
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 330

Data Structure & Algorithm for Combination Tree To
Generate Test Case

Ravi Prakash Verma1, Bal Gopal2 and Md. Rizwan Beg3

 1 Department of Computer Science and Engineering, Integral University

Lucknow, Utter Pradesh, 226026 India

2 Department of Computer Applications, Integral University
Lucknow, Utter Pradesh, 226026 India

3 Department of Computer Science and Engineering, Integral University
Lucknow, Utter Pradesh, 226026 India

Abstract

The combinations play an important role in software testing.
Using them we can generate the pairs of input parameters for
testing. However until now we have the tabular representations
for combination pairs or simply the charts for them. In this
paper we propose the use of combination trees which are far
easier to visualize and handle in testing process. This also gives
the benefits of the remembering the combination of input
parameters which we have tested and which are left, giving
further confidence on the quality of the product which is to be
released.
Keywords: Software testing, combination trees, Data
structures, algorithm

1. Introduction

The software testing is one the most important activity in
the SDLC [4]. It authenticate whether the software being
developed solves the intended purpose or not [2].
“Software systems continuously grow in scale and
functionality” [1]. Therefore large size and complexity of
software can introduces more error, bugs and faults, in
this situation testing becomes more important to uncover
errors, bug & faults before software is actually put to
use. Software testing also confirms that software being
developed as per requirements [5]. At present it is mostly
done manually and the test cases are written by the tester,
it is a manual activity [3] [6]. This is most error prone
area as important path or case may be missed out by the
tester [3]. The testers develop test cases on the basis of
the combinations of value of input parameters taken one
at a time, these test cases are represented in the tabular

form. It becomes difficult to remember that all the
combination have been listed out or not. Further it
difficult to visualize that whether we have covered all
input parameters decisions that can be taken by the user.
The combination trees can show the decision or action
taken by the uses in a sequence which is very important
for the software developer and tester to prove the
robustness of the software system being developed.
Testing done on the bases of combination trees [7]
ensures that we are covering every possible action that
can be taken by the user or at least can ensure that
software system performs correctly if valid condition &
action are chosen. In this paper we present a formal data
structure and algorithm to generate the combination trees
from the set of elements represented in array.

2. Proposed work

The number of k-combinations from a given set S of n
elements (distinct and no repeating) is often denoted by

nCk which is
1)...1(

1)...1(

kk

nn

k

n
. When k > n/2 then

kn

n

k

n
for 0 ≤ k ≤ n. The total number of

combination from n distinct elements is = nC0 + nC1 + nC2

+ … nCn-1 + nCn which is 2n or

ni

i 0

n
i C . As we see that nC0

represents null or empty elements in the set, however this

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 331

is not the case in testing as this represents the case where
we do not have input, so ignoring this we have = nC1 +

nC2 + … nCn-1 + nCn which is 2n -1 or

ni

i 1

n
i C . For

example if we have S = {a, b, c}, n = |S| = 3. The total
number of combination are given by = 3C1 + 3C2 + 3C3 = 3
+ 3 + 1 = 7 or 23 -1 = 8. The sets are given as follows
{a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}. If we want
to generate combination tree for this set S we start with
root, which represents the null or empty set initially, this
is level zero. For making level 1 then we add all the
distinct elements from the set and make root as their
parent not that the number of levels in the combination
tree are n+1 where n represents number of distinct nodes,
the level start from 0, 1, 2, … , n. After that we add
(make child) next element from the set S higher in some
order preferably lexicological order to the first child at
level 1, once these are fixed we select next child and here
also we take element higher in lexicological order and
add them until all elements in the set are exhausted. Then
the same is repeated until all levels are occupied. The
combination tree representation of the combination just
generated is shown by the tree in figure 1.

Figure 1. Showing combination tree

The sets and its element can be represented as conditions
or the input given to the software module. The
combination trees connects these conditions and input
values and we can it imitate the users action and choices
if follow a particular part in the combination tree. It gives
complete listing of action that users can do. The testers
can follow a particular path and decide what software
should be doing under a situation and decide whether the
software module should pass or fail on particular path.

Now we formalize the above method into algorithm and
give its supporting data structures. First of all we need a

structure to represent a tree node having data, pointer to
parent and pointers to child, which is given as follows.

struct node { char [] value ;
 int iChild;
 structure node *Parent;
 structure node *Child [Max];
 }

The Max can take value of N, where N is the number of
elements in the set S represented by array. Next we
define auxiliary function to create a node, which is given
as follows.

struct node * Root = NULL;

node * makeNode(char data, int nC, int i)
 { node * temp = (node *) malloc(sizeof(node));
 if (i = = 1)
 { temp->value = data; }
 else
 { temp->value = 'R'; }
 temp->Parent = NULL;
 temp->iChild = nC;
 for (int j = 0; j < temp->iChild; ++j)
 { temp->Child[j] = (node *) malloc(sizeof(node));
 temp->Child[j] = NULL;
 }
 return (temp);
 }

The root of the tree is the special node having no data but
it has pointers to its children and it parent field is set to
NULL. The auxiliary function to create root node is
called with “nC” as “Max” and “I” as “0”.

We need and auxiliary array or list to store the nodes at
given level which server as parent to the child below the
current level. The linked list representation of pointers to
nodes is used to store intermediate result. One of the
advantages provided by this storage is that it avoids back
tacking and traversal. The size of this pointer array first
increases then it starts to reduce and finally reduces to

zero size in length. This happens because in

ni

i 1

nci ,
nci

equals ncn-i, which is 2(n-1) -1. For this we define node
structure PPNode and “addParentPointer” auxiliary
functions to add nodes in the list and
“removeNodeFromHead()” to delete the added nodes
from the beginning in FIFO order. The PPHead & PPTail
are pointers to handle the list. These are as follows.

struct PPNode { struct node * N;

 struct node * next;
 };

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 332

struct PPNode * PPHead = NULL;
struct PPNode * PPTail = NULL;

void addParentPointer(node * n)
 { PPNode * temp = (PPNode*) malloc
 (sizeof(PPNode));
 temp->N = n;
 temp->Next = NULL;
 if (PPHead == NULL && PPTail == NULL)
 { PPHead = temp;
 PPTail = PPHead;
 Root = n;
 }
 else
 { PPTail->Next = temp;
 PPTail = temp;
 }
}

void removeNodeFromHead()
 { PPNode * temp = (PPNode *) malloc
 (sizeof(PPNode));
 temp = PPHead;
 if (PPHead != NULL && PPHead->Next !=NULL)
 { PPHead = PPHead->Next; }
 else
 { PPHead = NULL; }
 free(temp);
 }

Another auxiliary function is used to set the index value
such that the element in the Array is greater than its
parent in terms of lexicographical order, this is given as
follows.

int setIndex(PPNode * T)
 { int j = 0;
 char x = T->N->value;
 for (int i = 0; i < Max; ++i)
 { if (x == Array[i])
 { j = i;
 i = Max;
 }
 }
 return (j+1);
 }

Last we need an array to store the distinct elements and
Max is the number of elements in array. To start creating
the tree we set head & tail of the linked list to NULL and
root of the tree to NULL. Finally the
“createCombinationTree” function creates the
combination tree and is given as follows.

void cCTree(int _Max)
{
1. addParentPointer(makeNode(NULL, _Max, 0));
2. i = 0;
3. while (PPHead != NULL)
4. { j = 0;
5. while (i < _Max)
6. { node * n = makeNode(Array[i], _Max-i-1, 1);
7. n->Parent = PPHead->N;
8. PPHead->N->Child[j] = n;
9. addParentPointer(n);
10. i = i + 1;
11. j = j + 1;
 }
12. j = 0;
13. removeNodeFromHead();
14. i = setIndex(PPHead);
 }
}
13. temp = temp→next;
14. removeNodeFromHead();
15. i = setIndex(temp);
 }
}

3. Proof and analysis

For a set of elements S containing n elements a
combination tree can be generated, where the elements
are distinct and repetition in generated combination are
not allowed. In order to prove that combination tree
algorithm generates all the combination successfully and
the loops terminate and the algorithm halts, we use the
loop invariance method [8], which is given as follows:

3.1. Proof

Initialization: Prior to the beginning of the loop the link
list “ParentPoiunterNode” is empty.

Maintenance: To see that, at each iteration maintains the
loop invariance we start with the root, that is the first
node that is added, i is initialized to zero and the
immediate child of the root gets insert into the tree as
well as in the list. Once the insertion is complete we
remove the first node root from the list and this time the i
gets the new value 1 and this time also the list is not
empty but contains the new roots at next level. Once the
value of i is exceeds the maximum number of elements
then new node are not being added to the list instead they
are removed from the head.

Termination: At termination we see that node are
removed one by one as i get the value always higher then

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 333

maximum, therefore nodes are removed one by one and
finally the list becomes empty.

3.2. Complexity Analysis

To establish the upper bound in the proposed algorithm,
to represent the worst case run time, we have to do
approximation at various places in order to simply the
analysis. We start by measuring the upper bound of
various auxiliary procedure used and them using them in
the proposed algorithm for final rough estimation. The
function “makeNode(data)”, “makeRootNode()” and
“setIndex(struct PPNode * T)” have the complexity of
O(n). The complexity of “setIndex(struct PPNode * T)”
is the approximate value as the complexity decreases as
the node starts taking it places in the tree since first time
it get called it takes n units of time, second time it takes
n-1 units of time and finally it stats taking O(1) time. The
functions void “addParentPointer(struct * node)” and
void “removeNodeFromHead()” take O(1) time. for the
algorithm “createCombinationTree” we start with step 1
which takes O(n) time, step 2 takes O(1) time, step 3 has
a loop which executes taking (nC1 + nC2 + … nCn-1 + nCn

= 2n -1) O(2n) time, step 4 take O(2n) time, step 5 is loop
taking maximum time of O(n2n), 6 takes O(n) time step
7-12 take O(1) individually & they are in two loops
therefore take total time of O(n2n), step 13 take O(1) and
finally step 14 takes total time of O(n2n). Summing up
the total time of each step we get
= O(n) + O(1) + O(1) + O(2n) + O(2n) + O(n2n) + O(1) +
O(1) + O(1) + O(1) + O(1) + O(1) + O(1) + O(1) +
O(n2n).
= O(n) + 10O(1) + 2O(2n) + 2O(n2n)
Ignoring constant we have
= O(n2n) + O(2n) + O(n)
= O(2n (n+1)) + O(n)
Ignoring lower order terms we have
= O(n2n)
So the approximate worst case complexity of the creating
combination tree is O(n2n).

4. Conclusion & future work

The combinations can be generated by reading the
vertices and follow leading edges as path to other
vertices, when we start from a root & descend to child,
the combination pair is, all node encountered while
descending from root to the leaves of the tree. There fore
to generate combination pair having 2 elements we have
to descend to depth of two. The root of the tree is at
depth zero, so we follow every path from the root to
depth of two. This is how we have generated the
combination tree which assumes that there are distinct

elements in the set S having n number of elements. We
have generated non repeating combination with over all
complexity of O(n2n). For the future work we should try
to establish more accurate upper bound on the algorithm
and also reduce the fixed space take by each node as the
number of child of a node in the combination tree varies,
these are maximum for the roots & decrease when we
descend in the tree, therefore memory requirement drops
and also the number of sub paths decrease.

References
[1] Kaschner, K., Lohmann, N., “Automatic Test Case

Generation for Interacting Services”. In Proc. of ICSOC
2008 Workshops. Volume 5472 of Lecture Notes in
Computer Science. (2009)

[2] Tony Hoare, “Towards the Verifying Compiler”, In The
United Nations University / International Institute for
Software Technology 10th
Anniversary Colloquium: Formal Methods at the
Crossroads, from Panacea to Foundational Support, Lisbon,
March 18–21, 2002. Springer Verlag, 2002.

[3] Robert V. Binder, “Testing Object-Oriented Systems:
Models, Patterns, and Tools”, Addison Wesley Longman,
Inc., 2000.

[4] S. S. Riaz Ahamed, " Studying the feasibility and
importance of software testing: An Analysis", International
Journal of Engineering Science and Technology, Vol.1(3),
2009, 119-128.

[5] Glenford J. Myers, “The Art of Software Testing”, Second
Edition, John Wiley & Sons, Inc.

[6] B. Beizer “Software Testing Techniques”, Van Nostrand
Reinhold , 2nd edition, 1990.

[7] Jaroslav Nesetril, “ASPECTS OF STRUCTURAL
COMBINATORICS (Graph Homomorphisms and Their
Use)”, TAIWANESE JOURNAL OF MATHEMATICS
Vol. 3, No. 4, pp. 381-423, December 1999

[8] Thomas H Cormen, Clifford Stein, Ronald L Rivest,
Charles E Leiserson, “Introduction to Algorithms (2001)”,
McGraw-Hill

