
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 320

2-Jump DNA Search Multiple Pattern Matching
Algorithm

Raju Bhukya1, DVLN Somayajulu2

1Dept of CSE, National Institute of Technology,
Warangal, A.P, India. 506004.

2Dept of CSE, National Institute of Technology,
Warangal, A.P, India. 506004.

Abstract
Pattern matching in a DNA sequence or searching a pattern from a
large data base is a major research area in computational biology.
To extract pattern match from a large sequence it takes more time,
in order to reduce searching time we have proposed an approach
that reduces the search time with accurate retrieval of the matched
pattern in the sequence. As performance plays a major role in
extracting patterns from a given DNA sequence or from a
database independent of the size of the sequence. When sequence
databases grow, more efficient approaches to multiple matching
are becoming more important. One of the major problems in
genomic field is to perform pattern comparison on DNA and
protein sequences. Executing pattern comparison on the DNA and
protein data is a computationally intensive task. In the current
approach we explore a new technique which avoids unnecessary
comparisons in the DNA sequence called 2-jump DNA search
multiple pattern matching algorithm for DNA sequences. The
proposed technique gives very good performance related to DNA
sequence analysis for querying of publicly available genome
sequence data. By using this method the number of comparisons
gradually decreases and comparison per character ratio of the
proposed algorithm reduces accordingly when compared to the
some of the existing popular methods. The experimental results
show that there is considerable amount of performance
improvement due to this the overall performance increases.
Keywords- Characters, matching, patterns, sequence.

1. Introduction

Bioinformatics is the application of computer technology for
managing the biological information. Computers are used to
gather, store, analyze and integrate biological and genetic
information which can then be applied to gene based drug
discovery and development. The problem of exact string
matching is to find all occurrences of pattern 'P' of size 'm' in
the text string 'T' of size 'n'. Researchers have been focused
this sphere of research, various techniques and algorithms
have been purposed and designed to solve this problem.
Exact String matching algorithms are widely used in
bibliographic search, question answering application, DNA
pattern matching, text processing applications and
information retrieval from databases. The pattern matching

problem has attracted a lot of interest throughout the history
of computer science, particularly in the present day high
performance computing and has used in various computer
applications for several decades. These algorithms are
applied in most of the operating systems, editors, search
engines on the internet, retrieval of information (from text,
image or sound) and searching nucleotide or amino acid
sequence patterns in genome and protein sequence
databases. Bioinformatics is a multi disciplinary science that
uses methods and principle from mathematics and computer
science and statistics for analyzing biological data where
DNA pattern analysis plays a vital role, for various analyses
like discrimination of cancer from the gene expression,
mutations evolution, protein-protein interaction in cellular

activities etc. Pattern matching plays a vital role in various
applications in computational biology for data analysis like
feature extraction, searching, disease analysis, structural
analysis.

Pattern matching focuses on finding the occurrences of a
particular pattern of in a text. The problem in pattern
discovery is to determine how often a candidate pattern
occurs, as well as possibly some information on its
frequency distribution across the sequence/text. In general,
a pattern will be a description of a set of strings, each string
being a sequence of symbols. Hence, given a pattern, it is
usual to ask for its frequency, as well as to examine its
occurrences in a given sequence/text. Many algorithms
have been developed each designed for a specific type of
search. Although they all serve the same function but they
vary in the way they process the search, and second in the
methods they use to efficiently achieve the optimal
processing time.

Every human has his/her unique genes. Genes are made up
of DNA; therefore the DNA sequence of each human is
unique. However, surprisingly, the DNA sequences of all
humans are 99.9% identical, which means there is only
0.1% difference. DNA is contained in each living cell of an
organism, and it is the carrier of that organism’s genetic

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 321

code. The genetic code is a set of sequences, which define
what proteins to build within the organism. Since
organisms must replicate and reproduce tissue for
continued life, there must be some means of encoding the
unique genetic code for the proteins used in making that
tissue. The genetic code is information, which will be
needed for biological growth and reproductive inheritance.

DNA is the basic blue print of life and it can be viewed as a
long sequence over the four alphabets A, C, G and T. DNA
contains genetic instructions of an organism. It is mainly
composed of nucleotides of four types. Adenine (A),
Cytosine (C), Guanine (G), and Thymine (T). The amount
of DNA extracted from the organism is increasing
exponentially. So pattern matching techniques plays a vital
role in various applications in computational biology for
data analysis related to protein and gene in structural as
well as the functional analysis. It focuses on finding the
particular pattern in a given DNA sequence. The biologists
often queries new discoveries against a collection of
sequence databases such as GENBANK, EMBL and DDBJ
to find the similarity sequences. As the size of the data
grows it becomes more difficult for users to retrieve
necessary information from the sequences. Hence more
efficient and robust methods are needed for fast pattern
matching techniques. It is one of the most important areas
which have been studied in computer science. The string
matching can be described as: given a specific strings P
generally called pattern searching in a large sequence/text T
to locate P in T. if P is in T, the matching is found and
indicates the position of P in T, else pattern does not occurs
in the given text. Pattern matching techniques has two
categories and is generally divides into multiple pattern
matching and single pattern matching algorithms.

 Single pattern matching
 Multiple pattern matching techniques

In a standard problem, we are required to find all
occurrences of the pattern in the given input text, known as
single pattern matching. Suppose, if more than one pattern
are matched against the given input text simultaneously,
then it is known as, multiple pattern matching. Whereas
single pattern matching algorithm is widely used in
network security environments. In network security the
pattern is a string indicating a network intrusion, attack,
virus, and snort, spam or dirty network information, etc.
Multiple pattern matching can search multiple patterns in a
text at the same time. It has a high performance and good
practicability, and is more useful than the single pattern
matching algorithms. To determine the function of specific
genes, scientists have learned to read the sequence of
nucleotides comprising a DNA sequence in a process called
DNA sequencing. Comparison, pattern recognition,
detecting similarity and phylogenetic trees constructing
in genome sequences are the most popular tasks. The

process of sequence alignment allows the insertion,
deletion and replacements of symbols that representing
the nucleotides or amino acids sequences. From the
biological point of view pattern comparison is motivated
by the fact that all living organisms are related by
evolution. That implies that the genes of species that are
closer to each other should show signs of similarities at
the DNA level. Moreover, those similarities also extend
to gene function. Normally, when a new DNA or protein
sequence is determined, it would be compared to all
known sequences in the annotated databases such as
GenBank, SwissProt and EMBL.

Let P = {p1, p2, p3,...,pm} be a set of patterns of m characters
and T={t=t1,t2,t3…tn} in a text of n characters which are
strings of nucleotide sequence characters from a fixed
alphabet set called ∑= {A, C, G, T}. Let T be a large text
consisting of characters in ∑. In other words T is an
element of ∑*. The problem is to find all the occurrences of
pattern P in text T. It is an important application widely
used in data filtering to find selected patterns, in security
applications, and is also used for DNA searching. Many
existing pattern matching algorithms are reviewed and
classified in two categories.

 Exact string matching algorithm
 Inexact/approximate string matching algorithms

 Exact pattern matching algorithm will find that whether the
probability will lead to either successful or unsuccessful
search. The problem can be stated as: Given a pattern p of
length m and a string/Text T of length n (m ≤ n). Find all
the occurrences of p in T. The matching needs to be exact,
which means that the exact word or pattern is found. Some
exact matching algorithms are Naïve Brute force algorithm,
Boyer-Moore algorithm [3], KMP Algorithm [7].

Inexact/Approximate pattern matching is sometimes
referred as approximate pattern matching or matches with k
mismatches/ differences. This problem in general can be
stated as: Given a pattern P of length m and string/text T of
length n. (m ≤ n). Find all the occurrences of sub string X
in T that are similar to P, allowing a limited number, say k
different characters in similar matches. The
Edit/transformation operations are insertion, deletion and
substitution. Inexact/Approximate string matching
algorithms are classified into: Dynamic programming
approach, Automata approach, Bit-parallelism approach,
Filtering and Automation Algorithms. Inexact sequence
data arises in various fields and applications such as
computational biology, signal processing and text
processing. Pattern matching algorithms have two main
objectives.

 Reduce the number of character comparisons required
in the worst and average case analysis.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 322

 Reducing the time requirement in the worst and
average case analysis.

In many cases most of the algorithm operates in two stages.
Depending upon the algorithm some of the algorithm uses
pre-processing phase and some algorithm will search
without it. Many Pattern matching algorithms are available
with their own merits and demerits based upon the pattern
length and the technique they use. Some pattern matching
algorithm concentrates on pattern itself. Other algorithm
compare the corresponding characters of the patterns and
text from the left to right and some other perform the
character from the right to left. The performance of the
algorithm can be measured based upon the specific order
they are compared. Pattern matching algorithms has two
different phases.

 Pre-processing phase or study of the pattern.
 Processing phase or searching phase.

The pre-processing phase collects the full information and
is used to optimize the number of comparisons. Whereas
searching phase finds the pattern by the information
collected in pre-processing.

Bioinformatics has found its applications in many areas. It
helps in providing practical tools to explore proteins and
DNA in number of other ways. Bio-computing is useful in
recognition techniques to detect similarity between
sequences and hence to interrelate structures and functions.
Another important application of bioinformatics is the
direct prediction of protein 3-Dimensional structure from
the linear amino acid sequence. It also simplifies the
problem of understanding complex genomes by analyzing
simple organisms and then applying the same principles to
more complicated ones. This would result in identifying
potential drug targets by checking homologies of essential
microbial proteins. Bioinformatics is useful in designing
drugs. Pattern matching in biology differs from its
counterpart in computer science. DNA strings contain
millions of symbols, and the pattern itself may not be
exactly known, because it may involve inserted, deleted, or
replacement of the symbols. Regular expressions are useful
for specifying a multitude of patterns and are ubiquitous in
bioinformatics. However, what biologists really need is to
be able to infer these regular expressions from typical
sequences and establish the likelihood of the patterns being
detected in new sequences.

The sequence of DNA constitutes the heritable genetic
information in nuclei, plasmids, mitochondria, and
chloroplasts that forms the basis for the developmental
programs of all living organisms. Determining the DNA
sequence is therefore useful in basic research studying
fundamental biological processes, as well as in applied

fields such as diagnostic or forensic research. Because
DNA is key to all living organisms, knowledge of the DNA
sequence may be useful in almost any biological subject
area. For example, in medicine it can be used to identify,
diagnose and potentially develop treatments for genetic
diseases. Similarly, genetic research into plant or animal
pathogens may lead to treatments of various diseases
caused by these pathogens.

When we know a particular sequence is the cause for a
disease, the trace of the sequence in the DNA and the
number of occurrences of the sequence defines the intensity
of the disease. As the DNA is a large database we need to
go for efficient algorithms to find out a particular sequence
in the given DNA. We have to find the number of
repetitions and the start index and end index of the
sequence, which can be used for the diagnosis of the
disease and also the intensity of the disease by counting the
number of pattern matching strings, occurred in a gene
database.

Since children inherit their genes from their parents, they
can also inherit any genetic defects. Children and siblings
of a patient generally have a 50% chance of also being
affected with the same disease. Genetic testing can identify
those family members who carry the familial unusual
mutation and should undergo annual tumor screening from
an early age. Genetic testing can also identify family
members who do not carry the familial unusual mutation
and do not need to undergo the increased tumor
surveillance recommended for patients with unusual
mutations. The unusual pattern in the strand reflects in the
split strand and hence increases in the unusual mutations
increase in the cells. All familial cancer syndromes are
caused by a defect in a gene that is important for preventing
development of certain tumors. Everybody carries two
copies of this gene in each cell, and tumor development
only occurs if both gene copies become defective in certain
susceptible cells. Genetic testing can help to diagnose by
detecting defects in the unusual mutated gene.

The rest of the paper is organized as follows. We briefly
present the background and related work in section 2.
Section 3 deals with proposed model i.e., 2-JUMP DNA
search multiple pattern matching algorithm. Experimental
results and discussion are presented in Section 4 and we
make some concluding remarks in Section 5.

2. Background and Related Work

This section reviews some work related to DNA sequences.
An alphabet set ∑ = {A, C, G, T} is the set of characters for
DNA sequence which are used in this algorithm.
The following notations are used in this paper:
DNA sequence characters ∑= {A, C, G, T}.
 Denotes the empty string.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 323

│P │ Denotes the length of the string P.
S[n] Denotes that a text which is a string of length n.
P[m] Denotes a pattern of length m.
CPC-Character per comparison ratio.

String matching mainly deals with problem of finding all
occurrences of a string in a given text. In most of the DNA
applications it is necessary for the user and the developer to
be able to locate the occurrences of specific pattern in a
sequence. In Brute-force algorithm the first character of the
pattern P is compared with the first character of the string
T. If it matches, then pattern P and string T are matched
character by character until a mismatch is found or the end
of the pattern P is detected. If mismatch is found, the
pattern P is shifted one character to the right and the
process continues. The complexity of this algorithm is
O(mn). The Bayer-Moore algorithm [3] applies larger shift-
increment for each mismatch detection. The main
difference the Naïve algorithm had is the matching of
pattern P in string T is done from right to left i.e., after
aligning P and string T the last character of P will matched
to the first of T . If a mismatch is detected, say C in T is not
in P then P is shifted right so that C is aligned with the
right most occurrence of C in P. The worst case complexity
of this algorithm is O(m+n) and the average case
complexity is O(n/m).

 In IFBMPMA [12] the elements in the given patterns are
matched one by one in the forward and backward until a
mismatch occurs or a complete pattern matches .The KMP
algorithm [7] is based on the finite state machine
automation. The pattern P is pre-processed to create a finite
state machine M that accepts the transition. The finite state
machine is usually represented as the transition table. The
complexity of the algorithm for the average and the worst
case performance is O(m+n).

In IBKMPM [13] algorithm we first choose the value of k
(a fixed value), and divide both the string and pattern into
number of substring of length k, each substring is called as
a partition. If k value is 3 we call it as 3-partition else if it is
4 then it is 4-partition algorithm. We compare all the first
characters of all the partitions, if all the characters are
matching while we are searching then we go for the second
character match and the process continues till the mismatch
occurs or total pattern is matched with the sequence. If all
the characters match then the pattern occurs in the sequence
and prints the starting index of the pattern or if any
character mismatches then we will stop searching and then
go to the next index stored in the index table of the same
row which corresponds to the first character of the pattern
P.

In approximate pattern matching method the oldest and
most commonly used approach is dynamic programming.
In 1996 Kurtz [8] proposed another way to reduce the space

requirements of almost O(mn). The idea was to build only
the states and transitions which are actually reached in the
processing of the text. The automaton starts at just one state
and transitions are built as they are needed. The transitions
those were not necessary will not be build.

The Deviki-Paul algorithm [5] for multiple pattern
matching requires a preprocessing of the given input text to
prepare a table of the occurrences of the 256 member
ASCII character set. This table is used to find the
probability of having a match of the pattern in the given
input text, which reduces the number of comparisons,
improving the performance of the pattern matching
algorithm. The probability of having a match of the pattern
in the given text is mathematically proved.

 In the MSMPMA [18] technique the algorithm scans the
input file to find the all occurrences of the pattern based
upon the skip technique. By using this index as the starting
point of matching, it compares the file contents from the
defined point with the pattern contents, and finds the skip
value depending upon the match numbers (ranges from 1 to
m-1). Harspool [6] does not use the good suffix function,
instead it uses the bad character shift with right most
character .The time complexity of the algorithm is O(mn).

Berry-Ravindran [2] calculates the shift value based on the
bad character shift for two consecutive text characters in
the text immediately to the right of the window. This will
reduce the number of comparisons in the searching phase.
The time complexity of the algorithm is O(nm) .Sunday [4]
designed an algorithm quick search which scans the
character of the window in any order and computes its shift
with the occurrence shift of the character T immediately
after the right end of the window. The FC-RJ [11]
algorithm searches the whole text string for the first
character of the pattern and maintains an occurrence list by
storing the index of the corresponding character. Time and
space complexity of preprocessing is O(n). FC_RJ uses an
array equal to size of the text string for maintaining
occurrence list.

Ukkonen [15] proposed automation method for finding
approximate patterns in strings. He proposed the idea using
a DFA for solving the inexact matching problem. Though
automata approach doesn’t offer time advantage over
Boyer-Moore algorithm [3] for exact pattern matching.
The complexity of this algorithm in worst and average case
is O(m+n). In this every row denotes number of errors and
column represents matching a pattern prefix. Deterministic
automata approach exhibits O(n) worst case time
complexity. The main difficulty with this approach is
construction of the DFA from NFA which takes
exponential time and space. Wu.S.Manber.U [16] proposed
the algorithm for fast text searching allowing errors. The
first bit-parallel method is known as “shift-or” which

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 324

searches a pattern in a text by parallelizing operation of non
deterministic finite automation. This automation has m+1
states and can be simulated in its non deterministic form in
O(mn) time. The filtering approach was started in 1990.
This approach is based upon the fact it may be much easier
to tell that a text position doesn’t match. It is used to
discard large areas of text that cannot contain a match. The
advantage in this approach is the potential for algorithms
that do not inspect all text characters.

By using dynamic programming approach especially in
DNA sequencing Needleman-Wunsch [9] algorithm and
Smith-waterman algorithms [14] are more complex in
finding exact pattern matching algorithm. By this method
the worst case complexity is O(mn). The major advantage
of this method is flexibility in adapting to different edit
distance functions. The Raita algorithm [10] utilizes the
same approach as Horspool algorithm[6] to obtaining the
shift value after an attempt. Instead of comparing each
character in the pattern with the sliding window from right
to left, the order of comparison in Raita algorithm [10] is
carried out by first comparing the rightmost and leftmost
characters of the pattern with the sliding window. If they
both match, the remaining characters are compared from
the right to the left. Intuitively, the initial resemblance can
be established by comparing the last and the first characters
of the pattern and the sliding window. Therefore, it is
anticipated to further decrease the unnecessary
comparisons.

The Aho-Corasick algorithm[1] developed at Bell Labs in
1975 by Alfred Aho and Corasick is an extension of the
KMP algorithm [7]. The AC algorithm consists of
constructing a finite state pattern matching machine from
the keyword and then using the machine to process the text
in a single pass. It can find an occurrence of several
patterns in the order of O(n) time, where n is the length of
the text, with pre-processing of the patterns in linear time.

Two dimensional pattern matching methods are commonly
used in computer graphics. Takaoka and Zhu proposed
using a combination of the KMP[6] and RK methods in an
algorithm developed for two dimensional cases. The second
approach that runs faster when the row length of the pattern
increases and is significantly faster than previous methods
proposed. Three dimensional pattern matching is useful in
solving protein structures, retinal scans, finger printing,
music, OCR and continuous speech. Multi-dimensional
matching algorithms are a natural progression of string
matching algorithms toward multi-dimensional matching
patterns including tree structure, graphs, pictures, and
proteins structures.

3. 2-JUMP DNA Search Multiple Pattern
Matching Algorithm

In this method we use combination of both the techniques
 Index Based Search
 ASCII sum

The index based search has been well established. Here we
created index table of the input data and our search skips
primarily on the index-row of the first character of the
pattern. However in our proposed work, we go one step
ahead and rather than using primitive method of comparing
single character at a time, we rather compare sum of two
characters of both input sequence data and pattern. This
reduces our comparisons by one-third (we count one
comparison for sum). After we match it completely we go
for order checking in the subgroups sequentially until there
is a mismatch or it completely matches.

3.1. Algorithm

 Input[n] : Input character array of length n.
 Patt[m] : Pattern character array of length m.
 IndexTable[4][n] – index Table of input of length 4*n (ACGT)
 Let i,j,startIndex,flag,compare,counter integer variables
 i=j=start Index=compare=counter=0.
 Flag=1
1. Create the index table.
2. Fetch startIndex as per first letter of pattern.
 startIndex = IndexTable [firstLet][i];
3. while(n-startIndex > m)
 while(j<m)
if(m-j==1) // odd no. of characters in pattern.
 if(input[startIndex+j] != pat[j])
 compare++;
 flag=0;
 break;
 Inp2 =input[startIndex+j]+input[startIndex+j+1];
 Pat2 = pat[j]+pat[j+1];
 Compare++;
 If(inp2!=pat2)
 Flag=0;
 Break;
 Else
 compare++;
 If(input[startIndex+j] != pat[j]|| input[startIndex+j+1] != pat[j+1])

flag=0;
break;

 If(flag == 1)
Counter++;

 Else
 Flag=1;
 J=0;
 StartIndex = IndexTable[firstLet][++i];

3.2. Index Based Search

This method has been invented and used to reduce the
search time drastically. In this method we make an Index
table of given input on the basis of characters involved
which in our case are A,C,G,T. So, we have a (4xSize of
input) table. Now we concentrate only on the index row of
first character of our pattern and continue our comparison

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 325

technique from the first index onwards. Based upon our
comparisons results of success or failure we can directly
jump to next potential occurrence of pattern by moving to
the next index in the row chosen. We continue above
operations till we finish all indexes of that row. In this way
we need not move serially through the input, but rather we
only concentrate only on the potential strings.

3.3 ASCII SUM (or 2-Jump)

Our unique comparison method adds further benefits to our
Index Based Search. Here we use unique property of
characters involved in our search patterns and input. As we
are dealing with only genetic data, so our domain confines
to following four characters A, C, G, T. Further reducing
these characters to single digits by mod formula.

Table.1. Subscript values of DNA sequence characters

Now we can use unique property of above integers. Any
sum of above in combination of two gives a unique number
in return.
 A + A ~ 1 + 1 = 2
 A + T ~ 1 + 0 = 1
 A + G ~ 1 + 2 = 3
 A + C ~ 1 + 3 = 4

And so on for other integers too. Now we can use this to
reduce our both input size and patterns to half the length
they actually are, i.e., we combine two neighboring
alphabets (or their reduced integers) to give single integers.

 E.g. Sequence=ATTGCCATA
 Equivalent integers: 100233101
 Pattern-GCCA
 Equivalent integers: 2 3 3 1

Here the first character of pattern is ‘G’. From our sequence
we find that first index of character ‘G’ is at 4. So we start
forming groups from 4th index onwards. 2-Sum groups
starting at ‘G’ of sequence: (2+3), (3+1) = 5,4.
2-Sum groups of pattern: (2+3), (3+1) = 5,4.

So, now rather than comparing each character/integer
separately we can compare two of them in one go. If in one
go we find that our pattern string matches a substring of the
input, and then we can go further and compare the two
characters. This will be necessary as the two characters may
exist in reverse order form as compared to that of pattern.

 E.g. input- AT
 Pattern- TA

 But, such comparison will be required only if pattern
matches. Thus over all we find following result: Say,
comparisons found over pattern lengths in general are ‘n’.
By our methods we reduce them to halves i.e., ‘n/2’.
Further adding the single comparisons if our pattern
matched: n/2 + p. Where p is length of pattern, which is
generally quite small. Thus taking p->0. We get total
number of comparisons is n/2. The conversion of input can
be done on the fly or while creation of index table.

3.4. Trivial Cases in Comparisons

Case i: If S = i.e., |S| = 0 and P = i.e., |P| = 0 then the
number of occurrences of P in S is 0.
Case ii: If S = i.e. |S| = 0 and for any |P| ≥ 0 then the
number of occurrences of P in S is 0.
Case iii: If S ≠ i.e., |S| ≠ 0 and for any |P| = 0 then the
number of occurrences of P in S is 0.
Case iv: If S ≠ i.e., |S| ≠ 0, P ≠ i.e., |P| ≠ 0 and |S| ≤ |P|
then the number of occurrences of P in S is 0.

3.4. To understand the algorithm assume a string
S=AGAATGCAGCTACAAGGTTCCATTCTGTCTCGCACTA of
37 characters and pattern P= ATGCAG. Therefore the string
can be viewed as follows in an indexing table.

Table.2. Index values of A,C,G and T sequence characters

As ‘A’ being our first character of pattern the target indexes
are 1, 3, 4, 8, 12, 14, 15, 22, 34 and 37.
Here S2 and P2 refer to combination of two characters of
input string and pattern respectively. S and P refer to
whole input and pattern s1. First we begin at index 1
because ‘A’ is starting from index 1. We then form 2-
groups of input and pattern both.
 i.e., S2 = A+G
 P2 = A+T
Clearly S2!= P2 therefore S!= P. So we skip and go to
next index.

2. At index 3 we get another probable match. We form 2-
groups of input and pattern both.
 i.e., S2 = A+A
 P2 = A+T
Again we find S2!=P2, so we can match directly from next
index.

S.No DNA ASCII

Value

ASCII

Value-64

(ASCIIValue-

64)%5

Array

Subscript

1 A 65 1 1 1

2 C 67 3 3 3

3 G 71 7 2 2

4 T 84 20 0 0

T 0 5 11 18 19 23 24 26 28 30 36

 A 1 1 3 4 8 12 14 15 22 34 37

 G 2 2 6 9 16 17 27 32

C 3 7 10 13 20 21 25 29 31 33 35

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 326

4. Next we move to index 4. Here,
 S2 = A+T
 P2 = A+T
So we get S2=P2, we move further to next subgroup,
 S2 = G+C
 P2 = G+C
As S2=P2 we proceed further,
 S2=A+G
 P2=A+G,
As all subgroups have matched we go for checking order in
our subgroups. In case of first subgroup, we find character
in same order as pattern, so we go for next subgroup. Here
also characters are in same order as per pattern. Same
follows up to the last subgroup .So we do three more
comparisons and over all in 6 comparisons we are getting
our pattern matched.
Thus S=P. We now proceed to next index.

5. Next we move to index 8. Here,
 S2 = A+G
 P2 = A+T
Clearly S2!=P2. Thus we conclude S!=P and move to
further index.

6. However at 12, we find
 S2 = A+C
 P2 = A+T.
Here too we find S2!=P2 giving us S!=P. We check for
next index now.

7. At index 14,
 S2 = A+A
 P2 = A+T
So S2!=P2. Without further checking we skip to next
index.

8. Next at index 15,
 S2 = A+G
 P2 = A+T
Again we have S2!=P2. We need not check further and
continue our search from next index.
9. Next at index 22,
 S2 = A+T
 P2 = A+T
We find successful match in this subgroup so we check for
next subgroup too,
 S2=T+C
 P2=G+C
But here we find mismatch i.e., S2!=P2. Without checking
further we can skip to next index.

10. However at next index i.e., 34 we find that remaining
length of input string S is 4 characters, while our pattern
string P’s length is 6 characters. Therefore it is not possible
to match pattern with sequence. So we skip remaining
comparisons.

Proof: Let N=Input String say, ATTTGACCTTGAAA...

By converting the string to equivalent numerical sequence
using formula,

N[i] = (N[i] – 64) % 5, i = Length of Input.

Now we apply same to Pattern P,

P[i] = (P[i] – 64) % 5, i = Length of Pattern.

First we prepare P,

P[j] = P[i] + P[i+1]

j++, i+2

Where P’ is another array of length half that of P.

Now we process N,

2Sum = N[i]+N[i+1], where i<length of P

Compare (P’[j],2Sum)

Where Compare function compares the two quantities and
breaks the whole operation if it find mismatch.

Thus we see effectively maximum number of comparisons
require.

Max (length of(P’), (length of(N))/2);

in case of even comparisons and

Max (length of(P’), (length of(N))/2) + 1;

in case of odd comparisons. Also the comparisons are
finally going to end as length of N is finite.

4. Experimental Results and Discussions

In this section we present several experiments comparing
our algorithm to the existing algorithms and evaluating
with the number and size of patterns on the performance.
Each experiment was performed on different pattern sizes
and the comparison results are noted. The text file which
we used for our experiments was a collection of 1024
nucleotide sequence characters. From the below figure we
can draw the following conclusions. As the size of the
pattern increases the number of comparisons increases but
in the proposed technique as the size increases the number
of comparisons decreases in some of the cases. The patterns
are randomly chosen from the given file size of 1024
characters.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 327

4.1. The below DNA sequence dataset has been taken
for the testing of 2-jump algorithm .The DNA
biological sequence S∑*of size n=1024 and pattern
P∑*. Let S be the following DNA sequence.

“AGAACGCAGAGACAAGGTTCTCATTGTGTCTCGC
AATAGTGTTACCAACTCGGGTGCCTATTGGCCTCC
AAAAAAGGCTGTTCAACGCTCCAAGCTCGTGACCT
CGTCACTACGACGGCGAGTAAGAACGCCGAGAAG
GTAAGGGAACTAATGACGCGTGGTGAATCCTATG
GGTTAGGATCGTGTCTACCCCAAATTCTTAATAAA
AAACCTAGGACCCCCTTCGACCTAGACTATCGTAT
TATGGACAAGCTTTAACTGTCGTACTGTGGAGGCT
TCAAAACGGAGGGACCAAAAAATTTGCTTCTAGC
GTCAATGAAAAGAAGTCGGGTGTATGCCCCAATTC
CTTGCTGCCCGGACGGCCAGTTCATAATGGGACAC
AACGAATCGCGGCCGGATATCACATCTGCTCCTGT
GATGGAATTGCTGAATGCGCAGGTGTGCTTATGTA
CAATCCACGCGGTACTACATCTTGTCTCTTATGTA
GGGTTCAGTTCTTCGCGCAATCATAGCGGTACGAA
TACTGCGGCTCCATTCGTTTTGCCGTGTTGATCGG
GAATGCACCTCGGGGACTGTTCGATACGACCTGGG
ATTTGGCTATACTCCATTCCTCGCGAGTTTTCGATT
GCTCATTAGGCTTTGCGGTAAGTAAGTTCTGGCCA
CCCACTTCGAGAAGTGAATGGCTGGCTCCTGAGCG
CGTCCTCCGTACAATGAAGACCGGTCTCGCGCTAA
ATTTCCCCCAGCTTGTACAATAGTCCAGTTTATTAT
CAAAGATGCGACAAATAAATTGATCAGCATAATC
GAAGATTGCGGAGCATAAGTTTGGAAAACTGGGA
GGTTGCCAGAAAACTCCGCGCCTACTTTCGTCAGG
ATGATTAAGAGTATCGAGGCCCCGCCGTCAATACC
GATGTTCTTCGAGCGAATAAGTACTGCTATTTTGC
AGACCCTTTGCCAGGCCTTGTCTAAAGGTATGTTA
CTTAATATTGACAATACATGCGTATGGCCTTTTCC
GGTTAACTCCCTG”.

The index table (index Tab[4][1024]) for sequence S is
very large in number of DNA sequence characters . For
different patterns sizes which has been chosen randomly
from the above DNA sequence the number of occurrences
and the number of comparisons is shown in the Table. 3. To
check whether the given pattern is present in the sequence
or not we need an efficient algorithm with less comparison
time and complexity. By the current technique different
patterns are analyzed and the graph is plotted by using
these results and analyzed accordingly. From the below
experimental results, improvement can be seen that 2-
JUMP algorithm gives good performance compared to the
some of the popular methods shown in the Table.4. Here
we have taken five fields in the Table .3. The pattern text,
number of characters in the pattern, number of occurrences
of a pattern, the proposed method and the number of
comparisons and comparisons per character. The number of
comparisons per character (CPC ratio) which is equal to
(Number of comparisons /file size) can be used as a

measurement factor, this factor affects the complexity time,
and when it is decreased the complicity also decreases.

Table .3.Experimental results analysis of 2-jump algorithm

From the below Table.4. results analysis it has been
observed the following in terms of relative performance of
our algorithm with some of existing algorithms. To
measure the performance of the proposed algorithm with
the existing popular algorithm we have used two
parameters like CPC (Character per comparison ratio) and
number of comparisons which are shown in Table.4. The
proposed algorithm gives good performance with the
algorithms like MSMPMA, Brute-force, Tri-Match,
IKPMPM and Naïve string matching algorithms. From the
Table.4. We have taken different pattern sizes from 1 to 16
and analyzed accordingly. In all the different cases the
proposed technique gives better performance with existing
algorithms.

Table .4.Comparisons of different algorithms with 2-jump

S.No Pattern

Patten
Length

No. of
Occur

 2-
jump

CPC

1 A 1 259 259 0.2
2 AG 2 53 312 0.3
3 CAT 3 11 335 0.3
4 AACG 4 5 434 0.4
5 AAGAA 5 2 441 0.4
6 AAAAAA 6 3 456 0.4
7 AGAACGC 7 2 379 0.3
8 AAAAAAGG 8 1 460 0.4
9 GCTCATTAG 9 1 390 0.3

10 CCTTTTCCGG 10 1 377 0.3
11 TTTTGCCGTGT 11 1 431 0.4
12 TTCTTAATAAAA 12 1 435 0.4
13 GGGACCAAAAAAT 13 1 392 0.3
14 TTTTGCCGTGTTGA 14 1 432 0.4
15 CCTCCAAAAAAGGCT 15 1 382 0.3
16 GGCTGTTCAACGCTCC 16 1 392 0.3
17 TTTTCGATTGCTCATTA 17 1 432 0.4
18 GGGATTTGGCTATACTCC 18 1 395 0.3
19 GGCCTTGTCTAAAGGTATG 19 1 393 0.3
20 CCTGAGCGCGTCCTCCGTCA 20 1 382 0.3

Pattern
2-JUMP

IBKPMPM MSMPMA

Brute-
Force

Tri-
Match

Naïve
String

No.of
Com

CPC
No.of
Com

CPC
No.of
Com

CPC
No.of
Com

CPC
No.of
Com

CPC
No.of
Com

CPC

A 259 0.2 259 0.2 1024 1.0 1024 1.0 1025 1.0 1024 1.0

AG 312 0.3 518 0.5 1230 1.2 1282 1.2 1284 1.2 1281 1.2

CAT 335 0.3 542 0.5 1298 1.2 1318 1.2 1321 1.2 1310 1.2

AACG 434 0.4 614 0.6 1359 1.3 1376 1.3 1380 1.3 1376 1.3

AAGAA 441 0.4 607 0.5 1375 1.3 1388 1.3 1393 1.3 1387 1.3

AAAAAAGG 460 0.4 623 0.6 1394 1.3 1409 1.3 1417 1.3 1407 1.3

TTCTTAATAAAA 435 0.4 634 0.6 1390 1.3 1390 1.3 1402 1.3 1399 1.3

GGCTGTTCAACGCTCC 392 0.3 580 0.5 1349 1.3 1349 1.3 1365 1.3 1349 1.3

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 328

Fig.1. Shows comparison of different algorithms with 2-
JUMP.The proposed algorithm outperforms when
compared with some of the popular algorithms. The current
technique gives good performance in reducing the number
of comparisons compared with other algorithms. The dotted
line shows the 2-jump proposed model where as
MSMPMA, Brute-Force, Trie-matching IKPMPM and
Naïve string searching are shown by solid lines. From the
below graph towards the X-axis we have the pattern size
whereas towards Y-axis shows the number of comparisons.
If we see the experimental analysis all the other algorithms
will gives more than 1000 comparisons where as the
proposed technique gives less than 500 comparisons due to
the indexed method.

Fig.1. Comparison of different algorithms with 2-JUMP.

The following are observed from the experimental results.

 Reduction in number of comparisons.
 The ratio of comparisons per character has gradually

reduced and is less than 1.
 Suitable for unlimited size of the input file.
 Once the indexes are created for input sequence we

need not create them again.
 For each pattern we start our algorithm from the

matching character of the pattern which decreases the
unnecessary comparisons of other characters.

 It gives good performance for DNA related sequence
applications.

Applications in Bioinformatics

Different biological problems of bioinformatics involve the
study of genes, proteins, nucleic acid structure prediction,
and molecular design.
 Alignment and comparison of DNA, RNA, and protein

sequences.
 Gene mapping on chromosomes.
 Gene finding and promoter identification from DNA

sequences.
 Interpretation of gene expression and micro-array data.
 Gene regulatory network identification.

 Construction of phylogenetic trees for studying
evolutionary relationship.

 DNA and RNA structure prediction.
 Protein structure prediction and classification.
 Molecular design.
 Organize data and allow researchers to access existing

information and submit new entries.
 Develop tools and resources which are used for

analysis and management of biological data.
 Use sequence data to analyze and interpret the results

in a biologically meaningful manner.
 To help researchers in the pharmaceutical industry in

drug design process.
 Finding similarities among strings such as proteins of

different organisms.
 Finding similarities among parts of spatial structures.
 Constructing of phylogenetic trees called the evolution

of organisms.
 Classifying new data according to previously clustered

sets of annotated data.

5. Conclusion

In this paper we have proposed a new algorithm for DNA
pattern matching called 2-jump index based search for
DNA pattern matching. The proposed technique enhances
the comparison time and the CPC ratio when compared
with some of the popular techniques. The proposed
algorithm is implemented, analyzed, tested and compared.
The experimental result shows that there is a large amount
of performance improvement due to this the overall
performance increases.

References

[1] Aho, A. V., and M. J. Corasick, ‘‘Efficient string matching:
an aid to bibliographic Search, ’’ Communications of the
ACM 18 (June 1975), pp. 333 340.

[2] Berry, T. and S. Ravindran, 1999. A fast string
matching algorithm and experimental results. In:
Proceedings of the Prague Stringology Club Workshop
’99, Liverpool John Moores University, pp: 16-28.

[3] Boyer R. S., and J. S. Moore, ‘‘A fast string searching
algorithm‘Communications of the ACM 20, 762- 772, 1977.

[4] D.M. Sunday, A very fast substring search algorithm, Comm.
ACM 33 (8) (1990) 132–142.

[5] Devaki-Paul, “Novel Devaki-Paul Algorithm for Multiple
Pattern Matching” International Journal of Computer
Applications (0975 – 8887) Vol 13– No.3, January 2011.

[6] Horspool, R.N., 1980. Practical fast searching in strings.
Software practice experience, 10:501-506

[7] Knuth D., Morris. J Pratt. V Fast pattern matching in strings,
SIAM Journal on Computing, Vol 6(1), 323-350, 1977.

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 8 12 16

2-JUMP MSMPMA
TRI-MATCH BRUTEFORCE
NAÏVE STRING IBKPMPM

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 329

[8] Kurtz. S, Approximate string searching under weighted edit
distance. In proceedings of the 3rd South American workshop
on string processing. Carleton Univ Press, pp. 156-170, 1996

[9] Needleman, S.B Wunsch, C.D(1970). “A general method
applicable to the search for similarities in the amino acid
sequence of two proteins.” J.Mol.Biol.48,443-453.

[10] Raita, T. Tuning the Boyer-Moore-Horspool string-searching
algorithm. Software - Practice Experience 1992, 22(10), 879-
884.

[11] Rami H. Mansi, and Jehad Q. Odeh, "On Improving the
Naive String Matching Algorithm," Asian Journal of
Information Technology, Vol.8, No. I, ISS N 1682-
3915,2009, pp. 14-23.

[12] Raju Bhukya, DVLN Somayajulu,‘‘An Index Based Forward
backward Multiple Pattern Matching Algorithm, ‘World
Academy of Science and Technology..June 2010, pp347-355

[13] Raju Bhukya, DVLN Somayajulu,”An Index Based K-Partition
Multiple Pattern Matching Algorithm”, Proc. of International
Conference on Advances in Computer Science 2010 pp 83-87.

[14] Smith,T.F and waterman, M (1981). Identification of
common molecular subsequences T.mol.Biol.147,195-197.

[15] Ukkonen,E., Finding approximate patterns in strings J.Algor.
6, 1985, 132-137.

[16] Wu S., and U. Manber, ‘‘Agrep — A Fast Approximate
Pattern-Matching Tool,’’ Usenix Winter 1992 Technical
Conference, San Francisco (January 1992), pp. 153 162.

[17] Wu.S.,Manber U., and Myers,E .1996, A sub-quadratic
algorithm for approximate limited expression matching.
Algorithmica 15,1,50-67, Computer Science Dept, University
of Arizona,1992.

[18] Ziad A.A Alqadi, Musbah Aqel & Ibrahiem M.M.EI Emary,
Multiple Skip Multiple Pattern Matching algorithms. IAENG
International Vol 34(2),2007.

Raju Bhukya has received his B.Tech
in Computer Science and Engineering
from Nagarjuna University in the year
2003 and M. Tech degree in Computer
Science and Engineering from Andhra
University in the year 2005. He is
currently working as an Assistant
Professor in the Department of
Computer Science and Engineering in
National Institute of Technology,

Warangal, Andhra Pradesh, India. He is currently working in the
areas of Bio-Informatics.

Somayajulu DVLN has received his M. Sc and M. Tech

degrees from Indian Institute of
Technology, Kharagpur in 1984
and in 1987 respectively, and his
Ph. D degree in Computer
Science & Engineering from
Indian Institute of technology,
Delhi in 2002. He is currently
working as Professor and Head of
Computer Science & Engineering
at National Institute of
Technology, Warangal. His
current research interests are bio-

informatics, data warehousing, database security and Data
Mining.

