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Abstract 
Evolutionary algorithms are considered more efficient for 
optimal system design because they can provide higher 
opportunity for obtaining the global optimal solution. This paper 
introduces a method for construct and train Recurrent Neural 
Networks (RNN) by means of Multi-Objective Genetic 
Algorithms (MOGA). The use of a multi-objective evolutionary 
algorithm allows the definition of many objectives in a natural 
way. The case study of the proposed model is the phoneme 
recognition. We have shown that the proposed model is able to 
achieve good results in recognition tasks. 
Keywords: Recurrent neural network, Genetic algorithm, 
Phonemes recognition, Multi-objective optimization. 

1. Introduction 

Recurrent Neural Networks (RNN) represent a large and 
varied class of computational models that are designed by 
more or less detailed analogy with biological brain 
modules. In this paper we focus on the use a particular 
network : Elman-type recurrent networks in witch the 
hidden layer is returned to the input layer [7].  

In recent years, gradient-based RNN solved many tasks 
[26]. The Back-propagation, however, has two major 
limitations: a very long training process, with problems 
such as local minima and network design. The back-
propagation algorithm adjusts exclusively the connection 
weights for particular network architecture, but the 
algorithm does not adjust the network architecture to 
define the optimum Neural Network (NN) for a particular 
problem [3], [25]. To overcome these restrictions, various 
methods for auto-design NN have been proposed [2], [10]. 

Genetic Algorithms (GA) are a search heuristic that 
mimics the process of natural evolution. They maintain a 
population of solution candidates and evaluate the fitness 
of each solution according to a specific fitness function. 
Even though, GA are not guaranteed to find the global 

optimum, they can find an acceptable solution relatively in 
a wide range of problems [4].  

Various combinations of GA and NN have been 
investigated [3], [10], [24]. Much research concentrates on 
the acquisition of parameters for a fixed network 
architecture [6], [9]. Other work allows a variable 
topology, but disassociates structure acquisition from 
acquisition of weight values by interweaving a GA search 
for network topology with a traditional parametric training 
algorithm over weights [2], [10]. Some studies attempt to 
co-evolve both the topology and weight values within a 
GA framework, but the network architectures are 
restricted [15].  

Many researches exist, describing multitude applications 
for GA [4]. A substantial proportion of these applications 
involve the evolution of solutions to problems with more 
than one objective [13], [22], [27]. More specifically, such 
problems consist of several separate objectives, with the 
required solution being one where some or all of these 
objectives are satisfied to a greater or lesser degree.  

Multi-objective genetic algorithms (MOGA) have been 
widely used for the evolution of NN. Dehuri and Cho [11] 
propose a multi-criterion pareto GA used to train NN for 
classification problems. Delgado and Pegalajar [12] 
propose a MOGA for obtaining the optimal size of RNN 
for grammatical inference. 

In this study, we combine RNN with MOGA to provide an 
alternative way for optimizing both RNN structure and 
weights. An important aspect of our work is the use of 
multi-objective optimization to evaluate the ability of new 
RNN [20]. The use of different objectives for each 
network allows a more accurate estimation of the 
goodness of a network.  

This paper is organized as follows. Section 2 explains the 
application of multi-objective optimization to the problem 
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of fitness estimation. Section 3 describes the proposed 
constructive multi-objective RNN. Section 4 presents the 
experimental results obtained on the classification of the 
TIMIT vowels. 

2. Multi-objective optimization 

In this section, we briefly present the formulation of a 
multi-objective optimization problem (MOO) such as 
some required notions about Pareto based multi-objective 
optimization and some concepts relating to Pareto 
optimality [2], [12].  

The scenario considered in this paper involves an arbitrary 
optimization problem with k objectives, which are, 
without loss of generality, all to be minimized and all 
equally important, i.e., no additional knowledge about the 
problem is available. We assume that a solution to this 
problem can be described in terms of a decision vector 
denoted by: 

),...,,( 21 nxxxx 
(1) 

where nxxx ,...,, 21  are the variables of the problem.  

Mathematically, the multi-objective optimization problem 
is stated by : 
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
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where if  are the decision criteria and k is the number of 

objective function. 

An optimization problem searches the action *x where the 
constraints C are satisfied and the objective function F(x) 
is optimized.  

In practical applications, there is no solution that can 
minimize all of the k objectives. As a result, MOO 
problems tend to be characterized by a family of 
alternatives solutions.  

The approach most used is to weight and sum the separate 
fitness values in order to produce just a single fitness 
value for every solution, thus allowing the GA to 
determine which solutions are fittest as usual. However, as 
noted by Goldberg [14], the separate objectives may be 
difficult or impossible to manually weight because of 
unknowns in the problem. Additionally, weighting and 
summing could have a detrimental effect upon the 
evolution of acceptable solutions by the GA (just a single 
incorrect weight can cause convergence to an 
unacceptable solution). 

The concept of Pareto-optimality helps to overcome this 
problem of comparing solutions with multiple fitness 
values. A solution is Pareto optimal if it is not dominated 
by any other solutions. A Pareto optimal solution is 
defined as follows: a decision vector x is said to dominate 
a decision vector y if and only if   :,,1 ki   

  )()(:,,1)()( yjfxjfkjyifxif   . The decision vector x is 

Pareto optimal if and only if x is non-dominated [5]. 

The Pareto approach is based on two aspects: the ranking 
and the selection. The ranking methods are the following:  

- NDS (Non Dominated Sorting) : In this method, 
the rank of an individual is the number of 
solutions dominating this individual plus one 
[12].  

- WAR (Weighted Average Ranking) : In this 
method, population members are ranked 
separately according to each objective function. 
Fitness equal to the sum of the ranks in each 
objective is assigned [2]. 

- NSGA (Non-dominated Sorting Genetic 
Algorithm) [21]: In this method, all non-
dominated individuals of the population have 
rank 1. Then, these individuals are removed and 
the next set of non-dominated individuals are 
identified and assigned next rank [21].  

Several methods of selection based on the concept of 
dominance are: 

- Tournament based selection [2]: at each 
tournament, two individuals A and B fall in 
competition against a set of domt individuals in 

the population. If the competitor A dominates all 
individuals and all the other competitor B is 
dominated by at least one individual, then 
individual A is selected. 

- Pareto reservation strategy [5]: in this method, 
the non-dominated individuals are always saved 
to the next generation. 

- Ranking method [2]: the cost associated with a 
new individual is determined by the relative 
distance in objective space with respect to 
individuals not dominated of the current 
population. 

3. Recurrent neural networks design by 
means of multi-objective genetic algorithm 

We shall now tackle the problem of finding RNN having the 
smallest recognition error and the least number of hidden units. 
For this reason, we formulate the problem as optimisation 
algorithm, more specifically, as a matter of MOO. In order to 
solve it we shall use an algorithm based on Pareto optimality that 
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his goal is to optimize three objectives. A performance goal 
minimizes the recognition error (to maximize the successes in the 
testing set). Tow goals of diversity to increase diversity in the 
population : mutual information and internal diversity.  

In this paper we propose a model called Recurrent Neural 
Networks Design by means of Multi-Objective Genetic 
Algorithm (RNND-MOGA). It reflects the types of networks that 
arise from a RNN performing both structural and weight 
learning. The general architecture of RNND-MOGA is 
straightforward. Input and output units are considered to be 
provided by the task and they are immutable by the 
algorithm; thus each network for a given task always has 

inm input units and 
outm  output units. The number of 

hidden units and bias varies from 0 to a user supplied 
maximum maxh .  

The proposed hybrid learning process is the following (see 
Fig. 1). In each generation, networks are first evaluated 
using Pareto optimisation algorithm. The best P% RNN 
are selected for the next generation; all other networks are 
discarded and replaced by mutated copies of networks 
selected by proportional selection. Generating an offspring 
is done using only tow types of mutation operators : the 
parametric mutation and the structural mutation. The 
parametric mutation alters the value of parameters (link 
weights) currently in the network, whereas structural 
mutation alters the number of the hidden units, thus 
altering the space of parameters. 
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New generation 
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No 

Selection 

Performance Mutuelle information Inner diversity

i = i + 1

Generation N° i 
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Parametric mutation 
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Fig. 1. Proposed evolution strategy 

3.1 Encoding 

The proposed chromosome representation is a structure 
encoding the learning parameters, the weights and the 
bias. The chromosome structure is a record composed of 
these attributes :  

- IW: matrix of the RNN input weights ; 
- LW: matrix of the RNN connection weights ; 
- b1: vector of RNN bais ; 
- trainPrm: save learning rate and epochs number ; 
- learnFcn: save the learning function of an RNN. 

3.2 Initialization 

The proposed algorithm initializes the population with 
randomly generated RNN. The number of hidden units for 
each one is chosen from a uniform distribution in a user 
defined range ( max0 hh  | maxh  is the maximum number 

of hidden units in the network). Once a topology has been 
chosen, all links are assigned weights random initialized. 

3.3 Genetic operators 

GA used here is a modified algorithm. The main 
differences compared to the standard GA are that there is 
no crossover and structural mutations are added. Both of 
the mutation operators will be described in detail below. 
The crossover operator, which combines genes from two 
individuals, is rarely useful when evolving NN and is 
therefore not used here.  

The parametric mutation changes the weights of a network 
without changing its topology. In this work, we use the 
back-propagation algorithm as a parametric mutation 
operator. It is run using a low learning rate for few epochs. 
In our model, this epochs number is randomly chosen 
within a user defined rang. The network is allowed to 
draw lessons from the training set, but it is also prevented 
from being too similar to the rest of networks. The 
parametric mutation is always performed after the 
structural one, because it does not alter the structure of a 
network and it is used to adapt mated networks. 

Fig. 2 describe two types of structural mutation :   

- Add hidden units: Generating an offspring using 
structural mutation involves three steps: copying 
the parent, determining the severity of the 
mutations to be performed, and finally mutating the 
copy. The severity of a mutation of a given parent 
is dictated by its score. It defines the number of 
hidden units to be added. Networks with a low 
score suffer a severe mutation, and those with a 
high score are undergoing a slight transformation. 
Equations (3) and (4) calculate, respectively, the 
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severity of mutation and the number of hidden units 
to add. 


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where Score(i) represents the score of the 
th

i individual,
min

 an
max

 are respectively the 

minimum and maximum number of hidden units to 
be add, α is a random value between 0 and 1.  

Once the number of units to be added is 
determined, we modify the network structure under 
the new constraints and the connections’ weights of 
these units are randomly initialized. 

- Remove hidden units: This type of mutation is used 
to remove the hidden units that do not contribute to 
improve recognition of the network. The process 
of deleting a hidden unit occurs as follows. In the 
first step, we seek the inactive unit among hidden 
units of the network. This is done by calculating the 
score of each hidden unit using equation (5). It 
calculates the difference in score of RNN with and 
without the hidden unit. The unit having the lowest 
fitness is eliminated. 

)()()( iScoreiScoreiS uu 
(5) 

where Score(i) is the generalisation rate of the 
thi RNN, )(iScoreu is the generalization rate of the 

ith  RNN without the uth unit. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 2. Structural mutation strategy 

 

3.4 Multi-objective optimization 

A promising approach for performing optimization 
problems is the MOGA aiming at producing Pareto 
optimal solutions [11]. The key concept here is 
dominance. However, the success of a Pareto optimal GA 
depends largely on its ability to maintain diversity. 
Usually, this is achieved by employing niching techniques 
such as fitness sharing [5] and the inclusion of some 
useful measures applied to other models, such as negative 
correlation or mutual information [17]. The MOGA 
employed in this work can be described as a niched Pareto 
GA with NSGA [21] and tournament selection [2]. The 
algorithm uses a specialised tournament selection 
approach, based on the concept of dominance.  

The proposed algorithm is based on the concept of Pareto 
optimality [19]. We consider a population of networks 
where the th

i individual characterised by a vector of 
objectives values. In fact, the population has N individuals 
and M objectives are considered. In our study, tree 
objectives are considered.  

In this paper, we define the following four objectives: 

- Objective of performance: The performance of 
RNN is given by its generalization rate. 

- Mutual information: The mutual information 
between RNN 

i
f and 

j
f  is given by equation (6) : 

)
2

1log(
2

1
),( ijjfifO

MI
 (6) 

where ij  is the correlation coefficient between 

the networks. The objective is the average of 
mutual information between each pair of networks 
[18].  

- Internal diversity: The internal diversity of a RNN 
measures the difference between the outputs of the 
networks [16]. The internal diversity of the 

thk RNN is given by equation (7) : 



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where N is the size of the RNN population, P is the 

number of training vectors and
FD

O is the functional 

diversity between the ith and the jth network : 
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where kx  is the  kth training vectors. 
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4. Experimental results 

In this section, we evaluate and compare the described and 
the proposed evolutionary constructive RNN for 
continuous speech recognition on the maco-class of 
vowels of TIMIT speech corpus [1]. 

4.1 Database description 

The third component is a phoneme recognition 
module. The speech database used is the DARPA TIMIT 
acoustic-phonetic continuous speech corpus which 
contains: /iy/, /ih/, /eh/, /ey/, /ae/, /aa/, /aw/, /ay/, /ah/, /ao/, 
/oy/, /ow/, /uh/, /uw/,/ux/, /er/, /ax/, /ix/, /axr/ and /ax-h/. 
The corpus contains 13 699 phonetic unit for training and 
4041 phonemes for testing. 

Speech utterance was sampled at a sampling rate of 16 
KHz using 16 bits quantization. Speech frames are filtered 
by a first order filter. After the pre-emphasis, speech data 
consists of a large amount of samples that present the 
original utterance. Windowing is introduced to effectively 
process these samples. This is done by regrouping speech 
data into several frames. A 256 sample window that could 
capture 16 ms of speech information is used. To prevent 
information lost during the process, an overlapping factor 
of 50% is introduced between adjacent frames. 
Thereafter, mel frequency cepstral analysis was applied to 
extract 12 mel cepstrum coefficients (MFCC) [8]. 
Among all parameterization methods, the cepstrum has 
been shown to be favourable in speech recognition and is 
widely used in many automatic speech recognition 
systems [23]. The cepstrum is defined as the inverse 
Fourier transform of the logarithm of the short-term power 
spectrum of the signal. The use of a logarithmic function 
permits us to deconvolve the vocal tract transfer function 
and the voice source. Consequently, the pulse sequence 
originating from the periodic voice source reappears in the 
cepstrum as a strong peak in the ‘quefrency’ domain. The 
derived cepstral coefficients are commonly used to 
describe the short-term spectral envelope of a speech 
signal. The advantage of using such coefficients is that 
they induce a data compression of each speech spectral 
vector while maintaining the pertinent information it 
contains. The mel-scale is a mapping from a linear to a 
nonlinear frequency scale based on human auditory 
perception. It is proved that such a scale increases 
significantly the performance of speech recognition 
systems in comparison with the traditional linear scale. 
The computation of MFCC requires the selection of M 
critical bandpass filters. To obtain the MFCC, a discrete 
cosine transform, is applied to the output of M filters. 
These filters are triangular and cover the 156 − 6844 Hz 
frequency range; they are spaced on the mel-frequency 
scale. This scale is logarithmic above 1 kHz and linear 

below this frequency. These filters are applied to the log 
of the magnitude spectrum of the signal, which is 
estimated on a short-time basis. 

4.2 Discussion 

In the experiments below, the number of hidden units for 
networks of the initial population was selected uniformly 
between 1 and 5. Each network has 12 input units 
representing the 12 MFCC coefficients and 20 output units 
representing the TIMIT vowels. Table 1 represents the 
parameter setting. 

In this section, results produced by the proposed model 
will be presented and compared with results produced by 
the Elman model using 30 hidden units the GA and the 
Elman model using 16 hidden units (the best topology 
given by the proposed model). 

Table 1: Learning parameters of the proposed model 

Parameter name Value 
Learning rate for the training of the Elman model 0.5 
Epochs number for the trainig of the Elman model 100 
Mutation rate for the standard GA 0.8 
Crossover rate for the standard GA 0.4 
Structural mutation rate 0.2 
Parametric mutation rate 0.3 
Generation number of the population of networks 20 

 

The learning process of the GA used for comparison is the 
following. First, a population of chromosomes is created 
and initialised randomly. Then, a roulette selection is used 
to select individuals to be reproduced. Thereafter, a one-
point crossover operator is used to produce new 
individuals. During crossover process, pairs of genomes 
are mated by taking a randomly selected string of bits 
from one and inserting it into the corresponding place in 
the other, and vice versa. After that, a classic mutation 
operator is used to mate these individuals. The classic 
mutation operator exchanges a random selected gene with 
a random value within the range of the gene's minimum 
value and the gene's maximum value. 40% of the best 
individuals are guaranteed a place in the new generation. 
This process is repeated for 100 generations.  

The best structure of RNN provided by the proposed 
model is composed of 16 hidden units. We use the back-
propagation algorithm to train a RNN using this structure. 
We note that, using this network, recognition rates and run 
time are greatly improved than those given by the RNN 
using 30 hidden units (see tables 2 and 3). We conclude 
that the proposed constructive evolutionary process 
improves the objective of defining the best structure of a 
RNN. 
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Tables 2 and 3 present a comparison of training rates, 
generalization rates and run time of the studied models. 
The Elman model using 30 hidden neurons provides the 
lowest recognition rate and the greater runtime of about 10 
hours. GA gives best recognition rates than those given by 
the Elman model using 30 hidden units and it requires 
only 3 hours 30 minutes.  

Furthermore, we note that the proposed model provides 
the best training rate of about 58.79% and the best 
generalisation rate of about 58.38%. In addition, it 
ameliorates the recognition rate of most of the phonemes 
such as /ey/ having 18% rather than 2% and /ay/ having 
39% rather than 8%. We conclude, then, that the proposed 
multi-objective constructive model improves the objective 
of training of RNN. Furthermore, it should be noted that 
the proposed model takes 7 hours for training. 
This is justified by the fact that we use several objectives. 

Table 2: Training rates of the Elman model usig 30 hidden units, the GA, 
the Elman model using 16 hidden units and the RNND-MOGA model 

Vowels Samples Elman  
(30 hidden 

units) 

GA Elman  
(16 hidden 

units) 

RNND-MOGA

iy  1552 77.83 85.5 77.19 84.99 

ih  1103 11.6 18.04 17.32 41.52 

eh  946 28.43 25.58 28.65 57.19 

ey  572 2.27 1.40 0.35 17.83 

ae  1038 77.84 86.71 74.95 84.49 

aa  762 71.39 72.57 66.01 80.18 

aw  180 0.00 0.56 0.00 5.00 

ay  600 7.67 17.33 1 38.83 

ah  580 7.07 7.41 23.79 12.41 

ao  665 64.36 72.03 62.86 83.16 

oy  192 0.00 0.00 0.00 0.00 

ow  549 14.39 29.87 41.71 28.05 

uh  141 0.00 0.00 0.00 0.00 

uw  198 47.98 20.71 50.51 66.67 

ux  400 2.25 1.00 2.00 11.25 

er  392 8.42 16.58 8.67 37.24 

ax  871 38.35 47.19 38.12 57.41 

ix  2103 71.85 70.28 66.14 84.31 

axr  739 52.23 63.46 54.26 64.68 

axh  86 37.21 34.88 62.79 38.37 

Global 
rate 

13966 43.63 47.68 44.29 58.79 

Runtime   10h20mn 3h30mn 4h 7h 

5. Conclusion 

In this paper, we have presented a model based on multi-
objective genetic algorithms in order to train and to design 

recurrent neural networks. This algorithm is able to reach 
a wider set of possible RNN structures. We have shown 
that this model is able to achieve good performance in the 
recognition of TIMIT vowels, outperforming other studied 
methods.  

The main results are as follows: 

- The best RNN structure produced by the proposed 
model gives a better recognition rate at a lower 
runtime.  

- The proposed model improves the recognition rate 
of the TIMIT vowels macro-classes of about 15% 
compared with the Elman model. 

We suggest extending the constructive method to determine 
the optimal number of hidden layer and the number of 
hidden units in each one. 

Table 3: Generalization rates of the Elman model usig 30 hidden units, the 
GA, the Elman model using 16 hidden units and the RNND-MOGA model 

Vowels Samples Elman 
(30 hidden 

units) 

GA Elman 
(16 hidden 

units) 

RNND-MOGA

iy  522 72.22 83.33 72.41 86.02 

ih  327 8.26 12.23 16.51 34.86 

eh  279 30.83 22.94 24.01 63.44 

ey  162 1.24 1.85 0.00 20.99 

ae  237 73.1 86.92 73 81.43 

aa  237 62.87 59.49 54.85 74.68 

aw  30 0.00 0.00 0.00 0.00 

ay  168 2.38 17.86 0.00 41.07 

ah  183 8.74 9.84 21.86 12.02 

ao  222 59.91 64.41 54.96 82.88 

oy  51 0.00 0.00 0.00 0.00 

ow  171 9.94 26.32 35.09 22.81 

uh  59 0.00 0.00 0.00 0.00 

uw  51 31.37 11.76 23.53 39.22 

ux  104 2 2.88 2.88 8.65 

er  141 3.55 16.31 4.96 36.88 

ax  249 50.2 61.85 47.39 67.07 

ix  610 67.21 69.18 60.98 81.97 

axr  210 55.72 65.71 46.19 69.05 

axh  28 32.14 39.29 39.29 28.57 

Global rate 4042 41.28 46.57 40.68 58.38 
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