 

 Distance for Symbolic features 

               di(P,C)= 0 if pi = ci    (6)  

                          = 1 otherwise 

From equations (5) and (6) we can say that  

        Sim( pi,ci)= 1- di         where   0≤Sim( pi,ci) ≤1              (7) 

The next step is to calculate feature i weight. The feature 
weight may be calculated using many ways for example 
the distance inverse but this way will be a problem if the 
feature values were equal which means that the distance 
will be zero. Here we used the inverse of the squared 
standard deviation; as the standard deviation represents a 
sample of the whole feature values population and is a 
measure of how widely values are dispersed from the 
average value. In this case of feature values equality the 
weight is discarded and the feature similarity value will 
equal 1. We here calculated the weight using equation 
(8). 

   wi= 1/σ(i)2            (8) 

The last step is to calculate case P and case C similarity 
using equation (1), and to check its value relating to a 
threshold value α according to our Real-See algorithm in 
figure (3). 

In figure (3), a received case P is retained as long as its 
similarity value relative to case C is not above α. As the 
result we get a set Q of retained cases as: 

Q ={P Є Mn | Sim(P,C) ≤ α} 

Where Mn is the received cases and Sim (P, C) denotes 
the degree of similarity of C respect to P. The elements 
in Q along with their similarity scores are delivered to 
the receiver engine case-base for to be retained. 

Retrieve 

Case 1 

Case m1 

 

Case 
Comparator 

 

Engine 1 

Engine 2 

Engine  N 

Receiver 
Engine 
Case-
base 

Restore Case 1 

Case m2 

Case 1 

Case mn 

(1) 








k

1i
wi

)ci,p( i(sim
k

1i
wi

)C,P(similarity
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But what happened to the cases its similarity value 
relative to C is above α? Shall we decline them or what? 
Here in our model we tried to make use of the case goal. 

 

 

For i=1 to n 

Do  for j=1 to Mn 

   

 

 

 
 

 If  similarity (Cij,C) ≤ α      Then case stored 

      Else 

        If  G(Cij) !G(C)     Then case stored 

           Else 

              If  G(Cij)G(C)  && P(Cij)>P(C)  Then case stored 

                 Else    Cij  to be discarded 

               Endif 

          Endif 

Endif 

 

Till now similarity metrics depends on the case 
description. In our model this means to decline cases 
similar to the retrieved ones. So we tried to apply the 
similarity metrics on the case goals, if case P similarity 
value relative to case C is above α  (α=0.5) the case 
comparator will compare case P and case C goals 

But to calculate the goal similarity we first need to check 
the similarity of its parts. If there is a similarity we can 
express it by one else by zero. The calculated similarities 
is then applied in equation (9)                                  

MoS= ૚
ࡾ

∑ ࢏࡮
ࡾ
ୀ૚࢏             (9) 

Where Bi represents the predicate i of the goal, R is the 
number of predicates used in similarity calculation and 
MoS represents the arithmetic mean of the predicates 
similarities and we used it as the goal similarity. We can 
then evaluate the mean of similarities (Mos) using 
equation (10) 

     

Goal similarity = 

 

If it found a goal match and case P performance is 
greater than case C performance, case P will be stored 
otherwise case P is declined. But if there was no goal 
match case P will be stored. We will explain it clearly in 
the next section with real picked cases. 

4. Testing Real-See Model on Real Cases 
 

                       Fig.4 Glest – 3D RTS game 

For more explanation we needed to test the Real-See 
algorithm on some real cases. We selected a 3D RTS 
game called Glest figure (4) to pick up some cases of it 
to go one with our algorithm testing. 

 

 

 Example 1: We first chose a stored case called the 
three towers (case C) to compare it with a received 
case called defend the castle (case P). In the next five 
steps we calculated the similarity between the two 
cases using 14 features (table 1) to representing each 
case.   

                   

 The first step is to calculate feature i similarity. So 
we calculated the absolute distance using 
equations (5) and (7). 

 

 The second step is to calculate feature i weight  
using equation (8). 

 The third step is to calculate the similarity 
between case P and C using equation (1).  

We can notice from table (2) that the features of value 
zero in both cases are discarded and were not contributed 
in the calculation, as it has no effect on the similarty 
degree which can finally  be calculated as following: 

                 Similarity (P,C)= 3.066/6.732=0.456 








y

1x
w x

)Cx,)C( x(sim
y

1x
w x

)C,C(similarity

ij

ij

Fig.3 Real-See algorithm 

Real-See Algorithm 

Not Similar    MoS≤ ½ 

Similar            MoS> ½ 

(10) 
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Table 1: The data set of Three_Towers 

 and Destroy_Villag cases erepresenting14 features. 

Features Three_Towers 
( Case C) 

Defend the Castle 
(Case P) 

R
es

ou
rc

es
 Gold 200 500 

Wood 200 500 

Stone 250 500 

Food  0 50 

# 
of

 E
n

em
y 

U
n

it
s 

Castle 0 2 

defense_tower 2 1 

Worker 0 0 

Swordman 0 0 

Archer 3 2 

Guard 0 0 

Cow 0 0 

battle_machine 0 1 

 
 

Armor 30 15 

Sight value 5 2 

 

 The fourth step is to check the result of the previous 
similarty equation according  to the Real-See  
algorithm. From which we can see that the  
Sim(P,C)<=0.5 which means that the received case 
(defend the castle) similarity to the stored one (the 
three towers ) is week and that the recevied case will 
be stored in the receiver engine case-base. 

 

 The last step is to pick the next new received case 
and start over from the first step. 

 

 Example 2: To be sure of the results we had to repeat 
the previous steps on another new received case called 
tower_of_souls table (3) and table (4). 

 

              Similarity (P,C)= 7.226/10.541=0.686 

 

 
 

 

 

 

 

 

 

Table 2: Three_Towers and Destroy_Villag cases similarity calculations 
 

 

Table 3: The data set of Three_Towers and Tower_of_Souls cases 
erepresenting14 features. 

Features 
Three_Towers 

( Case C) 
Tower_of_Souls 

(Case P) 

R
es

ou
rc

es
 Gold 200 3000 

Wood 200 300 

Stone 250 1000 

Food  0 60 

# 
of

 E
n

em
y 

U
n

it
s 

Castle 0 2 

defense_tower 2 1 

Worker 3 1 

Swordman 1 2 

Archer 2 3 

Guard 1 2 

Cow 0 0 

battle_machine 0 0 

 Armor 30 20 

Sight value 5 15 

  

C P di(P,C) 
Sim 
( pi,ci) 

wi 
wi* 
Sim( pi,ci) 

200 500 0.429 0.571 2.222E-05 1.26984E-05 

200 500 0.429 0.571 2.22222E-05 1.26984E-05 

250 500 0.333 0.667 0.000032 2.13333E-05 

0 50 1 0 0.001 0 

0 2 1 0 0.5 0 

2 1 0.333 0.667 2 1.333333333 

0 0 Discarded Discarded Discarded Discarded 

0 0 Discarded Discarded Discarded Discarded 

3 2 0.2 0.8 2 1.6 

0 0 Discarded Discarded Discarded Discarded 

0 0 Discarded Discarded Discarded Discarded 

0 1 1 0 2 0 

30 15 0.333 0.667 0.009 0.005925926 

5 2 0.429 0.571 0.222 0.126984127 

Sum 6.732 3.066 
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Table 4: Three_Towers and Tower_of_Souls cases similarity 
calculation 

 

 
From table (4) we can see that the  Sim(P,C)>0.5 Which 
means that the received case (tower_of_souls) and the 
stored one (the three towers ) are so similar and that the 
recevied case will not be stored in the receiver engine 
case-base till the goal and performance similarities 
according to our  algorithm is checked as following. 
o The three towers goal is 

 

winner (player):- 
Objective (“destroy_towers”), 
towercount (0).   

o The tower_of_souls goal is    

 

winner (player):- 
 Objective (“defend_from_attack”), 
 unitcount (0),     
 towercount (1). 

To check the similarity of the cases goals we first need to 
check the similarity of its parts see table (5). 
   

 

 

After that using equation (9), the MoS value is 
calculated and then evaluated according to equation 
(10). 

                      MoS = ૚
૜

∑ ሼ૙, ૙, ૚ሽ૜
ୀ૚࢏ = 1/3 

 

   Goal similarity = 

 

Finally from equation (10) we founded out that the 
three towers case goal is not similar to the 
tower_of_souls case goal, but as we mentioned before 
that the three towers case is similar to the 
tower_of_souls case. So from all the previous and 
according to the Real-See algorithm we can conclude 
that the tower_of_souls case will be stored in the 
receiver engine case based. 

 Example 3: to test the last case of Real-See algorithm 
the performance value comparison, we used a stored 
case called duel and a new received case called 
tough_battle in table (6). 
 

Table 6: The data set of duel 
and tough_battle cases  erepresenting14 features. 

 

Features 
Duel 

(Case C) 

Tough_battle 

( Case P) 

R
es

ou
rc

es
 Gold 2000 500 

Wood 300 400 

Stone 1500 1000 

Food 30 60 

# 
of

 E
n

em
y 

U
n

it
s 

Castle 0 0 

defense_tower 0 0 

Worker 2 3 

Swordman 2 3 

Archer 0 0 

Guard 1 2 

Cow 0 0 

battle_machine 1 3 

 
Armor 10 40 

Sight value 15 10 

 
 
 
 

C P di(P,C) Sim( pi,ci) wi 
wi* 

Sim( pi,ci) 

200 3000 0.875 0.125 2.551E-07 3.189E-08 

200 300 0.2 0.8 0.0002 0.0002 

250 1000 0.6 0.4 3.555E-06 1.422E-06 

0 60 1 0 0.0006 0 

0 2 1 0 0.5 0 

2 1 0.333 0.667 2 1.333 

3 1 0.5 0.5 2 1.6 

1 2 0.333 0.667 2 1.333 

2 3 0.2 0.8 2 1.6 

1 2 0 1 2 1.333 

0 0 discarded discarded discarded Discarded 

0 0 discarded discarded discarded Discarded 

30 20 0.2 0.8 0.02 0.016 

5 15 0.5 0.5 0.02 0.01 

Sum 10.541 7.226 

 Three towers goal Tower_of_souls goal Similarity(s) 

P1 
Objective 

(“destroy_towers”) 
Objective 

(“defend_from_attack”) 
No 0 

P2 Missing unitcount (0) discarded  

P3 towercount (0) towercount (1) No 0 

P4 winner (player) winner (player) yes 1 

Table 5: goal similarity calculation 

Not Similar      MoS≤ ½ 

Similar           MoS> ½ 

(10) 
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Table 7: Duel and Tough_battle cases similarity calculations 
 

 

Similarity (P,C)=4.849/6.585=0.73654 

From table (7) we can see that the  Sim(P,C)>0.5 Which 
means that the received case (tough_battle) and the 
stored one (duel ) are so similar and that the recevied 
case will not be stored in the receiver engine case-base 
till the goal and performance similarities according to 
our  algorithm is checked . 

As in example 2 we will check the duel and tough_battle 
cases goal similarities as following:  

o The duel goal is 

winner (player):- 

objective (“defend_from_attack”), 

unitcount (0). 
 

o The tough_battle goal is  

  winner (player):- 

       Objective (“defeat_enemy”), 

unitcount (0). 

To check the similarity of the cases goals we first need to 
check the similarity of its parts see table (8) 

 

Table 8: Goal Similarity Calculation  

 

After that using equation (9) the MoS value is calculated 
and then evaluated according to equation (10) 

MoS = ૚
૜

∑ ሼ૙, ૚, ૚ሽ૜
ୀ૚࢏ = 2/3 

 From equations (9) and (10) we can see that the duel 
case goal is similar to the tough_battle case goal, we also 
mentioned before that the duel case is similar to the 
tough_battle case. From this and according to Real-See 
algorithm we can definitely say that we need to check the 
last case of our algorithm the performance value case.  

Suppose that the performance of duel case is 0.63 while 
the performance of the tough_battle case is 0.7 this 
means that the received tough_battle case will be stored 
in the engine case-based.  And after storing the case, the 
case comparator will start over again from the first step 
with a new received case.  

5. Conclusions  

 In this paper, we have presented an experience 
exchanging model to improve the performance of RTS 
game engines through exchanging experiences of facing 
new un-programmed opponent scenarios. Our model is 
based on the game case-based reasoning system specially 
on adding new cases to it. New cases are sent by other 
engines that faced new opponent scenarios and beat them 
to help the engine dealing with these scenarios if it faces 
them in the future. We believe this will reveal game 
players from downloading a new engine of the game and 
loosing their saved stages. 

Our main priority here was to be sure that these received 
cases are all new to the system and have no matching 
cases in the game CBR. In order to do that we also 
introduced an algorithm which we call Real-See to check 
the similarity of these received cases to the stored ones. 
This algorithm is not concentrating on the case 
description only but on the case goal and performance 
too. We tested the Real-See algorithm on real picked 
cases from 3D-Glest RTS game and it performed well. 

 

C P di(P,C) Sim( pi,ci) wi 
wi* 

Sim( pi,ci) 

2000 500 0.6 0.4 8.88889E-07 3.55556E-07 

300 400 0.143 0.857 0.0002 0.0002 

1500 1000 0.2 0.8 0.000008 0.0000064 

30 60 0.333 0.667 0.002 0.002 

0 0 Discarded Discarded Discarded Discarded 

0 0 Discarded Discarded Discarded Discarded 

2 3 0.2 0.8 2 1.6 

2 3 0.2 0.8 2 1.6 

0 0 Discarded Discarded Discarded Discarded 

1 2 0.333 0.667 2 1.333 

0 0 discarded Discarded Discarded discarded 

1 3 0.5 0.5 0.5 0.25 

10 40 0.6 0.4 0.002 0.001 

15 10 0.2 0.8 0.08 0.064 

Sum 6.585 4.849 

 Duel Goal Tough_Battle Goal Similarity(S) 

P1 Objective 
 (“defend_from_attack”) 

Objective 
 (“defeat_enemy”) 

No 0 

P2 unitcount (0). unitcount (0). Yes 1 

P3 winner (player) winner (player) Yes 1 
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Future Work 

In the future we plan to pursue several future researches   
on the case-based situation assessment depending on 
Real-See algorithm and whether it helps to enlarge the 
case-based or to shrink it. We also will try to introduce 
an implementation of the Real-See algorithm in both 
Glest and Waragus open-source real time strategy games. 
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