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Abstract 

In this paper, a new matching scheme based on the scalar 
product (SP) between two templates is used in the matching 
process. We also introduced the active contour technique to 
detect the inner boundary of the iris which is not often a circle 
and the circular Hough transform to determine the outer 
boundary of the iris. The active contour technique takes into 
consideration that the actual pupil boundary is near-circular 
contour rather than a perfect circle, which localize the inner 
boundary of the iris perfectly. The 1-D log-Gabor filter is used 
to extract real valued template for the normalized iris. We apply 
our system on two publicly available databases (CASIA and 
UBIRIS) and the numerical results show that, perfectly 
matching process and also the matching time is reduced. We 
also compare our results with previous results and find out that, 
the matching with SP is faster than the matching with other 
techniques. 
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1. Introduction 

The developments in science and technology have made it 
possible to use biometrics in applications where it is 
required to establish or confirm the identity of 
individuals. Applications such as passenger control in 
airports, access control in restricted areas, border control, 
database access and financial services are some of the 
examples where the biometric technology has been 
applied for more reliable identification and verification. 
Biometrics is inherently a more reliable and capable 
technique to identity human's authentication by his or her 
own physiological or behavioral characteristics. The 
features used for personnel identification by current 

biometric applications include facial features, 
fingerprints, iris, palm-prints, retina, handwriting 
signature, DNA, gait, etc [17, 23]. The human iris is an 
annular part between pupil and sclera and its complex 
pattern contains many distinctive features such as arching 
ligaments, furrows, ridges, crypts, corona, and freckles 
Figure. 1. At the same time the iris is protected from the 
external environment behind the cornea and the eyelids. 
No subject to deleterious effects of aging, the small-scale 
radial features of the iris remain stable and fixed from 
about one year of age throughout one's life. The reader's 
two eyes, directed at this page, have identical genetics; 
they will likely have the same color and may well show 
some large scale pattern similarities; nevertheless, they 
have quite different iris pattern details. 
 

 
 

Fig 1: The image (Img 141 1 1) from the UBIRIS database 
 
All these advantages let the iris recognition be a 
promising topic of biometrics and get more and more 
attention [7, 8, 26]. Even though iris is seen as the most 
reliable biometric measure, it is still not in everyday use 
because of the complexity of the systems. In an iris 
recognition system, iris location is an essential step that 
spends nearly more than half of the entire processing time 
[36]. The correctness of iris location is required for the 
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latter processes such as normalization, feature extraction 
and pattern matching. For those reasons, to improve the 
speed and accuracy of iris location becomes nontrivial. 
The algorithm proposed in this work is improvement of 
the matching process in the algorithms proposed by 
Daugman [8, 9]. The United Arab Emirates Expellees 
Tracking and Border Control System [22] is an 
outstanding example of the technology. 
In general, the process of iris recognition system consists 
of: (i) image acquisition, (ii) Preprocessing the iris image 
including iris localization, image normalization and polar 
transformation, (iii) iris Feature extraction and (iv) iris 
matching. 

1.1 Related Work 

The research in the area of iris recognition has been 
receiving considerable attention and a number of 
techniques and algorithms have been proposed over the 
last few years. Flom and Safir first proposed the concept 
of automated iris recognition in [18]. The approach 
presented by Wildes [26] combines the method of edge 
detection with Hough transform for iris location. 
However, the parameters need to be precisely set and 
lengthy location time is required. Daugman's method is 
developed first using the integro-differential operator [10] 
for localizing iris regions along with removing possible 
eyelid noises. In the past few years, some methods made 
certain improvement based on the Daugman's method [8, 
9]. Bowyer et al. [17] recently presented an excellent 
review of these methods. However, at this time, essentially 
all of the large scale implementations of iris recognition 
are based on the Daugman iris recognition algorithms [8]. 
The difference between a pair of iris codes was measured 
by their Hamming distance. Sanchez-Reillo and Sanchez-
Avila [27] provided a partial implementation of the 
algorithm by Daugman. Boles and Boashash [34] 
calculated a zero-crossing representation of one-
dimensional wavelet transform at various resolution levels 
of a concentric circle on an iris image to characterize the 
texture of the iris. Iris matching was based on two 
dissimilarity functions. [29] Decomposed an iris image 
into four levels using 2-D Haar wavelet transform and 
quantized the fourth-level high-frequency information to 
form an 87-bit code. A modified competitive learning 
neural network was adopted for classification. Tisse et al. 
[5] analyzed the iris characteristics using the analytic 
image constructed by the original image and its Hilbert 
transform. Emergent frequency functions for feature 
extraction were in essence samples of the phase gradient 
fields of the analytic image's dominant components [17, 
31]. 

Similar to the matching scheme of Daugman, they 
sampled binary emergent frequency functions to form a 
feature vector and used Hamming distance for matching. 
Kumar et 
al. [3] utilized correlation filters to measure the 
consistency of iris images from the same eye. The 
correlation filter of each class was designed using the two-
dimensional Fourier transforms of training images. If the 
correlation output (the inverse Fourier transform of the 
product of the input images Fourier transform and the 
correlation filter) exhibited a sharp peak, the input image 
was determined to be from an authorized subject, 
otherwise an impostor one. Bae et al. [16] projected the 
iris signals onto a bank of basis vectors derived by 
independent component analysis and quantized the 
resulting projection coefficients as features. In another 
approach by Ma et al. [19] and Even Symmetry Gabor 
filters [10] are used to capture local texture information of 
the iris, which are used to construct a fixed length feature 
vector. 
In the last year only, the iris takes the attention of many 
researchers and different ideas are formulated and 
published. For example, in [1] a bi-orthogonal wavelet 
based iris recognition system, is modified and 
demonstrated to perform o_-angle iris recognition. An 
efficient and robust segmentation of noisy iris images for 
non-cooperative iris recognition is described in [32]. Iris 
image segmentation and sub-optimal images is discussed 
in 
[13]. Comparison and combination of iris matchers for 
reliable personal authentication are introduced in [2]. 
Noisy iris segmentation, with boundary regularization and 
reflections removal, is discussed in [28]. 

1.2 Outline 

In this paper, we first present the active contour models 
for iris preprocessing (segmentation step) which is a 
crucial step to the success of any iris recognition system, 
since data that is falsely represented as iris pattern data 
will corrupt the biometric templates generated, thus 
resulting in poor recognition rates. Once the iris region is 
successfully segmented from an eye image, the next stage 
is to transform the iris region so that it has fixed 
dimensions (normalization) in order to allow comparisons 
using Daugman rubber sheet model. After that the 1-D 
log-Gabor filter is used to extract real valued template for 
the normalized iris. 
 
2. Iris Localization Techniques 
 
It is the stage of locating the iris region in an eye image, 
whereas mentioned the iris region is the annular part 
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between pupil and sclera, see Figure 1. The iris 
segmentation has achieved by the following three main 
steps. The first step locates the center and radius of the 
iris in the input image by using the circular hough 
transform. Then a set of points is taken as pupil 
initialization from the nearby points to the iris center. The 
last step locates the pupil boundary points by using the 
region-based active contours.  

2.1 Hough Transform 

The Hough transform is a standard computer vision 
algorithm that can be used to determine the parameters of 
simple geometric objects, such as lines and circles, 
present in an image. The circular Hough transform can be 
employed to deduce the radius and center coordinates of 
the pupil and iris regions. For instance, recognition of a 
circle can be achieved by considering the strong edges in 
an image as the local patterns and searching for the 
maximum value of the circular Hough transform. An 
automatic segmentation algorithm based on the circular 
Hough transform is employed by Wildes et al. [26], and 
Tisse et al. [5]. 
The localization method, similar to Daugman's method, is 
also based on the first derivative of the image. In the 
proposed method by Wildes, an edge map of the image is 
first obtained by thresholding the magnitude of the image 
intensity gradient: 
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Where ),( yxG is a Gaussian smoothing function with 
scaling parameter   to select the proper scale of edge 
analysis. Firstly, an edge map is generated by calculating 
the first derivatives of intensity values in an eye image 
and then thresholding the result. From the edge map, 
votes are cast in Hough space to maximize the defined 
Hough transform for the desired contour. Considering the 
obtained edge points as for the parameters of circles 
passing through each edge points as niyx ii ,.....3,2,1),,(  . 
These parameters are the center coordinates cx and cy , 
and the radius r, which are able to define any circle 
according to the equation: 
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A Hough transform can be written as: 
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Where the parametric function 
222 )()(),,,,( ryyxxryxyxg ciciccii  . 

 Assuming a circle with the center ),( cc yx and radius r, 
the edge points that are located over the circle result in a 
zero value of the function g. The value of g is then 
transformed to 1 by the h function, which represents the 
local pattern of the contour. The local patterns are then 
used in a voting procedure using the Hough transform, H, 
in order to locate the proper pupil and limbus boundaries. 
In order to detect limbus, only vertical edge information is 
used. The upper and lower parts, which have the 
horizontal edge information, are usually covered by the 
two eyelids. The horizontal edge information is used for 
detecting the upper 
and lower eyelids, which are modeled as parabolic arcs. 

2.2 Active Contour Models 

Ritter et al. [24] make use of active contour models for 
localizing the pupil in eye images. Active contours 
respond to pre-set internal and external forces by 
deforming internally or moving across an image until 
equilibrium is reached. The contour contains a number of 
vertices, whose positions are changed by two opposing 
forces, an internal force, which is 

                                 
(a)                          (b)                         (c)          

Figure 2: Errors in pupil localization by using the circular Hough 
transform. 
 
dependent on the desired characteristics, and an external 
force, which is dependent on the image. Each vertex is 
moved between time t and t + 1 by: 

)()()()1( ,int, tFtFtVtV iextiii                                 

(6) 
Where Fint,i is the internal force, Fext,i is the external force 
and Vi is the position of vertex i. For localization of the 
pupil region, the internal forces are calibrated so that the 
contour forms a globally expanding discrete circle. The 
external forces are usually found using the edge 
information. 
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In order to improve accuracy Ritter et al. use the variance 
image, rather than the edge image. A point interior to the 
pupil is located from a variance image and then a discrete 
circular active contour (DCAC) is created with this point 
as its center. The DCAC is then moved under the 
influence of internal and external forces until it reaches 
equilibrium, and the pupil is localized. 

2.3 Discrete Circular Active Contour 

Ritter (2003) et al. [25] proposed a model which detects 
pupil and limbus by activating and controlling the active 
contour using two defined forces: internal and external 
forces. 
The internal forces are responsible to expand the contour 
into a perfect polygon with a radius   larger than the 
contour average radius. The internal force Fint,i applied to 
each vertex, Vi, is defined as 

iii VVF int,                                        

(7) 
where 

iV is the expected position of the vertex in the 
perfect polygon. The position of

iV can be obtained with 
respect to Cr, the average radius of the current contour, 
and the contour center, C = (Cx; Cy). The center of a 
contour which is the average position of all contour 
vertices is defined as 
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The average radius of the contour is the average distance 
of all the vertices from the defined center point C is as the 
following equations 
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Then the position of the vertices of the expected perfect 
polygon is obtained as 
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where n is the total number of vertices. 
The internal forces are designed to expand the contour 
and keep it circular. The force model assumes that pupil 
and limbus are globally circular, rather than locally, to 
minimize the undesired deformations due to specular 
reflections and dark patches near the pupil boundary. The 
contour detection process of the model is based on the 
equilibrium of the defined internal forces with the 
external forces. The external forces are obtained from the 
grey level intensity values of the image and are designed 

to push the vertices inward. The magnitude of the 
external forces is defined as: 
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to Vi.  F iext

^
,
 is the direction of the external force for each 
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Therefore, the external force over each vertex can be 
written as: 

FFF iextiext iext,,
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The movement of the contour is based on the composition 
of the internal and external forces over the contour 
vertices. Replacement of each vertex is obtained 
iteratively by: 

)()1()()()1( ,int, tFtFtVtV iextiii    (14) 
Where   is a defined weight that controls the pace of the 
contour movement and sets the equilibrium condition of 
internal and external forces. The final equilibrium is 
achieved when the average radius and center of the 
contour becomes the same for the first time in m iterations 
ago. The discrete circular active contour is applied on the 
three images in Figure 3. 

 
Figure 3: The segmentation of the DCA 

2.4 Detecting Eyelids, Eyelashes and Noise Regions 

The eyelids are detected by first fitting a line to the upper 
and lower eyelid using the linear Hough transform. A 
horizontal line is then drawn which intersects with the 
first line at the iris edge that is closest to the pupil. A 
second horizontal line allows the maximum isolation of 
eyelid regions. 
Detecting eyelashes requires proper choice of features and 
classification procedure due to complexity and 
randomness of the patterns. The proposed eyelash 
detection by Kong et 
al. consider eyelashes as two groups of separable 
eyelashes, which are isolated in the image, and multiple 
eyelashes, which are bunched together and overlap in the 
eye and applies two different feature extraction methods 
to detect eyelashes [35]. Separable eyelashes are detected 
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using 1-D Gabor filter, since the convolution of a 
separable eyelash with the Gaussian smoothing function 
results in a low output value. 
Thus, if a resultant point is smaller than a threshold, it is 
noted that this point belongs to an eyelash. Multiple 
eyelashes are detected using the variance of intensity. If 
the 
variance of intensity values in a small window is lower 
than a threshold, the center of the window is considered 
as a point in an eyelash. The two features combined with 
a 
connectivity criterion would lead to the decision of 
presence of eyelashes. In addition, an eyelash detection 
method is also proposed by Huang et al. that uses the edge 
information obtained by phase congruency of a bank of 
Log-Gabor filters. The edge information is also infused 
with the region information to localize the noise regions 
[15], as in Figure 4. 

       
Figure 4:  illustrates the perfect iris localization, where black regions denote 
detected eyelids and eyelashes regions. 
3. Normalization 
 
Once the iris region is successfully segmented from an eye 
image, the next stage is to transform the iris region so that 
it has fixed dimensions in order to eliminate dimensional 
inconsistencies between iris regions, and to allow 
comparisons. The dimensional inconsistencies between 
eye images are mainly due to the stretching of the iris 
caused by pupil dilation from varying levels of 
illumination. Other sources of inconsistency include, 
varying imaging distance, rotation of the camera, head 
tilt, and rotation of the eye within the eye socket. The 
normalization process will produce iris regions, which 
have the same constant dimensions, so that two images of 
the same iris under different conditions will have the 
same characteristic features at the same spatial location. 
A proper normalization technique is expected to 
transform the iris image to compensate these variations. 
Most normalization techniques are based on transforming 
iris into polar coordinates, known as unwrapping process. 
Pupil boundary and limbus boundary are generally two 
non-concentric contours. The non-concentric condition 
leads to different choices of reference points for 
transforming an iris into polar coordinates. Proper choice 
of reference point is very important where the radial and 
angular information would be defined with respect to this 
point. Unwrapping iris using pupil center is proposed by 
Boles and Boashash [34] and Lim et al. [14]. Another 

reference point proposed by Arvacheh [6], which is the 
virtual center of a pupil with radius equal to zero 
(linearly-guessed center). The experiments demonstrate 
that the linearly-guessed center provides much better 
recognition accuracy. The linearly-guessed center is 
equivalent to the technique used by Joung et al. [4]. 
In addition, most normalization approaches based on 
Cartesian to polar transformation unwrap the iris texture 
into a fixed-size rectangular block. For example, in Lim et 
al. method, after finding the center of pupil and the inner 
and outer boundaries of iris, the texture is transformed 
into polar coordinates with a fixed resolution. In the 
radial direction, the texture is normalized from the inner 
boundary to the outer boundary into 60 pixels. The 
angular resolution is also fixed to a 0:8o over the 360o, 
which produces 450 pixels in the angular direction. Other 
researchers such as Boles and Boashash, Tisse et al. [5]. 
And Ma et al. [20] also use the fixed size polar 
transformation model. 
However, the circular shape of an iris implies that there 
are different number of pixels over each radius. 
Transforming information of different radii into same 
resolution results in different amount of interpolations, 
and sometimes loss of information, which may degrade 
the performance of the system. 

3.1 Daugman's Rubber Sheet Model 

It transforms a localized iris texture from Cartesian to 
polar coordinates. It is capable of compensating the 
unwanted variations due to distance of eye from camera 
(scale) and its position with respect to the camera 
(translation). The Cartesian to polar transformation is 
defined as 
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where I(x; y) is the iris region image, (x; y) are the 
original Cartesian coordinates, ),( r  are the corresponding 
normalized polar coordinates, and (xp; yp) and (xi; yi) are 
the coordinates of the pupil and iris boundaries along the 
_ direction. The process is inherently dimensionless in the 
angular direction. In the radial direction, the texture is 
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assumed to change linearly, which is known as the rubber 
sheet model, as shown in Figure 5. 
 

 
Figure 5: The rubber sheet model for normalizing the segmented irises. 

 
The rubber sheet model [30] linearly maps the iris texture 
in the radial direction from pupil border to limbus border 
into the interval [0 1] and creates a dimensionless 
transformation in the radial direction as well. It takes into 
account pupil dilation and size inconsistencies in order to 
produce a normalized representation of constant 
dimensions. In this way the iris region is modeled as a 
flexible rubber sheet anchored at the iris boundary with 
the pupil center as the reference point. 
Although the normalization method compensates 
variations due to scale, translation and pupil dilation, it is 
not inherently invariant to the rotation of iris. Rotation of 
an iris in the Cartesian coordinates is equivalent to a shift 
in the polar coordinates. In order to compensate the 
rotation of iris textures, a best of n test of agreement 
technique is proposed by Daugman in the matching 
process. In this method, iris templates are shifted and 
compared in n different directions to compensate the 
rotational effects. The rubber sheet model is applied on 4 
different iris images, as shown in Figure 6. 

(a)     (b)  

(c)     (d)  

(e)     (f)  

(g)    (h)  
 
Figure 6: The normalized iris image and its polar form to four different iris 
images by using rubber sheet model, where (a) is an image from the 
CASIA-Iris V. 1, (b) is an image from the CASIA-Iris V. 3-Interval, (e) is 
an image from the CASIA-Iris V. 3-Lamp, and (f) is an image from the 
UBIRIS database. (c), (d), (g) and (h) are the polar form to the four iris 
images respectively. 

4. Feature extraction 

In order to provide accurate recognition of individuals, 
the most discriminating information present in an iris 
pattern must be extracted. Only the significant features of 
the iris must be encoded so that comparisons between 
templates can be made. Most iris recognition systems 
make use of a band pass decomposition of the iris image 
to create a biometric template. 
The first step after the iris normalization is to extract the 
features from the normalized iris image. The Gabor 
wavelet method with log-polar transformation was 
designed by Daugman in 1993 and is widely used in 
commercialized iris recognition systems [10]. The log-
Gabor wavelet method with Polar transformation was 
designed by Masek and Kovesi and implemented in 
Matlab  
[21]. Wavelets can be used to decompose the data in the 
iris region into components that appear at different 
resolutions. Wavelets have the advantage over traditional 
Fourier transform in that the frequency data is localized, 
allowing features which occur at the same position and 
resolution to be matched up. A number of wavelet filters, 
also called a bank of wavelets, are applied to the 2-D iris 
region, one for each resolution with each wavelet a scaled 
version of some basis function. The output of applying the 
wavelets is then encoded in order to provide a compact 
and discriminating representation of the iris pattern. 
Some works have used multi-resolution techniques for iris 
feature extraction [8, 26, 34] and have proven a high 
recognition accuracy. At the same time, however, it has 
been observed that each multi-resolution technique has its 
specification and situation in which it is suitable; for 
example, a Gabor filter bank has been shown to be most 
known multi-resolution method used for iris feature 
extraction and Daugman [8] in his proposed iris 
recognition system demonstrated the highest accuracy by 
using Gabor filters. 

4.1 The 1-D Log-Gabor Filter 

The 1-D log-Gabor band pass filter is used to extract the 
features in an iris [35, 36], it is defined as 
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(16) 
where,   is used to control the filter bandwidth and ! is 
the filter's center frequency, which is derived from the 
filter's wavelength,  . The 1-D log-Gabor filter does not 
have a spatial domain format. Each row of the iris image, 
in the log-polar coordinates, is first transformed to the 
frequency domain using fast Fourier transform (FFT). 
This frequency domain row signal is then filtered with the 
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1-D log-Gabor filter (i.e. multiplied with the 1-D log-
Gabor filter in the frequency domain). 
The filtered row signal is transferred back to the spatial 
domain via inverse fast Fourier transform (IFFT). The 
spatial domain signal is then transferred to a filtered 
image in the spatial domain, and hence the biometric code 
(template) is obtained from the filtered image. 
Figure 7 shows the step-by-step process of the 1-D log 
Gabor filter feature extraction. 

5. Matching 

Once an iris image relevant texture information extracted, 
the resulting feature vector (iris template) is compared 
with enrolled iris templates. The template generated needs 
a corresponding matching metric, which gives a measure 
of similarity between two iris templates. This metric 
should give one range of values when comparing 
templates generated from the same eye, known as intra-
class comparisons, and another range of values when 
comparing templates created from different irises, known 
as extra-class comparisons. 
These two cases should give distinct and separate values, 
so that a decision can be made with high confidence as to 
whether two templates are from the same iris, or from two 
different irises. The following subsections introduce some 
famous matching metrics, and finally the scalar product 
(SP) method.  

5.1 The Normalized Hamming Distance 

The Hamming distance (HD) gives a measure of how 
many bits are the same between two bit patterns, 
especially if the template is composed of binary values. 
Using the HD of two bit patterns, a decision can be made 
as to whether the two patterns were generated from 
different irises or from the same iris. For example, 
comparing the bit patterns P and Q, the HD is defined as 
the sum of disagreeing bits (sum of the exclusive-OR 
between P and Q) over N, the total number of bits in each 
bit pattern. It is known as the normalized HD, and is 
defined as: 
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(17) 
Since an individual iris region contains features with high 
degrees of freedom, each iris region will produce a bit-
pattern which is independent to that produced by another 
iris, on the other hand, two iris codes produced from the 
same iris will be highly correlated. 
In case of two completely independent bit patterns, such 
as iris templates generated from different irises, the HD 

between the two patterns should equal 0.5. This occurs 
because independence implies that, the two bit patterns 
will be totally random, so there is 0.5 chance of setting 
any bit to 1, and also to zero. Therefore, half of the bits 
will agree and half will disagree between the two patterns. 
If two patterns are derived from the same iris, the HD 
between them will be close to 0.0, since they are highly 
correlated and the bits should agree between the two iris 
codes. 
Daugman [8] uses this matching metric as following, the 
simple Boolean Exclusive-OR operator (XOR) applied to 
the 2048 bit phase vectors that encode any two iris 
patterns, masked (AND'ed) by both of their corresponding 
mask bit vectors to prevent noniris artifacts from  
influencing iris comparisons. The XOR operator   
detects disagreement between any corresponding pair of 
bits, while the AND operator   ensures that the compared 
bits are both deemed to have been uncorrupted by 
eyelashes, eyelids, specular reflections, or other noise. The 
norms of the resultant bit vector and of the AND'ed 

mask vectors are then measured in order to compute the 
fractional HD (Equation 5.18), as the mea-sure of 
dissimilarity between any two irises, whose two phase 
code bit vectors are denoted codeP; codeQ and whose 
mask bit vectors are denoted maskP; maskQ: 

maskQmaskP
maskQmaskPcoodeQcodeP

HD


)( 


          (18) 

The denominator tallies the total number of phase bits 
that mattered in iris comparisons after artifacts such as 
eyelashes, eyelids, and specular reflections were 
discounted, so the resulting HD is a fractional measure of 
dissimilarity; 0.0 would represent a perfect match. 

5.2 The Weighted Euclidean Distance 

The weighted Euclidean distance (WED) can be used to 
compare two templates, especially if the template is 
composed of integer values. It gives a measure of how 
similar a collection of values are between two templates. 
This metric is employed by Zhu et al. [37] and is defined 
as: 
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 (19)                    
where fi is the thi  feature of the unknown iris, and P

if is 
the thi  feature of iris template k, and P

i i is the standard 
deviation of the thi  feature in iris template k. The 
unknown iris template is found to match iris template k, 
when the WED is a minimum at k. 
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5.3 The Normalized Correlation 

Wildes et al. [26] make use of Normalized correlation 
(NC) between the acquired and database representation 
for goodness of match. This is represented as: 

21
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    (20) 

where p1 and p2 are two images of size 
1, nm   and 

1  
are the mean and standard deviation of p1, and 

2 and 

2 are the mean and standard deviation of p2. 
Normalized correlation is advantageous over standard 
correlation, since it is able to account for local variations 
in image intensity that corrupt the standard correlation 
calculation. 

5.4 The Scalar Product 

The Scalar product method (SP) can be used to compare 
two templates, especially if the template is composed of 
real values. It considers the two templates as two vectors 
and gives the )cos(  between the two templates. The 

)cos(  between any two templates is between -1 and 1. If 
)cos(  is close to 1, the two templates are for the same 

iris, but if it was close to zero, the templates are for 
different irises. For example suppose that we have two 
templates P and Q, the scalar product is defined as: 

)cos(.. QPQP                                    

(21) 
The localization of the iris and the coordinate system 
desc-  

Figure 7: The step-by-step process of a row signal feature extraction by 
using the 1-D log-Gaber filter  

 

Iter.
No 

Templates )cos( 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

P = [2 6 2 1 2 8 5 10 2 3], Q = [1 2 3 4 5 6 7 8 9 10] 
P = [2 6 2 1 2 8 5 10 2 3], Q = [2 3 4 5 6 7 8 9 10 1] 
P = [2 6 2 1 2 8 5 10 2 3], Q = [3 4 5 6 7 8 9 10 1 2] 
P = [2 6 2 1 2 8 5 10 2 3], Q = [4 5 6 7 8 9 10 1 2 3] 
P= [2 6 2 1 2 8 5 10 2 3],Q= [5 6 7 8 9 10 1 2 34] 
P = [2 6 2 1 2 8 5 10 2 3], Q = [6 7 8 9 10 1 2 3 4 5] 
P = [2 6 2 1 2 8 5 10 2 3], Q = [7 8 9 10 1 2 3 4 5 6] 
P = [2 6 2 1 2 8 5 10 2 3], Q = [8 9 10 1 2 3 4 5 6 7] 
P = [2 6 2 1 2 8 5 10 2 3], Q = [9 10 1 2 3 4 5 6 7 8] 
P= [2 6 2 1 2 8 5 10 2 3],Q  = [10 1 2 3 4 5 6 7 8 9] 

0:7881 
0:8235 
0:8911 
0:7013 
0:6723 
0:5469 
0:6144 
0:7141 
0:7817 
0:7206 

 
Table 1: This table indicates that, the maximum )cos(  = 0:8911, thus 

  = 26:988 which is the smallest   between the two templates. i.e., 
there is no match between the two templates for ever. 
 
The previous table is for a simple example, but for iris  
the algorithm will perform 4800 iterations for comparing 
every two templates, because each template consists of 
4800 elements. 

6. Results 

The actual iris image was first segmented using the 
gradient-based Hough transform to detect the outer iris 
boundary, and the DCAC for the inner iris boundary to 
avoid the errors of Hough transform, and then the eyelids, 
eyelashes, and noise regions are detected. Secondly the 
detected iris image is normalized using Daugman's rubber 
sheet model. After that the relevant texture information is 
extracted using the 1-D Log-Gabor filter, hence we have a 
real valued template of 24020  elements which will be 
converted to a vector of 48001 elements. Finally these 
templates are stored to comprise a database of templates 
which will be used in the matching process by using the 
scalar product method. 
This database of templates has two categories, the CASIA 
which consists of 996 templates and UBIRIS which 
consists of 723 templates. The SP method was tested by 
using 915 and 448iris images from CASIA and UBIRIS 
d- 
ribed above achieve invariance to the 2-D position and 
size of the iris, and to the dilation of the pupil within the 
iris. However, it would not be invariant to the orientation 
of the iris within the image plane. The most efficient way 
to achieve iris recognition with orientation invariance is 
not to rotate the image itself using the Euler matrix, but 
rather to compute the iris phase code in a single canonical 
orientation and then to compare this very compact 
representation at many discrete orientations by cyclic 
scrolling of its angular variable. Thus for example to 
apply the SP method on two different templates P = [2 6 2 
1 2 8 5 10 2 3], reference template and Q = [1 2 3 4 5 6 7 
8 9  
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10], template from the database of 10 elements, it will 
work as shown in Table 1. 
database respectively, and was found to give good correct 
recognition rates compared to other matching methods as 
shown in Table 2.  

Matching measure Correct recognition rate (CRR)% 
WED 

SP 
HD 

98.73 
98.26 
98.22 

Table 2: The correct recognition rates achieved by three matching measures 
using the CASIA and UBIRIS database. 

 
In our experimental results the false match rate (FMR), 
the rate which non-authorized people are falsely 
recognized during the feature comparison which contrasts 
the false accept rate (FAR) and the false non-match rate 
(FNMR), the rate that authorized people are falsely not 
recognized during feature comparison which contrasts the 
false reject rate (FRR) are estimated. Figure 8, illustrates 
the receiver operating characteristic (ROC) curves for the 
CASIA database after applying the SP matching method. 
Where 100-FNMR is plotted vs. the FMR. 

 
Figure 8: The obtained ROC curves to three different matching measures 

using the CASIA database. 

 
Figure 9: The matching of (012 1 3) iris image from (CASIA-Iris V. 1) with 
the template number 80 from 150 templates, where as shown )cos(  = 1 

between the compared iris template and the template number 80, hence the 
two are templates for the same iris image. 

 
Figure 10: There is no match of (050 1 3) iris image (CASIA-Iris V. 1) with 
any template from 150 templates, where the maximum )cos( = 0:83 is 
between the compared iris template and the template number 124, hence the 
two templates are very similar but they are not templates for the same iris 
image. 

 
Figure 11: The matching of (Img 2 1 4) iris image from (UBIRIS database) 
with the template number 9 from 150 templates, where as shown 

)cos(  = 1 between the compared iris template and the template number 
9, hence the two are templates for the same iris image. 

 
Figure 12: There is no match of (Img 235 1 5) iris image (UBIRIS 
database) with any template from 150 templates, where the maximum 
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)cos(  = 0:18 is between the compared iris template and the template 
number 145, hence the two templates are not so similar and 
also they are not templates for the same iris image. 

7. Conclusion 

Here we have presented an active contour model, in order 
to compensate for the iris detection error caused by two 
circular edge detection operations. After perfect iris 
localization, the segmented iris region is normalized 
(transformed into polar coordinates) to eliminate 
dimensional inconsistencies between iris regions. This 
was achieved by using Daugman's rubber sheet model, 
where the iris is modeled as a flexible rubber sheet, which 
is unwrapped into a rectangular block with constant polar 
dimensions )24020(  elements. 
The next stage is to extract the features of the iris from 
the normalized iris region. This was done by the 
convolution of the 1-D Log-Gabor filters with the 
normalized iris region. After that the convoluted iris 
region is reshaped to be a template of (1_4800) real 
valued elements. 
Finally the scalar product matching scheme is used, 
which give the )cos(  between two templates. If 

)cos(  = 1 between two templates P and Q this means 
that, the two templates were deemed to have been 
generated from the same iris, otherwise they have been 
generated from different irises. 
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