
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 360

Real-Time Strategy Experience Exchanger

 Model [Real-See]

Mostafa Aref 1,Magdy Zakaria 2and Shahenda Sarhan 3

1 Faculty of Computers and Information, Ain-Shams University

Ain-Shams,Cairo,Egypt

2 Faculty of Computers and Information, Mansoura University

Mansoura,Egypt

3 Faculty of Computers and Information, Mansoura University

Mansoura,Egypt

Abstract
 For many years, researchers tried and succeeded to develop
agents that can adapt their behavior to face new opponent
scenarios and beating them. So in this paper we introduce an
experience exchanging model that allow a game engine to
update all other engines with the game reaction against new
surprising un-programmed opponent scenarios that face the
computer player through exchanging new cases among engines
case-based reasoning systems. We believe this will reveal game
players from downloading a new engine of the game and
loosing their saved episodes.

Keywords: Real-Time Strategy Games, Case-based
Reasoning, Feature Similarity.

1. Introduction
Artificial Intelligence (AI) [2][4][18] is the area of
computer science focusing on creating intelligent
machines. The ability to create intelligent machines has
intrigued humans since ancient times. Today with the
advent of the computer and 60 years of research into AI
programming techniques, the dream of smart machines is
becoming a reality.

Researchers are creating systems as intelligent agents
that can autonomously decide about the desired results
without user interaction, script or even fixed execution
plan. They can mimic human thought, understand speech
and beat the best human chess-player. This has two
benefits, first, they allow for a high-level definition of

the problem. Secondly, agents are better reusable and
more robust than fixed programs. These benefits make
agents a suitable area for computer AI games.

AI games has existed since1951 when Christopher
Strachey wrote a checkers program [16][18]. As 3D
rendering [16] hardware and resolution quality of game
graphics improved, AI games had increasingly become
one of the critical factors determining a game's success.
From this we can refer to AI games as techniques used in
computer and video games to produce the illusion of
intelligence [16][18] in the behavior of non-player
characters (NPCs). While the non-player character is a
character that is controlled by the game master so it is a
part of the program, but not controlled by a human.

The real-time performance requirements of computer AI
games, the demand for humanlike interactions [5],
appropriate animation sequences, and internal state
simulations for populations of scripted agents have
impressively demonstrated the potential of academic AI
research and AI games technologies.

2. Background

2.1 Real-Time Strategy Games

A real-time strategy game (RTS) is a strategic war [5][9]
game in which multiple players operate on a virtual
battlefield, controlling bases and armies of military units.
It typically ends with the destruction of the enemy.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 361

The better balance you get among economy, technology,
and army, the more chances you have to win.

Although many studies exist on learning to win games
with comparatively small search spaces, few studies exist
on learning to win complex strategy games. Some
researchers argued that agents require sophisticated
representations and reasoning abilities to perform well in
these environments, so they are challenging to construct.

Fortunately, Ponsen and Spronck (2004) [14] developed
a good representation for WARGUS, a moderately
complex RTS game. They also employed a high-level
language for game agent actions to reduce the decision
space. Together, these constrain the search space of
useful plans and state-specific sub-plans, allowing them
to focus on the performance task of winning RTS games.

Marthi, Russell, and Latham (2005) [11] applied
hierarchical reinforcement learning (RL) in a limited
RTS domain. This approach used reinforcement learning
augmented with prior knowledge about the high-level
structure of behavior, constraining the possibilities of the
learning agent and thus greatly reducing the search
space.

Ponsen, Muñoz-Avila, Spronck and Aha (2006) [12]
introduced the Evolutionary State-based Tactics
Generator (ESTG), which focuses on the highly complex
learning task of winning complete RTS games and not
only specific restrained scenarios.

2.2 Case-based Reasoning

Case-based Reasoning (CBR) is a plausible generic
model of an intelligence and cognitive science-based
method by the fact that it is a method for solving
problems by making use of previous, similar situations
and reusing information and knowledge about such
situations. CBR [13] combines a cognitive model
describing how people use and reason from past
experience with a technology for finding and presenting
such experience. The processes involved in CBR can be
represented by a schematic cycle as shown in figure (1).

1. Retrieval is the process of finding the cases in the
case-base that most closely match the current
information known (new case) [1][8].

2. Reuse is the step where [1] matching cases are
compared to the new case to form a suggested
solution.

3. Revision is the testing of the suggested [8] solution to
make sure it is suitable and accurate.

4. Retention is the storage of new cases for future
reuse.

2.2.1 Case-based Reasoning related to RTS

 In this section we will try to summarize some case-
based reasoning researches on real-time and/or strategy
games. Some CBR researches has targeted real-time
individual games, as Goodman’s (1994) [7] projective
visualization for selecting combat actions, and predicting
the next action of a human playing Space Invaders.

MAYOR (1996) [6] used a causal model to learn how to
reduce the frequency of failed plan executions in
SimCity, a real-time city management game. Where
Ulam et al.’s (2004) [17] meta-cognitive approach
performs failure-driven plan adaptation for Freeciv
game. They employed substantial domain knowledge,
and addressed a gaming sub-task (i.e., defend a city).

Molineaux and Ponsen (2005) [2] relax the assumption
of a fixed adversary, and develop a case-based approach
that learns to select which tactic to use at each state.
They implemented this approach in the Case-based
Tactician (CAT). They reported learning curves that
demonstrate its performance quickly improves with
training, even though the adversary is randomly chosen
for each WARGUS game. CAT is the first case-based
system designed to win against random opponents in a
RTS game.

Santiago et.al.,(2007) proposed Darmok [15] as the base
reasoning system, which is a case-based planning system
designed to play real-time strategy (RTS) games. In
order to play WARGUS, Darmok learns plans from
expert demonstrations, and then uses case-based
planning to play the game reusing the learnt plans.

In this section, different concepts and topics related to
RTS games were explained. All challenges that face RTS
games were concerned with increasing game intelligence
through improving tactics, reinforcement learning, player
satisfaction and modeling opponents. But our concern

Fig.1 Aamodt Case-based reasoning cycle [1]

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 362

was different; we tried to increase game intelligence not
through learning but through exchanging experiences
between game engines. That we will try to explain in
next section.

3. Real-Time Strategy Experience

Exchanger Model [Real-See]

As usual if you want to update any application you just
need to download its update from its web site but what
would you do if your engine of the application is more
updated than the source itself ?!.Usually this cannot
happen in ordinary applications, but here we are talking
about RTS games which depend on agents trained by the
recent RL techniques. This means that they can update
themselves according to any changes in their
environment.

In this paper we introduce our model that allowed an
RTS game engine to update all other engines with the
game reaction against new surprising un-programmed
opponent scenarios that face the computer player. We
believe this will reveal game players from downloading a
new engine of the game and loosing their saved episodes.
But we first needed to discuss the existing case
representations and whether we can use them or we will
need one of our own.

3.1 Proposed Case Representation

Many case representations are depending on the game or
the researcher point of view. We here tried to make use
of the former representations to get a case representation
that suits our model and could be applied in different
RTS games. For example Aha et.al (2005) [2] defined a
case C as a four-tuple:

C = [BuildingState, Description, Tactic, Performance]

Where we can consider the BuildingState as a part of the
Description. We can also notice that they didn’t mention
the goal of the case while it is an important factor in case
retrieval. From all of this we proposed a case
representation of our own to use it through our model

C =<State, Action, Goal, Problems to avoid,
Performance >

• State is a vector composed of features representing
game state that the system has already experienced.

• Action set is a list of case actions the agent can take at
that level in the architecture.

• Goal: is a list of Goals to be achieved

• Problems to avoid: is a list of Problems to avoid
• Performance is a value in [0, 1], reflects the utility of

choosing that tactic for that state.

Our case representation concentrates on making case
retrieval more accurate and easier depending first on the
case state features then on goal and performance. We
here used the famous Missionaries and Cannibals
problem as an example of our proposed case
representation as following:

 State = <M, C, B, P>
State = <3, 3, 1, 2>

Where M: no. of missionaries
 C: no. of Cannibals
 B: no. of boats
 P: no. of people a boat can
 accommodate at a time

 Actions

 Move (D1, D2)
 Return (D1, 0)
 Move (S1, S2)
 Return (S1, D1)
 Move (S1. S3)
 Return (D2,0)
 Move (D2, D1)
 Return (D2, 0)
 Move (D2, D3)
 Goals: Cross the river

 Problems to avoid : Cannibals eat Missionaries

 Performance: Less time to solve the problem equals higher

performance.

3.2 Real-See Model

We supposed that n sets of cases from N engines were
sent to the receiver engine figure (2). Each set consists of
Mn cases.

 case11 case12 . . . case1m1

 case21 case22 . . . case2m2

 casen1 casen2 . . . casenmn

These cases represent the input of the case comparator.
The case comparator compare each case of them with the
cases in the case-base that most closely match the current
information known, and if it found a match it discards
the received case and repeat the operation on the next

n set of cases

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 363

 Fig.2 Real-See Model

one till it finishes all the M*N cases. The cases that
didn’t have a match in the case-base will be stored in the
receiver engine case-base and the rest will be deleted.

In Real-See model the case comparator plays the major
role as it dose all the job. In the next section we will
discuss the case comparator in details.

3.2.1 Case Comparator

The case comparator compare each received case with
the cases in the case-base, in order to do that we will
need to make use of the similarity metrics. If the case
comparator did not found a similar case to the received
one it will add it to the case-base but if it found a similar
one it will act according to the similarity degree.

Given a received case P, the matching of case P and a
retrieved case C is guided by the similarity metric in
equation (1).

Where wi is the weight of a feature i, sim is the similarity
function of features, and pi

 and ci are the values for
feature i in the target and retrieved cases respectively.

But before calculating cases P and C similarity, we first
needed to calculate the value of individual features
similarity, sim(pi,ci). The feature i similarity of both
cases P and C is related to the distance between them.
Many equations were used to calculate the feature
similarity depending on the distance, for example

o Euclidian distance [10][18]

 d(P,C)= ∑ ඥ݌௜
ଶ െ ܿ௜

ଶ௞
௜ୀଵ (2)

o Hamming distance [10][18]

 H(P,C) = k – (i=1,k)pi•ci – (i=1,k)(1-pi)•(1-ci) (3)

o Absolute distance [18]

 d(P,C)= ∑ ௜݌| െ ܿ௜|
௞
௜ୀଵ (4)

Here we chose to use the absolute distance divided by

the feature values range specially that we are dealing

with un-scaled discrete values not vectors, which is

computed by:

 Distance for Numeric features

 di(P,C) = |pi – ci|/(pi + ci) (5)

 Distance for Symbolic features

 di(P,C)= 0 if pi = ci (6)

 = 1 otherwise

From equations (5) and (6) we can say that

 Sim(pi,ci)= 1- di where 0≤Sim(pi,ci) ≤1 (7)

The next step is to calculate feature i weight. The feature
weight may be calculated using many ways for example
the distance inverse but this way will be a problem if the
feature values were equal which means that the distance
will be zero. Here we used the inverse of the squared
standard deviation; as the standard deviation represents a
sample of the whole feature values population and is a
measure of how widely values are dispersed from the
average value. In this case of feature values equality the
weight is discarded and the feature similarity value will
equal 1. We here calculated the weight using equation
(8).

 wi= 1/σ(i)2 (8)

The last step is to calculate case P and case C similarity
using equation (1), and to check its value relating to a
threshold value α according to our Real-See algorithm in
figure (3).

In figure (3), a received case P is retained as long as its
similarity value relative to case C is not above α. As the
result we get a set Q of retained cases as:

Q ={P Є Mn | Sim(P,C) ≤ α}

Where Mn is the received cases and Sim (P, C) denotes
the degree of similarity of C respect to P. The elements
in Q along with their similarity scores are delivered to
the receiver engine case-base for to be retained.

Retrieve

Case 1

Case m1

Case
Comparator

Engine 1

Engine 2

Engine N

Receiver
Engine
Case-
base

Restore Case 1

Case m2

Case 1

Case mn

(1)








k

1i
wi

)ci,p(i(sim
k

1i
wi

)C,P(similarity

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 364

But what happened to the cases its similarity value
relative to C is above α? Shall we decline them or what?
Here in our model we tried to make use of the case goal.

For i=1 to n

Do for j=1 to Mn

 If similarity (Cij,C) ≤ α Then case stored

 Else

 If G(Cij) !G(C) Then case stored

 Else

 If G(Cij)G(C) && P(Cij)>P(C) Then case stored

 Else Cij to be discarded

 Endif

 Endif

Endif

Till now similarity metrics depends on the case
description. In our model this means to decline cases
similar to the retrieved ones. So we tried to apply the
similarity metrics on the case goals, if case P similarity
value relative to case C is above α (α=0.5) the case
comparator will compare case P and case C goals

But to calculate the goal similarity we first need to check
the similarity of its parts. If there is a similarity we can
express it by one else by zero. The calculated similarities
is then applied in equation (9)

MoS= ૚
ࡾ

∑ ࢏࡮
ࡾ
ୀ૚࢏ (9)

Where Bi represents the predicate i of the goal, R is the
number of predicates used in similarity calculation and
MoS represents the arithmetic mean of the predicates
similarities and we used it as the goal similarity. We can
then evaluate the mean of similarities (Mos) using
equation (10)

Goal similarity =

If it found a goal match and case P performance is
greater than case C performance, case P will be stored
otherwise case P is declined. But if there was no goal
match case P will be stored. We will explain it clearly in
the next section with real picked cases.

4. Testing Real-See Model on Real Cases

 Fig.4 Glest – 3D RTS game

For more explanation we needed to test the Real-See
algorithm on some real cases. We selected a 3D RTS
game called Glest figure (4) to pick up some cases of it
to go one with our algorithm testing.

 Example 1: We first chose a stored case called the
three towers (case C) to compare it with a received
case called defend the castle (case P). In the next five
steps we calculated the similarity between the two
cases using 14 features (table 1) to representing each
case.

 The first step is to calculate feature i similarity. So
we calculated the absolute distance using
equations (5) and (7).

 The second step is to calculate feature i weight
using equation (8).

 The third step is to calculate the similarity
between case P and C using equation (1).

We can notice from table (2) that the features of value
zero in both cases are discarded and were not contributed
in the calculation, as it has no effect on the similarty
degree which can finally be calculated as following:

 Similarity (P,C)= 3.066/6.732=0.456








y

1x
w x

)Cx,)C(x(sim
y

1x
w x

)C,C(similarity

ij

ij

Fig.3 Real-See algorithm

Real-See Algorithm

Not Similar MoS≤ ½

Similar MoS> ½

(10)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 365

Table 1: The data set of Three_Towers

 and Destroy_Villag cases erepresenting14 features.

Features Three_Towers
(Case C)

Defend the Castle
(Case P)

R
es

ou
rc

es
 Gold 200 500

Wood 200 500

Stone 250 500

Food 0 50

of

 E
n

em
y

U
n

it
s

Castle 0 2

defense_tower 2 1

Worker 0 0

Swordman 0 0

Archer 3 2

Guard 0 0

Cow 0 0

battle_machine 0 1

Armor 30 15

Sight value 5 2

 The fourth step is to check the result of the previous
similarty equation according to the Real-See
algorithm. From which we can see that the
Sim(P,C)<=0.5 which means that the received case
(defend the castle) similarity to the stored one (the
three towers) is week and that the recevied case will
be stored in the receiver engine case-base.

 The last step is to pick the next new received case
and start over from the first step.

 Example 2: To be sure of the results we had to repeat
the previous steps on another new received case called
tower_of_souls table (3) and table (4).

 Similarity (P,C)= 7.226/10.541=0.686

Table 2: Three_Towers and Destroy_Villag cases similarity calculations

Table 3: The data set of Three_Towers and Tower_of_Souls cases
erepresenting14 features.

Features
Three_Towers

(Case C)
Tower_of_Souls

(Case P)

R
es

ou
rc

es
 Gold 200 3000

Wood 200 300

Stone 250 1000

Food 0 60

of

 E
n

em
y

U
n

it
s

Castle 0 2

defense_tower 2 1

Worker 3 1

Swordman 1 2

Archer 2 3

Guard 1 2

Cow 0 0

battle_machine 0 0

 Armor 30 20

Sight value 5 15

C P di(P,C)
Sim
(pi,ci)

wi
wi*
Sim(pi,ci)

200 500 0.429 0.571 2.222E-05 1.26984E-05

200 500 0.429 0.571 2.22222E-05 1.26984E-05

250 500 0.333 0.667 0.000032 2.13333E-05

0 50 1 0 0.001 0

0 2 1 0 0.5 0

2 1 0.333 0.667 2 1.333333333

0 0 Discarded Discarded Discarded Discarded

0 0 Discarded Discarded Discarded Discarded

3 2 0.2 0.8 2 1.6

0 0 Discarded Discarded Discarded Discarded

0 0 Discarded Discarded Discarded Discarded

0 1 1 0 2 0

30 15 0.333 0.667 0.009 0.005925926

5 2 0.429 0.571 0.222 0.126984127

Sum 6.732 3.066

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 366

Table 4: Three_Towers and Tower_of_Souls cases similarity
calculation

From table (4) we can see that the Sim(P,C)>0.5 Which
means that the received case (tower_of_souls) and the
stored one (the three towers) are so similar and that the
recevied case will not be stored in the receiver engine
case-base till the goal and performance similarities
according to our algorithm is checked as following.
o The three towers goal is

winner (player):-
Objective (“destroy_towers”),
towercount (0).

o The tower_of_souls goal is

winner (player):-
 Objective (“defend_from_attack”),
 unitcount (0),
 towercount (1).

To check the similarity of the cases goals we first need to
check the similarity of its parts see table (5).

After that using equation (9), the MoS value is
calculated and then evaluated according to equation
(10).

 MoS = ૚
૜

∑ ሼ૙, ૙, ૚ሽ૜
ୀ૚࢏ = 1/3

 Goal similarity =

Finally from equation (10) we founded out that the
three towers case goal is not similar to the
tower_of_souls case goal, but as we mentioned before
that the three towers case is similar to the
tower_of_souls case. So from all the previous and
according to the Real-See algorithm we can conclude
that the tower_of_souls case will be stored in the
receiver engine case based.

 Example 3: to test the last case of Real-See algorithm
the performance value comparison, we used a stored
case called duel and a new received case called
tough_battle in table (6).

Table 6: The data set of duel
and tough_battle cases erepresenting14 features.

Features
Duel

(Case C)

Tough_battle

(Case P)

R
es

ou
rc

es
 Gold 2000 500

Wood 300 400

Stone 1500 1000

Food 30 60

of

 E
n

em
y

U
n

it
s

Castle 0 0

defense_tower 0 0

Worker 2 3

Swordman 2 3

Archer 0 0

Guard 1 2

Cow 0 0

battle_machine 1 3

Armor 10 40

Sight value 15 10

C P di(P,C) Sim(pi,ci) wi
wi*

Sim(pi,ci)

200 3000 0.875 0.125 2.551E-07 3.189E-08

200 300 0.2 0.8 0.0002 0.0002

250 1000 0.6 0.4 3.555E-06 1.422E-06

0 60 1 0 0.0006 0

0 2 1 0 0.5 0

2 1 0.333 0.667 2 1.333

3 1 0.5 0.5 2 1.6

1 2 0.333 0.667 2 1.333

2 3 0.2 0.8 2 1.6

1 2 0 1 2 1.333

0 0 discarded discarded discarded Discarded

0 0 discarded discarded discarded Discarded

30 20 0.2 0.8 0.02 0.016

5 15 0.5 0.5 0.02 0.01

Sum 10.541 7.226

 Three towers goal Tower_of_souls goal Similarity(s)

P1
Objective

(“destroy_towers”)
Objective

(“defend_from_attack”)
No 0

P2 Missing unitcount (0) discarded

P3 towercount (0) towercount (1) No 0

P4 winner (player) winner (player) yes 1

Table 5: goal similarity calculation

Not Similar MoS≤ ½

Similar MoS> ½

(10)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 367

Table 7: Duel and Tough_battle cases similarity calculations

Similarity (P,C)=4.849/6.585=0.73654

From table (7) we can see that the Sim(P,C)>0.5 Which
means that the received case (tough_battle) and the
stored one (duel) are so similar and that the recevied
case will not be stored in the receiver engine case-base
till the goal and performance similarities according to
our algorithm is checked .

As in example 2 we will check the duel and tough_battle
cases goal similarities as following:

o The duel goal is

winner (player):-

objective (“defend_from_attack”),

unitcount (0).

o The tough_battle goal is

 winner (player):-

 Objective (“defeat_enemy”),

unitcount (0).

To check the similarity of the cases goals we first need to
check the similarity of its parts see table (8)

Table 8: Goal Similarity Calculation

After that using equation (9) the MoS value is calculated
and then evaluated according to equation (10)

MoS = ૚
૜

∑ ሼ૙, ૚, ૚ሽ૜
ୀ૚࢏ = 2/3

 From equations (9) and (10) we can see that the duel
case goal is similar to the tough_battle case goal, we also
mentioned before that the duel case is similar to the
tough_battle case. From this and according to Real-See
algorithm we can definitely say that we need to check the
last case of our algorithm the performance value case.

Suppose that the performance of duel case is 0.63 while
the performance of the tough_battle case is 0.7 this
means that the received tough_battle case will be stored
in the engine case-based. And after storing the case, the
case comparator will start over again from the first step
with a new received case.

5. Conclusions

 In this paper, we have presented an experience
exchanging model to improve the performance of RTS
game engines through exchanging experiences of facing
new un-programmed opponent scenarios. Our model is
based on the game case-based reasoning system specially
on adding new cases to it. New cases are sent by other
engines that faced new opponent scenarios and beat them
to help the engine dealing with these scenarios if it faces
them in the future. We believe this will reveal game
players from downloading a new engine of the game and
loosing their saved stages.

Our main priority here was to be sure that these received
cases are all new to the system and have no matching
cases in the game CBR. In order to do that we also
introduced an algorithm which we call Real-See to check
the similarity of these received cases to the stored ones.
This algorithm is not concentrating on the case
description only but on the case goal and performance
too. We tested the Real-See algorithm on real picked
cases from 3D-Glest RTS game and it performed well.

C P di(P,C) Sim(pi,ci) wi
wi*

Sim(pi,ci)

2000 500 0.6 0.4 8.88889E-07 3.55556E-07

300 400 0.143 0.857 0.0002 0.0002

1500 1000 0.2 0.8 0.000008 0.0000064

30 60 0.333 0.667 0.002 0.002

0 0 Discarded Discarded Discarded Discarded

0 0 Discarded Discarded Discarded Discarded

2 3 0.2 0.8 2 1.6

2 3 0.2 0.8 2 1.6

0 0 Discarded Discarded Discarded Discarded

1 2 0.333 0.667 2 1.333

0 0 discarded Discarded Discarded discarded

1 3 0.5 0.5 0.5 0.25

10 40 0.6 0.4 0.002 0.001

15 10 0.2 0.8 0.08 0.064

Sum 6.585 4.849

 Duel Goal Tough_Battle Goal Similarity(S)

P1 Objective
 (“defend_from_attack”)

Objective
 (“defeat_enemy”)

No 0

P2 unitcount (0). unitcount (0). Yes 1

P3 winner (player) winner (player) Yes 1

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 368

Future Work

In the future we plan to pursue several future researches
on the case-based situation assessment depending on
Real-See algorithm and whether it helps to enlarge the
case-based or to shrink it. We also will try to introduce
an implementation of the Real-See algorithm in both
Glest and Waragus open-source real time strategy games.

References

[1] Aamodt A. and Plaza E.,“Case-Based Reasoning:
Foundational Issues, Methodological Variations, and System
Approaches” In Proceedings of AICom - Artificial Intelligence
Communications, IOS Press, Vol. 7: 1,1994, pp. 39-59
[2] Aha D., Molineaux M. and Ponsen M., “Learning to win:
Case-based plan selection in a real-time strategy game”. In
Proceedings of Sixth International Conference on Case-Based
Reasoning , 2005,pp. 5-20. Springer.

[3] Balla R. and Fern A., “UCT for Tactical Assault Planning
in Real-Time Strategy Games”. In Proceedings of the 21st
international JONT conference on Artificial intelligence,
2009,pp.40-45, Pasadena, California, USA.

[4] Copeland, J.,“Artificial intelligence: A Philosophical
Introduction”. United Kingdom: Blackwell Publishers,1993.

[5] Dimitriadis V. K., “Reinforcement Learning in Real Time
Strategy Games Case Study on the Free Software Game Glest”.
Department of Electronic and Computer Engineering Technical
University of Crete.China,2009.

[6] Fasciano M., “Everyday-World Plan Use”. The University
of Chicago, Computer Science Department.Chicago,
Illinois,1996.

[7] Goodman M.,“Results on Controlling Action With
Projective Visualization”. In Proceedings of the Twelfth
National Conference on AI. 1994,pp. 1245-1250. Seattle, WA:
AAAI Press.

[8] Hammond K.,” Case-BasedPlanning: AFramework for
Planning from Experience”. In Proceedings of Journal of
Cognitive Science. Ablex Publishing, Norwood, NJ. Vol.
14,1994.

[9] Kok, E. “Adaptive reinforcement learning agents in RTS
games”. University Utrecht, The Netherlands,2008.

[10] Li M., et.al.,”The Similarity Metric”. In Proceedings of
IEEE Transactions on Information Theory,Aug. 2004.

[11] Marthi B, Russell S., and Latham D.,“Writing Stratagus
Playing Agents in Concurrent Alisp”. In Proceedings of
Workshop on Reasoning Representation and Learning in
Computer Games (IJCAI-05), 2005,pp. 67-71.

[12] Ponsen M., Muñoz-Avila H., Spronck P., and Aha D.,
” Automatically Generating Game Tactics via Evolutionary
Learning”, Proceedings of AI Magazine, vol.(27),2006,pp.75-
84.

[13] Simpson R.,” A Computer Model of Case-based
Reasoning in Problem Solving”. PhD thesis, Georgea Institute
of Technology,1985.

[14] Ponsen M. and Spronck P.,” Automatically acquiring
domain knowledge for adaptive AI games using evolutionary
learning”. In Proceedings of the 17th conference on Innovative
applications of artificial intelligence. Vol.(3) .Pittsburgh,
Pennsylvania, 2004,pp:1535-1540.

[15] Santiago O., Mishra K., Sugandh N. and Ram A., “Case-
based planning and execution for real-time strategy games”. In
Proceedings of ICCBR-2007, 2007,pp 164-178.

[16] Tracy B.,“Game Intelligence AI Plays Along”. In
Proceedings of the Computer Power User. Volume 2, Issue
1,2002, pp 56-60.

[17] Ulam P., Goel A. & Jones J.,“Reflection in Action: Model-
Based Self-Adaptation in Game Playing Agents”. In
Proceedings of D. Fu & J. Orkin (Eds.) Challenges in Game
Artificial Intelligence: Papers from the AAAI Workshop (TR
WS-04-04). San Jose, CA: AAAI Press,2004.

[18] WWW.Wikipedia.org

Mostafa Aref is a Professor and Chairman of Computer Science
Department, Ain Shams University. He got his B.Sc. from Ain Shams
University, Egypt; his M.Sc. from University of Saskatchewan,
Canada; and his Ph.D. from University of Toledo, Ohio, USA. He
worked in Several Universities in USA, Saudi Arabia and Egypt.
Currently he is a coordinator of two research groups on NLP and RTS
games in Ain Shams University.

Magdy Zakaria is an assistant professor and Chairman of Computer
Science Department in Mansoura University. He is the Decision
Support Systems unit coordinator at faculty of computers &Information
in Mansoura University. He has supervised over 10 PhDs and 15
masters mostly specialized in Artificial Intelligence and its applications
related to real life. As a result of his work he has published over 40
papers. Current project is grid computing.

Shahenda Sarhan is a PHD student and an assistant lecturer at the
Computer Science Department in Mansoura University. Her subject is
in Real-Time Strategy games.

