
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 296

Recurrent Neural Networks Design by Means
of Multi-Objective Genetic Algorithm

Case study : Phoneme Recognition

Hanen Chihi1 and Najet Arous2

Institut Supérieur d’Informatique, ISI
Département Génie Logiciels et Systèmes d’Information, GLSI

Université Tunis El Manar, Tunis Tunisie

Abstract
Evolutionary algorithms are considered more efficient for
optimal system design because they can provide higher
opportunity for obtaining the global optimal solution. This paper
introduces a method for construct and train Recurrent Neural
Networks (RNN) by means of Multi-Objective Genetic
Algorithms (MOGA). The use of a multi-objective evolutionary
algorithm allows the definition of many objectives in a natural
way. The case study of the proposed model is the phoneme
recognition. We have shown that the proposed model is able to
achieve good results in recognition tasks.
Keywords: Recurrent neural network, Genetic algorithm,
Phonemes recognition, Multi-objective optimization.

1. Introduction

Recurrent Neural Networks (RNN) represent a large and
varied class of computational models that are designed by
more or less detailed analogy with biological brain
modules. In this paper we focus on the use a particular
network : Elman-type recurrent networks in witch the
hidden layer is returned to the input layer [7].

In recent years, gradient-based RNN solved many tasks
[26]. The Back-propagation, however, has two major
limitations: a very long training process, with problems
such as local minima and network design. The back-
propagation algorithm adjusts exclusively the connection
weights for particular network architecture, but the
algorithm does not adjust the network architecture to
define the optimum Neural Network (NN) for a particular
problem [3], [25]. To overcome these restrictions, various
methods for auto-design NN have been proposed [2], [10].

Genetic Algorithms (GA) are a search heuristic that
mimics the process of natural evolution. They maintain a
population of solution candidates and evaluate the fitness
of each solution according to a specific fitness function.
Even though, GA are not guaranteed to find the global

optimum, they can find an acceptable solution relatively in
a wide range of problems [4].

Various combinations of GA and NN have been
investigated [3], [10], [24]. Much research concentrates on
the acquisition of parameters for a fixed network
architecture [6], [9]. Other work allows a variable
topology, but disassociates structure acquisition from
acquisition of weight values by interweaving a GA search
for network topology with a traditional parametric training
algorithm over weights [2], [10]. Some studies attempt to
co-evolve both the topology and weight values within a
GA framework, but the network architectures are
restricted [15].

Many researches exist, describing multitude applications
for GA [4]. A substantial proportion of these applications
involve the evolution of solutions to problems with more
than one objective [13], [22], [27]. More specifically, such
problems consist of several separate objectives, with the
required solution being one where some or all of these
objectives are satisfied to a greater or lesser degree.

Multi-objective genetic algorithms (MOGA) have been
widely used for the evolution of NN. Dehuri and Cho [11]
propose a multi-criterion pareto GA used to train NN for
classification problems. Delgado and Pegalajar [12]
propose a MOGA for obtaining the optimal size of RNN
for grammatical inference.

In this study, we combine RNN with MOGA to provide an
alternative way for optimizing both RNN structure and
weights. An important aspect of our work is the use of
multi-objective optimization to evaluate the ability of new
RNN [20]. The use of different objectives for each
network allows a more accurate estimation of the
goodness of a network.

This paper is organized as follows. Section 2 explains the
application of multi-objective optimization to the problem

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 297

of fitness estimation. Section 3 describes the proposed
constructive multi-objective RNN. Section 4 presents the
experimental results obtained on the classification of the
TIMIT vowels.

2. Multi-objective optimization

In this section, we briefly present the formulation of a
multi-objective optimization problem (MOO) such as
some required notions about Pareto based multi-objective
optimization and some concepts relating to Pareto
optimality [2], [12].

The scenario considered in this paper involves an arbitrary
optimization problem with k objectives, which are,
without loss of generality, all to be minimized and all
equally important, i.e., no additional knowledge about the
problem is available. We assume that a solution to this
problem can be described in terms of a decision vector
denoted by:

),...,,(21 nxxxx
(1)

where nxxx ,...,, 21 are the variables of the problem.

Mathematically, the multi-objective optimization problem
is stated by :

...
)),(),...,(),(()(min: 21

Cxcs
xfxfxfxFMOO k (2)

where if are the decision criteria and k is the number of

objective function.

An optimization problem searches the action *x where the
constraints C are satisfied and the objective function F(x)
is optimized.

In practical applications, there is no solution that can
minimize all of the k objectives. As a result, MOO
problems tend to be characterized by a family of
alternatives solutions.

The approach most used is to weight and sum the separate
fitness values in order to produce just a single fitness
value for every solution, thus allowing the GA to
determine which solutions are fittest as usual. However, as
noted by Goldberg [14], the separate objectives may be
difficult or impossible to manually weight because of
unknowns in the problem. Additionally, weighting and
summing could have a detrimental effect upon the
evolution of acceptable solutions by the GA (just a single
incorrect weight can cause convergence to an
unacceptable solution).

The concept of Pareto-optimality helps to overcome this
problem of comparing solutions with multiple fitness
values. A solution is Pareto optimal if it is not dominated
by any other solutions. A Pareto optimal solution is
defined as follows: a decision vector x is said to dominate
a decision vector y if and only if :,,1 ki

)()(:,,1)()(yjfxjfkjyifxif . The decision vector x is

Pareto optimal if and only if x is non-dominated [5].

The Pareto approach is based on two aspects: the ranking
and the selection. The ranking methods are the following:

- NDS (Non Dominated Sorting) : In this method,
the rank of an individual is the number of
solutions dominating this individual plus one
[12].

- WAR (Weighted Average Ranking) : In this
method, population members are ranked
separately according to each objective function.
Fitness equal to the sum of the ranks in each
objective is assigned [2].

- NSGA (Non-dominated Sorting Genetic
Algorithm) [21]: In this method, all non-
dominated individuals of the population have
rank 1. Then, these individuals are removed and
the next set of non-dominated individuals are
identified and assigned next rank [21].

Several methods of selection based on the concept of
dominance are:

- Tournament based selection [2]: at each
tournament, two individuals A and B fall in
competition against a set of domt individuals in

the population. If the competitor A dominates all
individuals and all the other competitor B is
dominated by at least one individual, then
individual A is selected.

- Pareto reservation strategy [5]: in this method,
the non-dominated individuals are always saved
to the next generation.

- Ranking method [2]: the cost associated with a
new individual is determined by the relative
distance in objective space with respect to
individuals not dominated of the current
population.

3. Recurrent neural networks design by
means of multi-objective genetic algorithm

We shall now tackle the problem of finding RNN having the
smallest recognition error and the least number of hidden units.
For this reason, we formulate the problem as optimisation
algorithm, more specifically, as a matter of MOO. In order to
solve it we shall use an algorithm based on Pareto optimality that

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 298

his goal is to optimize three objectives. A performance goal
minimizes the recognition error (to maximize the successes in the
testing set). Tow goals of diversity to increase diversity in the
population : mutual information and internal diversity.

In this paper we propose a model called Recurrent Neural
Networks Design by means of Multi-Objective Genetic
Algorithm (RNND-MOGA). It reflects the types of networks that
arise from a RNN performing both structural and weight
learning. The general architecture of RNND-MOGA is
straightforward. Input and output units are considered to be
provided by the task and they are immutable by the
algorithm; thus each network for a given task always has

inm input units and
outm output units. The number of

hidden units and bias varies from 0 to a user supplied
maximum maxh .

The proposed hybrid learning process is the following (see
Fig. 1). In each generation, networks are first evaluated
using Pareto optimisation algorithm. The best P% RNN
are selected for the next generation; all other networks are
discarded and replaced by mutated copies of networks
selected by proportional selection. Generating an offspring
is done using only tow types of mutation operators : the
parametric mutation and the structural mutation. The
parametric mutation alters the value of parameters (link
weights) currently in the network, whereas structural
mutation alters the number of the hidden units, thus
altering the space of parameters.

Yes

Multi-objectives evaluation

 i >= imax

New generation

Best solutions

No

Selection

Performance Mutuelle information Inner diversity

i = i + 1

Generation N° i

Structural mutation

Parametric mutation

End ?

Yes

No

Fig. 1. Proposed evolution strategy

3.1 Encoding

The proposed chromosome representation is a structure
encoding the learning parameters, the weights and the
bias. The chromosome structure is a record composed of
these attributes :

- IW: matrix of the RNN input weights ;
- LW: matrix of the RNN connection weights ;
- b1: vector of RNN bais ;
- trainPrm: save learning rate and epochs number ;
- learnFcn: save the learning function of an RNN.

3.2 Initialization

The proposed algorithm initializes the population with
randomly generated RNN. The number of hidden units for
each one is chosen from a uniform distribution in a user
defined range (max0 hh | maxh is the maximum number

of hidden units in the network). Once a topology has been
chosen, all links are assigned weights random initialized.

3.3 Genetic operators

GA used here is a modified algorithm. The main
differences compared to the standard GA are that there is
no crossover and structural mutations are added. Both of
the mutation operators will be described in detail below.
The crossover operator, which combines genes from two
individuals, is rarely useful when evolving NN and is
therefore not used here.

The parametric mutation changes the weights of a network
without changing its topology. In this work, we use the
back-propagation algorithm as a parametric mutation
operator. It is run using a low learning rate for few epochs.
In our model, this epochs number is randomly chosen
within a user defined rang. The network is allowed to
draw lessons from the training set, but it is also prevented
from being too similar to the rest of networks. The
parametric mutation is always performed after the
structural one, because it does not alter the structure of a
network and it is used to adapt mated networks.

Fig. 2 describe two types of structural mutation :

- Add hidden units: Generating an offspring using
structural mutation involves three steps: copying
the parent, determining the severity of the
mutations to be performed, and finally mutating the
copy. The severity of a mutation of a given parent
is dictated by its score. It defines the number of
hidden units to be added. Networks with a low
score suffer a severe mutation, and those with a
high score are undergoing a slight transformation.
Equations (3) and (4) calculate, respectively, the

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 299

severity of mutation and the number of hidden units
to add.

N

k

kScore

iScore
iT

1

)(

)(
1)(

 (3)

))(()(minmaxmin iTiHU
(4)

where Score(i) represents the score of the
th

i individual,
min

 an
max

 are respectively the

minimum and maximum number of hidden units to
be add, α is a random value between 0 and 1.

Once the number of units to be added is
determined, we modify the network structure under
the new constraints and the connections’ weights of
these units are randomly initialized.

- Remove hidden units: This type of mutation is used
to remove the hidden units that do not contribute to
improve recognition of the network. The process
of deleting a hidden unit occurs as follows. In the
first step, we seek the inactive unit among hidden
units of the network. This is done by calculating the
score of each hidden unit using equation (5). It
calculates the difference in score of RNN with and
without the hidden unit. The unit having the lowest
fitness is eliminated.

)()()(iScoreiScoreiS uu
(5)

where Score(i) is the generalisation rate of the
thi RNN,)(iScoreu is the generalization rate of the

ith RNN without the uth unit.

Fig. 2. Structural mutation strategy

3.4 Multi-objective optimization

A promising approach for performing optimization
problems is the MOGA aiming at producing Pareto
optimal solutions [11]. The key concept here is
dominance. However, the success of a Pareto optimal GA
depends largely on its ability to maintain diversity.
Usually, this is achieved by employing niching techniques
such as fitness sharing [5] and the inclusion of some
useful measures applied to other models, such as negative
correlation or mutual information [17]. The MOGA
employed in this work can be described as a niched Pareto
GA with NSGA [21] and tournament selection [2]. The
algorithm uses a specialised tournament selection
approach, based on the concept of dominance.

The proposed algorithm is based on the concept of Pareto
optimality [19]. We consider a population of networks
where the th

i individual characterised by a vector of
objectives values. In fact, the population has N individuals
and M objectives are considered. In our study, tree
objectives are considered.

In this paper, we define the following four objectives:

- Objective of performance: The performance of
RNN is given by its generalization rate.

- Mutual information: The mutual information
between RNN

i
f and

j
f is given by equation (6) :

)
2

1log(
2

1
),(ijjfifO

MI
 (6)

where ij is the correlation coefficient between

the networks. The objective is the average of
mutual information between each pair of networks
[18].

- Internal diversity: The internal diversity of a RNN
measures the difference between the outputs of the
networks [16]. The internal diversity of the

thk RNN is given by equation (7) :

N

ijj jfifO
N

iIDO FD
,1

),(
1

1
)((7)

where N is the size of the RNN population, P is the

number of training vectors and
FD

O is the functional

diversity between the ith and the jth network :

P

k kxjfkxifPjfifO
FD

1
)()(

1
),((8)

where kx is the kth training vectors.

Calculate the mutation
severity

RNN

Add units to the RNN

Initialize the weight of the
RNN

New RNN

Seek for the inactive units

Evaluate the population

Add Delete

Add or delete?

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 300

4. Experimental results

In this section, we evaluate and compare the described and
the proposed evolutionary constructive RNN for
continuous speech recognition on the maco-class of
vowels of TIMIT speech corpus [1].

4.1 Database description

The third component is a phoneme recognition
module. The speech database used is the DARPA TIMIT
acoustic-phonetic continuous speech corpus which
contains: /iy/, /ih/, /eh/, /ey/, /ae/, /aa/, /aw/, /ay/, /ah/, /ao/,
/oy/, /ow/, /uh/, /uw/,/ux/, /er/, /ax/, /ix/, /axr/ and /ax-h/.
The corpus contains 13 699 phonetic unit for training and
4041 phonemes for testing.

Speech utterance was sampled at a sampling rate of 16
KHz using 16 bits quantization. Speech frames are filtered
by a first order filter. After the pre-emphasis, speech data
consists of a large amount of samples that present the
original utterance. Windowing is introduced to effectively
process these samples. This is done by regrouping speech
data into several frames. A 256 sample window that could
capture 16 ms of speech information is used. To prevent
information lost during the process, an overlapping factor
of 50% is introduced between adjacent frames.
Thereafter, mel frequency cepstral analysis was applied to
extract 12 mel cepstrum coefficients (MFCC) [8].
Among all parameterization methods, the cepstrum has
been shown to be favourable in speech recognition and is
widely used in many automatic speech recognition
systems [23]. The cepstrum is defined as the inverse
Fourier transform of the logarithm of the short-term power
spectrum of the signal. The use of a logarithmic function
permits us to deconvolve the vocal tract transfer function
and the voice source. Consequently, the pulse sequence
originating from the periodic voice source reappears in the
cepstrum as a strong peak in the ‘quefrency’ domain. The
derived cepstral coefficients are commonly used to
describe the short-term spectral envelope of a speech
signal. The advantage of using such coefficients is that
they induce a data compression of each speech spectral
vector while maintaining the pertinent information it
contains. The mel-scale is a mapping from a linear to a
nonlinear frequency scale based on human auditory
perception. It is proved that such a scale increases
significantly the performance of speech recognition
systems in comparison with the traditional linear scale.
The computation of MFCC requires the selection of M
critical bandpass filters. To obtain the MFCC, a discrete
cosine transform, is applied to the output of M filters.
These filters are triangular and cover the 156 − 6844 Hz
frequency range; they are spaced on the mel-frequency
scale. This scale is logarithmic above 1 kHz and linear

below this frequency. These filters are applied to the log
of the magnitude spectrum of the signal, which is
estimated on a short-time basis.

4.2 Discussion

In the experiments below, the number of hidden units for
networks of the initial population was selected uniformly
between 1 and 5. Each network has 12 input units
representing the 12 MFCC coefficients and 20 output units
representing the TIMIT vowels. Table 1 represents the
parameter setting.

In this section, results produced by the proposed model
will be presented and compared with results produced by
the Elman model using 30 hidden units the GA and the
Elman model using 16 hidden units (the best topology
given by the proposed model).

Table 1: Learning parameters of the proposed model

Parameter name Value
Learning rate for the training of the Elman model 0.5
Epochs number for the trainig of the Elman model 100
Mutation rate for the standard GA 0.8
Crossover rate for the standard GA 0.4
Structural mutation rate 0.2
Parametric mutation rate 0.3
Generation number of the population of networks 20

The learning process of the GA used for comparison is the
following. First, a population of chromosomes is created
and initialised randomly. Then, a roulette selection is used
to select individuals to be reproduced. Thereafter, a one-
point crossover operator is used to produce new
individuals. During crossover process, pairs of genomes
are mated by taking a randomly selected string of bits
from one and inserting it into the corresponding place in
the other, and vice versa. After that, a classic mutation
operator is used to mate these individuals. The classic
mutation operator exchanges a random selected gene with
a random value within the range of the gene's minimum
value and the gene's maximum value. 40% of the best
individuals are guaranteed a place in the new generation.
This process is repeated for 100 generations.

The best structure of RNN provided by the proposed
model is composed of 16 hidden units. We use the back-
propagation algorithm to train a RNN using this structure.
We note that, using this network, recognition rates and run
time are greatly improved than those given by the RNN
using 30 hidden units (see tables 2 and 3). We conclude
that the proposed constructive evolutionary process
improves the objective of defining the best structure of a
RNN.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 301

Tables 2 and 3 present a comparison of training rates,
generalization rates and run time of the studied models.
The Elman model using 30 hidden neurons provides the
lowest recognition rate and the greater runtime of about 10
hours. GA gives best recognition rates than those given by
the Elman model using 30 hidden units and it requires
only 3 hours 30 minutes.

Furthermore, we note that the proposed model provides
the best training rate of about 58.79% and the best
generalisation rate of about 58.38%. In addition, it
ameliorates the recognition rate of most of the phonemes
such as /ey/ having 18% rather than 2% and /ay/ having
39% rather than 8%. We conclude, then, that the proposed
multi-objective constructive model improves the objective
of training of RNN. Furthermore, it should be noted that
the proposed model takes 7 hours for training.
This is justified by the fact that we use several objectives.

Table 2: Training rates of the Elman model usig 30 hidden units, the GA,
the Elman model using 16 hidden units and the RNND-MOGA model

Vowels Samples Elman
(30 hidden

units)

GA Elman
(16 hidden

units)

RNND-MOGA

iy 1552 77.83 85.5 77.19 84.99

ih 1103 11.6 18.04 17.32 41.52

eh 946 28.43 25.58 28.65 57.19

ey 572 2.27 1.40 0.35 17.83

ae 1038 77.84 86.71 74.95 84.49

aa 762 71.39 72.57 66.01 80.18

aw 180 0.00 0.56 0.00 5.00

ay 600 7.67 17.33 1 38.83

ah 580 7.07 7.41 23.79 12.41

ao 665 64.36 72.03 62.86 83.16

oy 192 0.00 0.00 0.00 0.00

ow 549 14.39 29.87 41.71 28.05

uh 141 0.00 0.00 0.00 0.00

uw 198 47.98 20.71 50.51 66.67

ux 400 2.25 1.00 2.00 11.25

er 392 8.42 16.58 8.67 37.24

ax 871 38.35 47.19 38.12 57.41

ix 2103 71.85 70.28 66.14 84.31

axr 739 52.23 63.46 54.26 64.68

axh 86 37.21 34.88 62.79 38.37

Global
rate

13966 43.63 47.68 44.29 58.79

Runtime 10h20mn 3h30mn 4h 7h

5. Conclusion

In this paper, we have presented a model based on multi-
objective genetic algorithms in order to train and to design

recurrent neural networks. This algorithm is able to reach
a wider set of possible RNN structures. We have shown
that this model is able to achieve good performance in the
recognition of TIMIT vowels, outperforming other studied
methods.

The main results are as follows:

- The best RNN structure produced by the proposed
model gives a better recognition rate at a lower
runtime.

- The proposed model improves the recognition rate
of the TIMIT vowels macro-classes of about 15%
compared with the Elman model.

We suggest extending the constructive method to determine
the optimal number of hidden layer and the number of
hidden units in each one.

Table 3: Generalization rates of the Elman model usig 30 hidden units, the
GA, the Elman model using 16 hidden units and the RNND-MOGA model

Vowels Samples Elman
(30 hidden

units)

GA Elman
(16 hidden

units)

RNND-MOGA

iy 522 72.22 83.33 72.41 86.02

ih 327 8.26 12.23 16.51 34.86

eh 279 30.83 22.94 24.01 63.44

ey 162 1.24 1.85 0.00 20.99

ae 237 73.1 86.92 73 81.43

aa 237 62.87 59.49 54.85 74.68

aw 30 0.00 0.00 0.00 0.00

ay 168 2.38 17.86 0.00 41.07

ah 183 8.74 9.84 21.86 12.02

ao 222 59.91 64.41 54.96 82.88

oy 51 0.00 0.00 0.00 0.00

ow 171 9.94 26.32 35.09 22.81

uh 59 0.00 0.00 0.00 0.00

uw 51 31.37 11.76 23.53 39.22

ux 104 2 2.88 2.88 8.65

er 141 3.55 16.31 4.96 36.88

ax 249 50.2 61.85 47.39 67.07

ix 610 67.21 69.18 60.98 81.97

axr 210 55.72 65.71 46.19 69.05

axh 28 32.14 39.29 39.29 28.57

Global rate 4042 41.28 46.57 40.68 58.38

Acknowledgments

The authors are grateful to the anonymous reviewers for
their valuable comments which improved the presentation
and contents of this paper considerably.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 302

References

 [1] http://www.ldc.upenn.edu/Catalog/readme_files/timit.readme.html
[2] P.J. Angeline, G.M. Saunders, and J.B. Pollack, An evolutionary

algorithm that constructs recurrent neural networks, IEEE
Transactions on Neural Networks (1993).

[3] N. Arous, Hybridation des cartes de Kohonen par les algorithmes
génétiques pour la classification phonémique, Ph.D. thesis, Thèse
de doctorat,ENIT, 2003.

[4] H. Azzag, F. Picarougne, C. Guinot, and G. Venturini, Un survol
des algorithmes biomimétiques pour la classification, Revue des
nouvelles technologies de l’information (RNTI) (2004), 13–24.

[5] D. Beasly and R. Martin, A sequential niche technique for
multimodel function operation, Conference on evolutionary
computation 1 (1993), 101–125.

[6] P.A. Castillo, J.J. Merelo, M.G. Arenas, and G. Romero,
Comparing evolutionary hybrid systems for design and
optimization of multilayer perceptron structure along training
parameters, Information Sciences 177 (2007), 2884–2905.

[7] R. Chandra, M. Frean and M. Zhang, Building Subcomponents in
the Cooperative Coevolution Framework for Training Recurrent
Neural Networks, School of Engineering and Computer Science,
Victoria University of Wellington, Wellington, New Zealand, 2009.

[8] M. Chetouani, B. GAS, and J.L. Zarader, Une architecture
modulaire pour l’extraction de caractéristiques en reconnaissance
de phonèmes, Intenational conference on information processing
(ICONIP’02) (2002).

[9] H. Chihi and N. Arous, Adapted evolutionary recurrent neural
network, JTEA (2010).

[10] D. Dasgupta and D. R. McGregor, Designing application-specific
neural networks using the structured genetic algorithm.

[11] S. Dehuri and S.-B. Cho, Multi-criterion pareto based particle
swarm optimized polynomial neural network for classification : A
review and state-of-the-art, Computer Science Review 3 (2009),
19–40.

[12] M. Delgado and M.C. Pegalajar, A multiobjective genetic algorithm
for obtaining the optimal size of a recurrent neural network for
grammatical inference, Pattern Recognition 38 (September 2005),
1444–1456.

[13] N. Garcia and C.J. Hervas, Multi-objective cooperative coevolution
of artificial neural networks, Neural Networks 15 (2002), 1259–
1278.

[14] D.E. Goldberg, Algorithmes génétiques exploration optimisation et
apprentissage automatique, Kluwer Academic Publisher, 19 janvier
1996.

[15] J.R. Koza and J.P. Rice, Genetic generation of both the weight and
architecture for a neural network, Proceedings of the International
Joint Conference on Neural Networks (1991), 397–404.

[16] L. Kuncheva and C.J. Whitaker, Measures of diversity in classifier
ensembles and their relationship with the ensemble accuracy,
Machine Learning 51 (2003), 181–207 51.

[17] Y. Liu and X. Yao, Ensemble learning via negative correlation,
Neural Networks 12 (1999), 1399–1404.

[18] Y. Liu, X. Yao, Q. Zhao and T. Higuchi, Evolving a cooperative
population of neural networks by minimizing mutual information, In
Proceedings of the 2001 IEEE Congress on Evolutionary
Computation (2001), 384–389.

[19] K. Maneeratana, K. Boonlong and N. Chaiyaratana, Multi-objective
Optimisation by Co-operative Co-evolution, PPSN VIII : parallel
problem solving from nature, 772-781, (2004).

[20] R.T. Marler and J.S. Arora, Survey of multi-objective optimization
methods for engineering, Struct Multidisc Optim 26, 369–395
(2004).

[21] N. Srinivas and K. Deb, Multi-objective function optimization using
non-dominated sorting genetic algorithms, Evolution. Comput. 2
(1994), 221–248.

[22]
E.G. Talbi, Metaheuristiques pour l’optimisation combinatoire
multi-objectif : Etat de l’art, PM2O’1999 (1999).

[23] L. Tcheeko, Un réseau de neurones pour la classification et la
reconnaissance de la parole, Ecole nationale supérieure
polytechnique (1994), 277–280.

[24] R. Tlemsani, N.R. Tlemsani, N. Neggaz, and A. Benyettou,
Amélioration de l’apprentissage des réseaux neuronaux par les
algorithmes evolutionnaires : application à la classification
phonétique, SETIT (2005).

[25] S. Kazarlis V.Petridis and A. Papaikonomou, A genetic algorithm
for training recurrent networks, Proceedings of IJCNN .93 (1993),
2706–2709.

[26] M. Zhang and V. Ciesielski, Using back propagation algorithm and
genetic algorithms to train and refine neural networks for object
detection, Database and expert systems applications. International
conference No10 1677 (1999), 626–635.

[27]

A. Zinflou, Système interactif d’aide à la décision basé sur des
algorithmes génétiques pour l’optimisation multi-objectifs, Master’s
thesis, UNIVERSITé DU QUEBEC, 2004.

 Hanen Chihi received computer science engineering
degree from Institut Supérieur d’Informatique (ISI), Tunis,
Tunisia, the MS degree Software Engineering (Intelligent
Imaging Systems and Artificial Vision) from ISI Tunisia.
She is currently working towards the Ph.D degree,
Tunisia. Her research interests include optimization,
pattern classification and evolutionary neural networks.

Najet Arous received computer science engineering
degree from Ecole Nationale des Sciences d’Informatique,
Tunis, Tunisia, the MS degree in electrical engineering
(signal processing) from Ecole Nationale d’IngTenieurs de
Tunis (ENIT), Tunisia, the Ph.D. degree in electrical
engineering (signal processing) from ENIT. She is
currently a computer science assisting master in the
computer science department at FSM, Tunisia. Her
research interests include scheduling optimization, speech
recognition and evolutionary neural networks.

