
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 198

 An Approach to Cost Effective Regression Testing in Black-Box
Testing Environment

Prof. A. Ananda Rao 1 and Kiran Kumar J 2

 1 Prof. of CSE and Principal, JNTUA
Anantapur, Andhra Pradesh, India

2 Software Engineer, IBM
India

Abstract
Regression testing is an expensive and frequently executed
maintenance activity used to revalidate the modified software.
As the regression testing is a frequently executed activity in the
software maintenance phase, it occupies a large portion of the
software maintenance budget. Any reduction in the cost of
regression testing would help to reduce the software maintenance
cost. The current research is focused on finding the ways to
reduce the regression testing cost. In this paper, an approach to
test suite reduction for regression testing in black box
environment has been proposed. This type of approach has not
been used earlier. The reduced regression test suite has the same
bug finding capability and covers the same functionality as the
original regression test suite. The proposed approach is applied
on four real-time case studies. It is found that the reduction in
cost of regression testing for each regression testing cycle is
ranging between 19.35 and 32.10 percent. Since regression
testing is done more frequently in software maintenance phase,
the overall software maintenance cost can be reduced
considerably by applying the proposed approach.

Keywords: Software maintenance cost, ETL DB Component,
reduced test suite, reduced regression test suite, test case design,
regression testing cost reduction.

1. Introduction

The estimated cost of software maintenance activities
occupies as much as two-thirds of the total cost of
software production [18]. Regression testing is a critical
part of the software maintenance that is performed on the
modified software to ensure that the modifications do not
adversely affect the unchanged portion of the software. As
regression testing is performed frequently in software
maintenance, it accounts for a large portion of the
maintenance costs [9, 10, 11]. Regression testing is
“selective retesting of a system or component to verify that
modifications have not caused unintended effects and that

the system or component still complies with its specified
requirements.” [1].

Numerous techniques have been proposed to deal with the
regression testing costs. Regression test selection
techniques select a subset of existing test case set for
execution, depending on criteria such as changes made to
the software. Test suite reduction techniques reduce the
test suite permanently by identifying and removing
redundant tests. Test case prioritization techniques retain
the complete test suite, but change the order of test cases
prior to execution, attempting to find the defects earlier
during the testing. During software maintenance phase,
testing teams need to run regression test case set on many
intermediate builds, to ensure that the bug fixes or
enhancements made to the software do not adversely
affect unchanged portions of the software. In this paper, an
approach to reduce the total number of regression test
cases in black box environment without affecting the
defect coverage and functionality coverage of software is
proposed. This reduction in the regression test suite size
will reduce the effort and time required by the testing
teams to execute the regression test suite.

Most of the existing approaches consider test suite which
contain, test cases to test the functionality, boundary
values, stress, and performance of the software. Any
reduction in this test suite size will reduce the testing time,
effort, and cost. Many of the test cases in this test suite
belong to the functionality and boundary values of the
software. The proposed approach is applied on the original
test suite to derive the reduced test suite. This reduced test
suite covers the same functionality of the software as the
original test suite. A regression test selection method is
applied on this reduced test suite, to get the reduced
regression test suite. This reduced regression test suite
covers the same defect coverage and functionality as the

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 199

original regression test suite. In this proposed approach, it
is shown that the two aspects of testing, that is testing for
functionality and testing for boundary values can be tested
with reduced test suite as these two aspects can be tested
together simultaneously in most of the situations. The
situations where these two aspects can be tested
simultaneously, is also shown with help of the case-studies.
In this paper, testing simultaneously means, a single test
case can cover both the above mentioned aspects for a
particular situation. The proposed approach is applied on
four real-time case studies and also estimated the
reduction in cost of regression testing using a cost
estimation model. It is found that the reduction in cost per
one regression testing cycle is ranging between 19.35 and
32.10 percent. Since regression testing is more frequently
done activity in software maintenance phase, the overall
regression testing cost can be reduced considerably by
applying the proposed approach.

The rest of the paper is organized as follows: Section II
reviews the various regression testing techniques and
summarizes related work. Section III describes the
proposed approach to cost effective regression testing for
black-box testing environment. Section IV describes the
Empirical studies and results of the proposed approach.
Section V concludes and discusses future work.

2. Related Work

Researchers, practitioners and academicians proposed
various techniques on test suite reduction, test case
prioritization, and regression test selection for improving
the cost effectiveness of the regression testing.

Rothermel and Harrold presented a technique for
regression test selection. Their algorithms construct
control flow graphs for a procedure or program and its
modified version and use these graphs to select tests that
execute changed code from the original test suite [9].
James A. Jones and Mary Jean Harrold proposed new
algorithms for test suite reduction and prioritization [2].
Saifur-Rehman Khan, Aamer Nadeem proposed a novel
test case reduction technique called TestFilter that uses the
statement-coverage criterion for reduction of test cases [3].
T. Y. Chen and M. F. Lau presented dividing strategies for
the optimization of of a test suite [4]. M. J. Harrold etal
presented a technique to select a representative set of test
cases from a test suite that provides the same coverage as
the entire test suite [5]. This selection is performed by
identifying, and then eliminating, the redundant and
obsolete test cases in the test suite. This technique is
illustrated using data flow testing methodology. A recent
study by Wong, Horgan, London, and Mathur [6],

examines the costs and benefits of test suite minimization.
Rothermel et al [7] described several techniques for using
test execution information to prioritize test cases for
regression testing, including: techniques that order test
cases based on their total coverage of code components,
techniques that order test cases based on their coverage of
code components not previously covered, and techniques
that order test cases based on their estimated ability to
reveal faults in the code components that they cover.

Most of the techniques described in the above papers
assume that source code of the software is available to the
testing engineer at the time of testing. But in most of the
organizations the testing is done in black box environment
and the source code of the software is not available to the
testing engineers. In this paper, an approach to reduce cost
of software regression testing in black box environment,
without affecting the functionality coverage, is presented.

3. The Proposed Approach

The estimated cost of software maintenance exceeds 70%
of total software costs [16], and large portion of this
maintenance expense is devoted to regression testing.
Regression testing is a frequently executed activity, so
reducing the cost of regression testing would help in
reducing cost of the software maintenance.

The proposed approach is shown in three phases
(Fig.1). In Phase 1 (Fig. 1), the “Reduced Test Suite” is
derived by applying the proposed approach on the
Original test suite. Phase 1 of the approach is already
proposed by the authors in [17], and in Phase 2 (Fig. 1),
the “Reduced Regression Test Suite” is derived by
applying a regression test selection method on the
“Reduced Test Suite” that is derived in the Phase 1. In
Phase 3, a testing cost-estimation model is applied on the
reduced regression test suite and empirically calculated the
regression testing cost reduction by the proposed approach.

Phase 1: Deriving the “Reduced Test Suite”

A large number of test cases are derived by applying

various testing techniques to test complete functionality of
a software product. This test suite contains test cases to
test functionality, boundary values, stress, and
performance of the software product. Majority of these
test cases will be test cases that test the functionality and
boundary values. The Phase 1 of the proposed approach is
focused on reducing test cases considering test cases that
test functionality and boundary values.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 200

Fig. 1 The proposed approach to cost-effective regression testing

The Phase 1 (Fig.1) of the approach contains the

following four steps:
1. View the two aspects that is functionality and

boundary value testing together
2. Identify the situation(s) (considering functionality

and boundary values) which can be tested in single test
case(s) so as to design minimal test cases

3. Proving logically that the single test case(s) in-fact
covering both the aspects.

4. Applying above three steps to case studies and
validating

By applying the above mentioned approach we get
the “Reduced Test Suite” that covers the same
functionality of the software as the original test suite. This
is validated in the case studies.

Phase 2: Deriving the “Reduced Regression Test
Suite”

Regression testing process involves selecting a subset
of the test cases from the original test suite, and if
necessary creates some new test cases to test the modified
software.

Let P is the original software product, P  is the
modified software product and T is the set test cases to test
P. A typical regression testing on modified software
proceeds as follows:

A. Select T   T , a set of test cases to execute on

the modified software product P .
B. Test P with T  , to verify modified software

product’s correctness with respect to T  .
C. If necessary, create T  , a set of new test cases to

test P .
D. Test P with new tests T  , to verify P

correctness with respect toT  .
In Phase 1 (Fig 1), the “Reduced Test Suite” is

derived. In Phase 2 (Fig 1), the “Reduced Regression Test
Suite” is derived by applying the regression test selection
method shown in the Figure 2. This regression test select
ion method contains the following 3 steps:

1. Select a subset of test cases from the reduced test
suite (derived in Phase1) which covers the major
functionality of the product.

2. Select test cases that cover the scenarios to test the
bug fixes included in the regression build

Reduced Test
Suite

Regression Test Selection
Method

Reduced
Regression Test

Suite

Phase 2

Original Test
Suite

The proposed Approach to
reduce the test cases

Reduced Test
Suite

Phase 1

Reduced
Regression
Test Suite

Cost Estimation Model

Empirical results
of the Regression

Testing Cost
Reduction

Phase 3

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 201

3. Create new test cases, to test the (if any) new
enhancements included in the regression build.

In step1 of this approach, we are selecting subset of
test cases from the reduced test suite. So, this selected
subset will also contain the less number of tests as
compared to the subset selected from the original test
suite. This reduced regression test suite covers the same
functionality as the original regression test suite that is
derived without applying our approach.

The reduced regression test suite derived using this
approach is empirically evaluated in the ‘case studies’
section of the paper.

Phase 3: Regression Testing Cost Estimation

In Phase 3 of the proposed approach we calculate the
estimated reduction in regression testing achieved by
using the proposed approach. The authors proposed an
approach to cost estimation in black-box testing
environment in [19]. Using this approach the regression
testing in black-box environment involves the following
major activities.

 Environment setup for testing (env)

 Verification of the fixed bugs which were

reported in the previous testing cycle (bv)

 Test Suite execution (Te)

 Test Report Generation (rg)

 Test Report Analysis (ra)

 Reporting the Bugs (br)

As the above mentioned actives are performed on an

each and every build, they occupies major portion of the
overall regression testing time. The time required to
complete regression testing on one intermediate or
regression build is calculated using the following
equation.

TbrTbvTrargTeNtenvib )60/)((

 (1)

where, the ‘ Te ’ indicates the average time required to
execute a single test case and the ‘ Nt ’ is the total number
of the test cases executed for that particular regression
testing cycle.

Fig. 2 The regression test case selection

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 202

Fig. 3 The ETL process

The equation (1) gives the estimated effort required
to test one regression build, in man-hours. The estimated
the regression testing cost on a regression build can be
calculated using the following equation.

totalSeCtotal  (2)

where, ‘ Se ’ is the average salary paid to a testing

engineer per man-hour.
The salary paid to the employee per man-hour mainly

depends on the organization and geography of the
employee. So, the estimated regression testing cost for the
product can be calculated based on these factors and using
equation (2).

The following section describes the empirical
validation of the proposed approach.

4. Empirical Studies and Results

The proposed approach is applied on four real-time
ETL tool (Data ware housing tool) components: DB2 ETL
DB Component, Sybase ETL DB Component, Teradata
ETL DB Component and MySQL ETL DB Component.
Concepts explained in Fig. 3 and Fig. 4, are generic and
applicable to all the above four case studies. In Fig. 3,
ETL, which stands for “extract, transform and load”, is the
set of functions combined into one tool or solution that
enables companies to “extract” data from numerous
databases, applications and systems, “transform” it as
appropriate, and “load” it into another databases, a data
mart or a data warehouse for analysis, or send it along to
another operational system to support a business process.

The phase 1 of the approach is applied to the case
studies as given below:

Phase 1: Deriving the “Reduced Test Suite”

The test suite that tests the complete functionality of
an ETL tool include: Functional test cases (Tf), Boundary
Value test cases (Tb), Stress test cases (Ts), Performance
test cases (Tp) and other test cases (To) like negative test
cases. So the Total Number of test cases (Tn) are:

Tn = Tf + Tb + Ts + Tp + To

Fig. 4 The ETL Database Component write process

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 203

TABLE1. FUNCTIONAL TEST CASES BEFORE APPLYING THE PROPOSED APPROACH OF PHASE 1

Test Case
ID

Description Preconditions Expected Result
Test

Status
Comments

TCf1
Test on writing the data to the target table with
Action on data = Insert

The job should add new rows to the target table and
stop if duplicate rows are found.

TCf2
Test on writing the data to the target table with
Action on data = Update

The job should make changes to existing rows in
the target table with the input data.

TCf3
Test on writing the data to the target table with
Action on data = Insert or Update

The job should add new rows to the target table
first and then update existing rows.

TCf4
Test on writing the data to the target table with
Action on data =Update or Insert

The job should update existing rows first and then
add new rows to the target table.

TCf5
Test on writing the data to the target table with
Action on data =Delete

The job should remove rows from the target table
corresponding to the input data.

The Fig. 4 shows some attributes of a generalized

ETL Database Component write process. In this write
process, the source could be an ETL DB Component or a
flat file and the target is a ETL DB Component.

In the write process, the target ETL DB Component
reads data from the source component, connects to the
respective database using the connection properties
specified and writes that data in to the target table.

The test case design using the phase 1 of proposed
approach, for DB2 ETL DB Component is described in
section A.

A. DB2 ETL DB Component Test Case Design

The Fig. 5 shows the metadata of the table
‘sampletable’ used in the DB2 ETL DB Component case
study. This is a DB2 table that contains 5 columns. The
col1 is integer type, col2 is character type, col3 is varchar
type, col4 is decimal type and col5 is date type.

The Table 1 shows some sample Functional test cases
for the DB2 ETL DB Component write process. Each of
these test cases tests a single functionality or scenario of
the DB2 ETL DB Component to ensure the particular
attribute or function is working properly.

Fig. 5 Metadata of the sample table

The Table 2 shows some sample Boundary Value test
cases for the DB2 ETL DB Component write process.
Each of these test cases tests a single column or data type
to ensure the boundary values of that data type are written
properly to the target table.

The test case design for DB2 ETL DB Component
using the proposed approach of phase 1 is described in the
following four sub sections (A.1 – A.4).

TABLE 2. BOUNDARY VALUE TEST CASES BEFORE APPLYING THE PROPOSED APPROACH OF PHASE 1

Test Case
ID

Description
Precondit

ions
Expected Result

Test
Status

Comments

TCb1
Test on writing the data to col1 with
INTEGER data type boundary values

The job should read the INTEGER data type boundary values
from input data and write to the target table successfully.

TCb2
Test on writing the data to col2 with
CHAR data type boundary values

The job should read the CHAR data type boundary values from
input data and write to the target table successfully.

TCb3
Test on writing the data to col3 with
VARCHAR data type boundary values.

The job should read the VARCHAR data type boundary values
from input data and write to the target table successfully.

TCb4
Test on writing the data to col4 with
DOUBLE data type boundary values

The job should read the DOUBLE data type boundary values
from input data and write to the target table successfully.

Column Datatype Data type Column
 name schema name Length Scale Nulls
------ -------- ---------- ------ ------ -----
COL1 SYS INTEGER 4 0 No
COL2 SYS CHARACTER 9 0 Yes
COL3 SYS VARCHAR 9 0 Yes
COL4 SYS DECIMAL 12 3 Yes
COL5 SYS DATE 4 0 Yes

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 204

TCb5
Test on writing the data to col5 with
DATE data type boundary values

The job should read the DATE data type boundary values from
input data and write to the target table successfully.

A.1. View the two aspects together (Step 1)

Many software testing techniques are required to test
functionality of a software product completely. A large
number of test cases are generated by applying the various
testing techniques. These test cases include: functional test
cases (Tf), Boundary Value test cases (Tb) , Stress test
cases (Ts), Performance test cases (Tp) and other test
cases (To) like negative test cases.

Tn = Tf + Tb+ Ts + Tp+ To.
Most of the test cases in this test suite belong to test

cases that test the functionality and boundary values of the
product. The proposed approach in Phase1 is focused to
reduce test cases considering test cases that test
functionality and boundary values.

A.2. Identifying the situations that can be tested in a
single test case and designing minimized test case set
(Step 2)

The test case TCf1 tests the functionality of the DB2
ETL DB Component when the attribute ‘Action on Data’
is set to ‘Insert’ and the test case TCb1 tests the INTEGER
data type boundary value that is written to the target DB2
table. Both of these test cases TCf1 and TCb1 are testing
the two aspects i.e. functionality and boundary values of
the DB2 ETL DB Component.

By using the proposed approach in phase1 these two
test cases could be viewed together and tested in a single
test case. For example, the test cases TCf1 and TCb1 are
viewed together and designed a single test case TCm1
(Table 3) that covers the both aspects. The minimized test
case set designed using the proposed approach in phase 1
is shown in the Table 3.

A.3. Providing logically that the single test case in fact
covers both the aspects (Step 3)

Each test case in the minimized test case set
described in Table 3 will test the functionality of the DB2
ETL DB Component to ensure that the particular attribute
is working properly and also tests the boundary values for
various columns in the target table to ensure that the
boundary values of that column data type are written
properly. For example, the TCm1 in the minimized test
case set tests whether the DB2 ETL DB Component is
working properly when the attribute ‘Action on Data’ is
set to ‘Insert’ and also tests whether the INTEGER data
type boundary value is written to the target table properly
which were tested by the test cases TCf1 and TCb1.

In similar way, the remaining test cases in the
minimized test case set {TCm1 – TCm5} described in
Table 3 will test the both aspects, functionality and the
boundary values of DB2 ETL DB Component which have
been tested by the test cases {TCf1-TCf5 and TCb1-
TCb5}.

A.4. Applying the above three steps to case studies and
validating (step 4)

If the number of boundary value test cases that are

viewed together with functional test cases, the number of
test cases test cases reduced is Tbr. Then, after applying the
phase 1 of the proposed approach, the total number of test
cases is minimized to:

Tmin =Tn- Tbr
And, the percentage of test case reduction (Tred %) is:
Tred % = ((Tn - Tmin) / Tn) * 100

TABLE 3. THE MINIMIZED TEST CASE SET DESIGNED USING THE PROPOSED APPROACH IN PHASE 1

Test
Case ID

Description Preconditions Expected Result
Test

Status
Comments

TCm1
Test on writing the data to the target table with
Action on data = Insert and col1 contains INTEGER
data type boundary values

The job should read the input data, add new
rows to the target table successfully and stop
if duplicate rows are found.

TCm2
Test on writing the data to the target table with
Action on data = Update and col2 contains CHAR
data type boundary values

The job should read the input data and make
changes to existing rows in the target table
with the input data

TCm3
Test on writing the data to the target table with
Action on data = Insert or Update and col3 contains
VARCHAR data type boundary values

The job should read the input data, add new
rows to the target table first and then update
existing rows

TCm4
Test on writing the data to the target table with
Action on data = Update or Insert and col4 contains
DOUBLE data type boundary values

The job should read the input data, update
existing rows first and then add new rows to
the target table

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 205

TCm5
Test on writing the data to the target table with
Action on data = Delete and col5 contains DATE data
type boundary values

The job should read the input data and remove
rows from the target table corresponding to
the input data

TABLE 4. REDUCED REGRESSION SUITE

ETL DB Component
Original Test Suite (

Tn)
Reduced Test Suite –

Phase 1 (Tmin)
Original Regression Suite

(TR)

Reduced Regression
Suite- Phase 2

(TRmin)

DB2 ETL DB Component 3563 2609 (26.7 %) 1846
1304

Sybase ETL DB
Component

2968 2079 (29.98 %) 1497
1034

Teradata ETL DB
Component

4234 2798 (33.91 %) 2534
1624

MySQL ETL DB
Component

3657 2484 (32.07 %) 1668
1166

In similar way, the proposed approach is also applied
on Sybase ETL DB Component, Teradata ETL DB
Component and MySQL ETL DB Component. The second
column of Table 4 describes the total number of test cases
(Tn) before applying phase 1 of the proposed approach, the
third column describes the total number of test cases in the
minimized test case suite (Tmin) after applying the phase 1
of the proposed and the percentage of test case reduction
(Tred %), given in parenthesis.

After applying the proposed approach in phase 1, the
total number of test cases for DB2 ETL DB Component,
Sybase ETL DB Component, Teradata ETL DB
Component and MySQL ETL DB Component test cases
are reduced by 34 %,27 %,30 % and 32 % respectively.
The results indicate that the number of test case reduction
is ranging between 27 to 34 percent (Table 4, 3rd column).
Hence the Phase 1 of the proposed approach is validated
through case studies.

Phase 2: Deriving the “Reduced Regression Test
Suite”

Regression testing is a critical part of the software
maintenance that is performed on the modified software to
ensure that the modifications do not adversely affect the
unchanged portion of the software.

Using the proposed approach for regression test
selection, we have selected a subset of test cases from the
reduced test suite (derived in Phase1) which covers the
major functionality of the product, selected test cases that
cover the scenarios to test the bug fixes included in the
regression build, and created new test cases, to test the (if
any) new enhancements included in the regression build.
This derived “Reduced Regression Test Suite” covers the
same functionality of the software product as the
regression suite that is derived from the original test suite
(without reduction).

The phase 2 of the approach is applied on four case
studies and the results are recorded in Table 4. The fourth
column in table 4 describes the number of regression test
cases (TR) that are derived by applying the proposed
regression test selection method on the original test suite
(i.e before applying the Phase1 of the proposed approach).
The fifth column in Table 4 describes the “Reduced
Regression Test Suite” (TRmin) which is derived by
applying the proposed regression test selection method on
the “Reduced Test Suite” derived in Phase1.

This reduction is independent of the regression test
selection method that is used to select the regression test
cases. If the number of test cases in the original test suite
is reduced, then subsequently the number of regression
test cases also reduced.

Phase 3: Regression Testing Cost Estimation

The table 5 presents the required average effort for

each of the testing activities in black-box testing, based the
historical data derived from analyzing 40 completed
software projects [19].

TABLE 5. AVERAGE TIME REQUIRED FOR TESTING ACTIVIIES

Testing activity

Avg.
Estimated
effort

Environment setup for testing 3 Hrs

Verification of the fixed bugs
20 min /
bug

Test Suite execution
1.2 min /
test case

Test Report Generation 9 min

Test Report Analysis 20 min

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 206

Reporting the Bugs
18 min /
bug

The estimated effort required to complete the testing on
one regression build calculated using the equation (1) is:

For original regression test suite:

ib = 3 + ((1864 x 1.2) +9+20+4x20+4x18) / 60 =
43.29 Hrs

For reduced regression test suite:

ib = 3 + ((1304 x 1.2) +9+20+4x20+4x18) / 60 =
32.09 Hrs

According to C. Jones [18] the average salary paid to a
software engineer is $100 per hour. The total estimated
cost for testing the complete product before it gets
released to the customer is calculated using the equation
(2):

For original regression rest Suite:

Ctotal = 100 x 43.29 = 4329 $

For reduced regression test Suite:
Ctotal = 100 x 32.09 = 3209 $

So, the estimated regression testing cost of the ‘DB2

ETL DB Component’ using the original regression suite is
4329 $, and the estimated regression testing cost of the
‘DB2 ETL DB Component’ using the reduced regression
suite is 3209 $. In Table 6, the 4th column indicates the
estimated regression testing cost using the original
regression test suite, and the 5th columns indicates the
estimated regression testing cost using the reduced
regression test suite. For the remaining three projects the
regression testing costs are estimated using the proposed
approach and the final results are given in the table 6.

The average salary paid to a software engineer varies
based on the organization and the geography location. As
we have estimated the exact amount of effort required, the
project manager could easily estimate the exact testing
cost using equation (2), by substituting average salary paid
to the employee in their organization.

The regression testing cost reduced by applying the
proposed approach is:

CRred = CR – CRmin
The percentage of reduction in regression testing cost

is: CRred % = ((CR – CRmin) / CR) * 100
The regression testing cost reduced for ‘DB2 ETL

DB Component’ calculated using the above equation is:
CRred %= ((4329-3209)/ 4329)*100 = 25.87 %
The percentage of reduction in regression testing cost

(CRred %) by using the proposed approach, on one
regression testing cycle, for various projects calculate
using the above equations are shown in the 6th column of
the Table 6.

The regression testing needs to be performed on
many intermediate software builds of the product during
the software maintenance phase.

Let Bn {n=1,2,3,…,12} is the number of builds for a
particular month on which the regression testing needs to
done.

Then the total number of builds per year is


12

1n

nB ,

and the average number of builds per month

is 









 



12

112

1

n

nB .

So, the regression testing cost reduced per month is

  









 



12

112

1
%C

n

nRred B , and

per year is   












12

1

%C
n

nRred B .

TABLE 6. ESTIMATED REGRESSION TESTING COST REDUCTION

ETL DB Component
Original

Regression Suite
(TR)

Reduced Regression
Suite- Phase 2 (TRmin)

Estimated Cost to test the
original Regression suite

(TR)

Estimated Cost to
test the Reduced
Regression Suite

(TRmin)

Percentage of
reduced Regression
testing cost (TRmin)

DB2 ETL DB Component 1846
1304

4329 3209 25.87 %

Sybase ETL DB
Component

1497
1034

3595 2669 25.75 %

Teradata ETL DB 2534 1624 5669 3849 32.10 %

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 207

Component

MySQL ETL DB
Component

1668
1166

3637 2933 19.35 %

By applying the proposed approach, %CRred percent
regression testing cost is reduced for a ETL DB
Component. These case studies show that, the proposed
approach saves a substantial amount of regression testing
time and effort. The cost of the regression testing for DB2
ETL DB Component, Sybase ETL DB Component,
Teradata ETL DB Component and MySQL ETL DB
Component is reduced by 25.87 %, 25.75 %, 32.10 % and
19.35 % respectively. The results indicate that by applying
the proposed approach, the reduction in cost of regression
testing is ranging between 19.35 to 32.10 percent (Table 6,
6th column).

5. Conclusions and Future work

The proposed approach reduces the number of
regression test cases in black box environment,
independent of the regression test selection methods that
are available. The effort required to apply this approach is
a one-time effort, but it reduces the effort and time
required for all the remaining regression testing cycles of
the software.

The proposed approach is applied on four real-time
ETL Tools (Data ware housing tools) that are used by
many customers all over the world. The tested ETL tool
components are DB2 ETL DB Component, Sybase ETL
DB Component, Teradata ETL DB Component and
MySQL ETL DB Component. It is found from the case
studies that the cost of regression testing can be reduced
by applying the proposed method and the reduction in
regression testing cost is ranging between 19.35 and 32.10
percent. Hence, by using the proposed approach the
regression testing cost can be reduced considerably.

As part of the future work, we are planning to
propose an enhanced regression test selection method in
black-box environment which further reduces the
regression testing cost.

References
[1] IEEE Std 610.12-1990, IEEE Standard Glossary of Software

Engineering Terminology.
[2] James A. Jones and Mary Jean Harrold, “Test-Suite

Reduction and Prioritization for Modified
Condition/Decision Coverage”, IEEE Transactions on
Software Engineering, Vol. 29, Issue. 3, March 2003.

[3] Saif-ur-Rehman Khan Nadeem, A.Awais, “TestFilter: A
Statement-Coverage Based Test Case Reduction Technique”,
IEEE Multitopic Conference, page(s): 275 - 280, 23-24 Dec.
2006.

[4] T. Y. Chen and M. F. Lau, “Dividing strategies for the
optimization of a test suite”, Information Processing Letters,
60(3):135–141, Mar. 1996.

[5] M. J. Harrold, R. Gupta, and M. L. Soffa, “A methodology
for controlling the size of a test suite”, ACM Transactions on
Softw.Eng. and Meth., 2(3):270–285, July 1993.

[6] W. E.Wong, J. R. Horgan, S. London, and A. P.Mathur,
“Effect of test set minimization on fault detection
effectiveness”, 17th international conference on Software
engineering, pages 41 – 50, 1995.

[7] G. Rothermel, R.H. Untch, C. Chu, and M.J. Harrold,
“Prioritizing Test Cases for Regression Testing,” IEEE
Trans. Software Eng., vol.27, no. 10, pp. 929-948, Oct. 2001.

[8] H. K. N. Leung and L. White, “A cost model to compare
regression test strategies”, In Proc. Conf. Softw. Maint.,
pages 201–208, Oct. 1991.

[9] G. Rothermel and M. J. Harrold, “A safe, efficient regression
test selection technique”, ACM Transactions on Software
Engineering Meth.,6(2):173–210, April 1997.

[10] B. Beizer. Software Testing Techniques. VanNostrand
Reinhold, New York, NY, 1990.

[11] H. K. N. Leung and L. White. “Insights into regression
testing”, In Conf. Softw. Maint., pages 60–69, October 1989.

[12] M. Jean Harrold, Rajiv Gupta,Mary Lou Soffa, "A
methodology for controlling the size of a test suite, ACM
Transactions on Software Engineering and Methodology,
Volume 2, Issue 3, 1993.

[13] Zhenyu Chen, Baowen Xu, Xiaofang Zhang, Changhai Nie,
"A novel approach for test suite reduction based on
requirement relation contraction", Proceedings of the 2008
ACM symposium on Applied computing,Pages 390-
394,2008

[14] S. Parsa, A. Khalilian and Y. Fazlalizadeh, "A New
Algorithm to Test Suite Reduction Based on Cluster
Analysis",iccsit, pp.189-193, 2009 2nd IEEE International
Conference on Computer Science and Information
Technology, 2009..

[15] Pravin M. Kamde, V. D. Nandavadekar, R. G. Pawar,
“Value of Test Cases in Software Testing”, International
Conference on Management of Innovation and Technology,
IEEE, 2006.

[16] G. Rothermel, M.J. Harrold, J. Ostria, and C. Hong, “An
Empirical Study of the Effects of Minimization on the Fault
Detection Capabilities of Test Suites”, Proc. Int’l Conf.
Software Maintenance, PP. 34-43, Nov. 1998.

[17] Kiran Kumar J, A. Anada Rao, M. Gopi Chand, K. Narender
Reddy, “An Approach to test case Design for cost effective
Software Testing”, IMECS-IAENG-2009.

[18] S. Schach, Software Engineering. Boston: Aksen Assoc.,
1992.

[19] Kiran Kumar J and Prof. A. Ananda Rao, "An Approach to
Software Testing Cost Estimation in Black-Box

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 208

Environment", International Journal of Electrical, Electronics
and Computer Systems, April 2011.

[20] H. Agrawal, J. Horgan, E. Krauser, and S. London,
“Incremental Regression Testing,” Proc. Conf. Software
Maintenance, pp. 348–357, Sept. 1993.

[21] T. Ball, “On the Limit of Control Flow Analysis for
Regression Test Selection,” Proc. Int’l Symp. Software
Testing and Analysis, ISSTA, Mar. 1998.

[22] S. Bates and S. Horwitz, “Incremental Program Testing
Using Program Dependence Graphs,” Proc. 20th ACM
Symp. Principles of Programming Languages, Jan. 1993.

[23] P. Benedusi, A. Cimitile, and U. De Carlini, “Post-
Maintenance Testing Based on Path Change Analysis,” Proc.
Conf. Software Maintenance, pp. 352–361, Oct. 1988.

[24] D. Binkely, “Semantics Guided Regression Test Cost
Reduction,” IEEE Trans. Software Eng., vol. 23, no. 8, Aug.
1997.

 [25] Y.F. Chen, D.S. Rosenblum, and K.P. Vo, “TestTube: A
System for Selective Regression Testing,” Proc. 16th Int’l
Conf. Software Eng., pp. 211–222, May 1994.

[26] K.F. Fischer, “A Test Case Selection Method for the
Validation of Software Maintenance Modification,” Proc.
COMPSAC’77, pp.421–426, Nov. 1977.

[27] K.F. Fischer, F. Raji, and A. Chruscicki, “A Methodology
for Retesting Modified Software,” Proc. Nat’l
Telecommunications Conf., pp. 1–6, Nov. 1981.

[28] R. Gupta, M.J. Harrold, and M.L. Soffa, “An Approach to
Regression Testing Using Slicing,” Proc. Conf. Software
Maintenance, pp.299–308, Nov. 1992.

[29] M.J. Harrold and M.L. Soffa, “An Incremental Approach to
Unit Testing During Maintenance,” Proc. Conf. Software
Maintenance,pp. 362–367, Oct. 1988.

[30] M.J. Harrold and M.L. Soffa, “An Incremental Data Flow
Testing Tool,” Proc. Sixth Int’l Conf. Testing Computer
Software, May 1989.

[31] J. Hartmann and D.J. Robson, “RETEXT—Development of
a Selective Revalidation Prototype Environment for Use in
Software Maintenance,” Proc. 23rd Hawaii Int’l Conf.
System Sciences, pp. 92–101, Jan. 1990.

[32] J. Hartmann and D.J. Robson, Techniques for Selective
Revalidationk” IEEE Software, vol. 16, no. 1, pp. 31–38,
Jan. 1990.

[33] J. Laski and W. Szermer, “Identification of Program
Modifications and Its Applications in Software
Maintenance,” Proc. Conf. Software Maintenance, pp. 282–
290, Nov. 1992.

[34] J.A.N. Lee and X. He, “A Methodology for Test Selection,”
J. Systems and Software, vol. 13, no. 1, pp. 177–185, Sept.
1990.

[35] H.K.N. Leung and L. White, “Insights into Regression
Testing,” Proc. Conf. Software Maintenance, pp. 60–69, Oct.
1989.

[36] H.K.N. Leung and L. White, “Insights into Testing and
Regression Testing Global Variables,” J. Software
Maintenance, vol. 2, pp. 209–222, Dec. 1990.

[37] H.K.N. Leung and L.J. White, “A Study of Integration
Testing and Software Regression at the Integration Level,”
Proc. Conf. Software Maintenance, pp. 290–300, Nov. 1990.

[38] T.J. Ostrand and E.J. Weyuker, “Using Dataflow Analysis
for Regression Testing,” Proc. Sixth Ann. Pacific Northwest
Software Quality Conf., pp. 233–247, Sept. 1988.

[39] B. Eherlund and B. Korel, “Modification Oriented Software
Testing,” Conf. Proc.: Quality Week, pp. 1–17, 1991.

[40] B. Sherlund and B. Korel, “Logical Modification Oriented
Software Testing,” Proc. 12th Int’l Conf. Testing Computer
Software, June 1995.

[41] A.B. Taha, S.M. Thebaut, and S.S. Liu, An Approach to
Software Fault Localization and Revalidation Based on
Incremental Data Flow Analysis,” Proc. 13th Ann. Int’l
Computer Software and Applications Conf., pp. 527–534,
Sept. 1989.

[42] F. Vokolos and P. Frankl, “Pythia: A Regression Test
Selection Tool Based on Textual Differencing,” Proc. Third
Int’l Conf Reliability, Quality, and Safety of Software
Intensive Systems, ENCRESS’97, May 1997.

[43] L.J. Wshite and H.K.N. Leung, “A Firewall Concept for
Both Control- Flow and Data-Flow in Regression Integration
Testing,” Proc. Conf. Software Maintenance, pp. 262–270,
Nov. 1992.

[44] L.J. White, V. Narayanswamy, T. Friedman, M.
Kirschenbaum, P.Piwowarski, and M. Oha, “Test Manager,
A Regression Testing Tool,” Proc. Conf. Software
Maintenance, pp. 338–347, Sept. 1993.

[45] S.S. Yau and Z. Kishimoto, “A Method for Revalidating
Modified Programs in the Maintenance Phase,”
COMPSAC’87: Proc. 11th Ann. Int’l Computer Software
and Applications Conf., pp. 272–277, Oct. 1987.

Prof. Ananda Rao Akepogu received B.Sc. (M.P.C) degree from
Silver Jubilee Govt. College, SV Univer-sity, Andhra Pradesh,
India. He received B.Tech. degree in Computer Science &
Engineering and M.Tech. degree in A.I & Robotics from University
of Hyderabad, Andhra Pradesh, India. He received Ph.D. from
Indian Institute of Technology, Madras, India. He is Professor of
Computer Science & Engineering and Principal of JNTU College of
Engineering, Anantapur, India. Prof. Ananda Rao published more
than fifty research papers in international journals, conferences
and authored three books. His main research interest includes
software engineering and data mining.

Kiran Kumar J is pursuing Ph.D. in Computer Science &
Engineering from JNTUA, Anantapur, India and he received his
M.Tech. in Computer Science & Engineering from the same
university. He received B.E. degree in Computer Science &
Engineering from Amaravati University, India. He has received the
“Teradata Certified Master” certification form the Teradata.
Currently he is working for IBM India Software Labs in the area of
Software Testing since 2005. His main research interests include
software engineering and Software Testing. He is a member of
IEEE, ACM and IAENG.

