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Abstract 
The accuracy degree of extracted canopy latent heat from canopy 
net radiation is depending extremely to the proposed Priestley-
Taylor approximation. This extracting canopy latent heat is an 
initial approximation to compute iteratively partitioned energy 
components to soil and vegetation using in Two Source Energy 
Balance (TSEB) Model. This approximation is using a Priestley-
Taylor coefficient (αp) and fractional of Leaf Area Index (fg) 
that is green. The standard values are 1.26 and 1 for respectively 
(αp) and (fg). This study is focused to identify these two 
transpiration parameters (αp) and (fg) by Genetic Algorithm 
method to accurately predict patterns of turbulent energy fluxes 
by TSEB Model (Norman et al. 1995), over irrigated olive 
orchard in semi-arid area (Marrakech, Morocco). The (αp) and 
(fg) are depending on local climatic characteristics and data 
measurements accuracy for different periods of the year 2003. In 
summer 2003, the GA gives optimal values for (αp=0.93) and 
(fg=0.61). Ten runs of GA computing have been applied to 
guaranty stability of the optimization process. In fact, the 
simulation of latent heat becomes improved as presented as 
below, since comparison to ground measurements shows 
acceptable representativeness in summer 2003 with enhancement 
of TSEB Model performance assuming correlation to (0.45), bias 
is to (+15 W.m-2), and the root mean square have been improved 
to (63 W.m-2). Thus, the results obtained here show the most 
important support of Genetic Algorithm through the calibration 
and optimization processes. 
Keywords: Genetic algorithm, Optimization, Fitness function, 
Cost function, TSEB Model. 

1. Introduction 

Many methods have been used to estimate canopy 
evapotranspiration from regions using standard climate 
data. Priestley-Taylor approximation suggest  one of these 
based on physical argument about processes in the whole 
of turbulent planetary boundary layer,  and their arguments 

were concerned the relative sizes of advective and radiant 
energy inputs to land areas of local size (Priestley-Taylor, 
1972; McNaughton et al 1991).  
They were forced to proceed empirically, and asked 
whether it was still a principal component of evaporation 
from a wet region. They looked that a value of coefficient 
(αp= 1.26) was found to fit data from several sources 
especially for wet regions. The TSEB Model uses either 
this formula adding another coefficient (fg=1) which is a 
fractional of Leaf Area Index that is green (Norman et al, 
1995; Kustas et al 1999). Several studies are also proposed 
values of (αp) and (fg) ranging respectively from 0.5 to 3 
and 0 up to 1(Castellvi et al, 2001; Kustas et Norman et al, 
1999a, Agam et al. 2010). In this study, for a semi-arid 
areas, we suggest to use stochastic method as Genetic 
algorithms (GAs) to identify Priestley-Taylor transpiration 
Parameters over olive irrigated area (in wet and dry 
conditions). GAs approach are used for solving   
parameters estimation for its independency to problem 
types, such as non linear, multimodal and/or non-
differentiable functions (Holland, J. H, 1975; Goldberg, 
David E, 1989). GAs are a way of addressing hard search 
and optimization problems which provides a good solution 
although it requires large execution time. 
In section 2 we present study area and data collection, 
while section 3 describe the  
Priestley-Taylor approximation of transpiration used in 
TSEB  Model. The section 4 highlights GAs theoretical 
bases and implementation. In section 5 we show results 
but conclusion is presented in section 6. 
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2. Study area and data collection 

2.1 Site description 

The study site was located in the 275 hectare Agdal olive 
(Olea europaea L.) orchard in the southern side of 
Marrakech City, Morocco (31,601 N; 07,974 W). It is 
characterized by low and irregular rainfall (annual average 
of about 240 mm, but 263.4 mm has been collected in 
2003).  The climate is typically Mediterranean semi arid; 
precipitation falls mainly during winter and spring, from 
November to April. The atmosphere is very dry with an 
average humidity of 56% and the evaporative demand is 
very high (1600mm per year), greatly exceeding the 
annual rainfall. The orchard was periodically surface 
irrigated through level basin flood irrigation, with water 
supplies of about 100 mm every each irrigation event. We 
have approximately 3 irrigation events during summer 
2003. Each tree was occupied over 45 m2, and bordered 
by small earthen levy (about 30 cm) retained irrigation 
water (Williams et al, 2004). Plant spacing was about 
(6.5x6.5 m); the trees had an average leaf area index (LAI) 
of 3. Mean tree height was 6 m and ground cover was 55% 
(Ezzahar, 2007). 

2.2 Measurements  

Measurements were acquired at a sampling frequency of 
20 Hz and passed through a low-pass filter to compute 30-
min flux averages. Intensive data were collected in Agdal 
site. Vertical fluxes of heat and water vapor at 9.2 m 
height were registered on twelve month of 2003 and are 
measured by an Eddy-Covariance (EC) system (Ezzahar et 
al, 2007). Finally, the resulting dataset of sensible and 
latent heat fluxes were available for the 2003 growing 
seasons, with missing data for few days due to power 
supply troubles. Almost 6247 hourly observations, during 
daytime, everyday along the year 2003 without any 
exclusion related to season or climatic conditions, were 
used to run and evaluate TSEB model output.   
A 3D sonic anemometer (CSAT3, Campbell Scientific, 
Logan, UT) measured the fluctuations in the wind velocity 
components and temperature. An open-path infrared gas 
analyzer (LI7500, LiCor, Inc., Lincoln, NE) measured 
concentrations of water vapour. The wind speed and 
concentration measurements were made at 20 Hz on 
CR23X dataloggers (Campbell Scientific, Logan, UT) and 
on-site portable computers to enable the storage of large 
raw data files. Air temperature and humidity were 
measured at 8.8 and 3.7 m heights on the tower with 
Vaisala HMP45C probes. Total shortwave irradiance was 
measured at 9.25 m height with a BF2 Delta T radiometer. 
Net radiation was measured with a Kipp and Zonen CNR1 
net radiometer placed over the olive canopy at 8 m height. 

Soil temperature was recorded at 5 cm depth at two 
locations approximately 30 m from the tower. Three heat 
flux plates continuously monitored changes in soil heat 
storage at the tower site. In addition, five point 
measurements of soil moisture variables were located 
throughout the site. Each point contained a pair of steel 
rods for time domain reflectometry (TDR) measurements 
at 40, 30, 20, 10 and 5 cm depths to estimate volumetric 
water content. Olive transpiration was measured by sap 
flow method following the procedure of Williams et al., 
2003. Soil evaporation was computed as the difference 
between evapotranspiration measured by eddy correlation 
system and transpiration measured by sap flow method. 

3. Priestley-Taylor transpiration in TSEB 
Model 

The Priestley-Taylor equation   is only an initial 
approximation of canopy latent heat simulated by TSEB 
Model. TSEB is based on energy balance closure using 
surface radiometric temperature, vegetation parameters 
and climatic data. TSEB outputs surface turbulent fluxes, 
and temperatures of canopy and soil. The version 
implemented in this study basically follows what is 
described in appendix A as the “parallel resistance 
network”. As such, the model implemented is described in 
detail in (Norman et al. 1995, Kustas and Norman 1999).  
The canopy latent heat LEc is given by Priestly-Taylor 
approximation (Priestly-Taylor. 1972). 
 
 

                             (1)  
 

where αp is the Priestly-Taylor  constant, which is initially 
set to 1.26 (Priestley-Taylor, 1972; Norman et al 1995; 
Agam et al 2010), fg  is the fraction of the LAI that is 
green, ∆ is the slope of saturation vapour pressure versus 
temperature curve, Γ is the psychrometer constant (e.g: 
0.066 kPa C-¹ ). If no information is available on fg, then 
it is assumed to be near unity. 

4. Genetic algorithms method 

4.1 Overview  

Genetic Algorithms (GAs) are an optimization algorithms 
based on techniques derived from the genetic and the 
Darwin’s theory of evolution in selection, crossover, 
mutation, generation, parent, children, etc (Goldberg 1989; 
Holland 1975). As a considerable development in the 
computing systems, GAs has shown a significant 
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improvement by using stochastic and mathematic methods  
which has been applied into many domains such as 
ecologies, biology and even economy, in order to 
experiment it for understanding natural systems, and 
modelling it to optimize (or at least improve) the 
performance of the system. 

4.2 GAs theoretical bases and implementation 

Genetic algorithms have been used to solve difficult 
problems with objective functions that do not possess 
some properties such as continuity, differentiability, 
satisfaction of the Lipschitz Condition, etc (Michalewicz 
1994; Goldberg 1989; Holland 1975).  
GAs search extremum of function defined in space data. 
These algorithms maintain and manipulate a family, or 
population, of solutions and implement a “survival of 
fittest” strategy in their search for better solutions. GAs 
have shown their advantages in dealing with the highly 
non-linear search spaces that result from noisy and 
multimodal functions. 
The genetic algorithm works as follows: 

- Initialization of parent population randomly 
- Evaluation (fitness function) 
- Selection 
- Recombination of possible solutions (Crossover and 

Mutation) 
- Evaluate child and go to step 3 until termination 

criteria satisfies. 
 

4.2.1 Solution representation 

The chromosome (individual) chosen to represent a 
solution is a vector coded of floating number representing 
 

   (2) 
 

The ranges of a parameters are a and b. The αp is the 
Priestly-Taylor  constant, and fg  is the fraction of the LAI 
that is green. The real-valued representation moves the 
problem closer to the problem representation which offers 
higher precision with more consistent results across 
replications (Michalewicz 1992). 
 

4.2.2 Initialization, Termination and Evaluation 

The most common method providing an initial population 
is to randomly generate solutions for the entire population 
such as:  
 

  (3) 

where N is the dimension of population, such that each 
element of array contains a possible value of parameters; 
and rand (2,N ) returns a pseudorandom vector value are 
drawn from a uniform distribution on the unit interval. 

The GA moves from generation to generation selecting 
and reproducing parents until a termination criterion is met. 
The most frequently used stopping criterion is a specified 
maximum number of generations. 

Fitness in biological sense is a quality value which is a 
measure of the reproductive efficiency of chromosomes 
(Goldberg, 1989). In genetic algorithm, individuals are 
evaluated with it fitness function which is a measure of 
goodness to be selected. 

The evaluation is calculated at each TSEB run through the 
fitness function Φ(K) which is equal to 

 

   (4) 
 

where (t) is the instant of observed latent heat LEobs(t) and 
LEsim(t,K)  is the simulated latent heat. 

The cost function to minimize is represented by a practical 
evaluation of  (K) where 

  (5)   

where T is the time period. 

4.2.3 Genetic Operators 

Genetic algorithm uses some operators to create children 
forming next new generation by parents selected from the 
current population. The algorithm usually selects a group 
of individuals that have better fitness values as parents.  
The genetic operators are as follows: 
 Selection:  Reproduction (or selection) is usually the 
first operation applied on a population to breed a new 
generation. Individual solutions are selected through 
probability that individual (K)1≤i≤N  is selected from the ith 

line of matrix , to be a member of  the next generation at 
each experiment is given by  
 

 (6) 
 

The process is also called roulette wheel parent selection.  
This selection step is then a spin of the wheel, which in the 
long run tends to eliminate the least fit population 
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members. The population will be represented by a slice 
that is directly proportional to the member’s fitness. 
 
 Crossover: A crossover operator is used to 
recombine pairs of parents to get better children which 
generate a second generation of solutions. In the case of 
individual probability is less than 0.5, the  son child 
chromosome will be an average of two times value of 
father with one value of mother, and  vise versa for the 
daughter child, but if  individual probability is great or 
equal  to 0.5, the son and daughter chromosome will stay 
respectively like father and mother. 
  
 Mutation: Mutation is an operator that introduces 
diversity in the population to avoid homogeneous 
generation due to repeated use of reproduction and 
crossover operators. Mutation proceeds to Gaussian 
perturbation with deviation equal to 0.5 and probability 
mutation equal to 0.0001. Mutation adds simply new 
information in a random way to the genetic search process. 

4.2.4 Implementation of GAs to TSEB Model 

Possible solutions to a problem are evaluated and ordered 
according to its adaptation (i.e: fitness function). From 
generation (k) to new one (k+1), then other chromosome 
populations   are produced after selecting candidates as 
‘parents’ and applying mutation or crossover operators 
which combine chromosome of two parents to produce 
two children.  The new set of candidates is then evaluated, 
and this cycle continues until an adequate solution is 
found (figure.1). In all experiments, GA experimental 
parameters are as follows: the population size is 10, the 
crossover rate is 0.5, the mutation rate is 0.0001 and we 
generate population until the 10th generation. The 
observations used in TSEB Model are taken each 30 
minutes. In this optimization we want to minimize the cost 
function, then we proceed the minimization to find a 
vector Kopt as follows: 

 
  (7) 

 

where  is the vector of parameters to be 
controlled, and (K) is the cost function. 
The state variable is the simulated latent heat LEsim(t,K)  
evolving in the time during summer 2003 between 
DOY=152 to DOY=243. The cost function is computed 
by comparing simulated LEsim   and observed latent heat 
LEobs  during the all period T. The two unknown 
parameters controlling the Priestley-Taylor transpiration 
used in TSEB Model are estimated by optimization of the 
cost function with the evolution strategies algorithm as 
follow: 

-START: Create random population of 10  chromosomes 

  between 0.5 to 2 for αp, and 0.1 to 1 for 
fg, 

-Run TSEB: Calculate the simulated latent heat 
LEsim(t,K) , the bias to measured  latent heat LEobs(t)    
and the function cost (K) , 

-FITNESS: Evaluate the fitness function Φ(K)  of each 
chromosome in the population, 

-NEW POPULATION:  

* SELECTION     : Based on Φ(K)     

* RECOMBINATION: Cross-over chromosomes  

* MUTATION      : Mutate chromosomes  

* ACCEPTATION   : Reject or accept new one  

-REPLACE : Replace old with new population as the new 
generation 

-TEST    : Test problem criterion to indicate the best 

solution   minimizing the cost function 
(K) ,  else to turn over to the next generation 

LOOP    : Continue step 2– 6 until criterion   is 
 satisfied. 

5. Results 

Different number of generations (not shown) with ten 
individuals population have been experimented in order to 

optimize values of  and to carry out 
stability test to GA with showing performance to 
Priestley-Taylor formulation. The founded parameters by 
GA are changing with reproduction in generations. The 
GA start generally with a randomly values of parameters 

in the beginning of minimized cost function [ ], but 
in the absence of stopping criterion to the most minimizing 
cost function, the GA change choice to selected 
individuals who decrease Latent heat error to reach its 
minimum. The GA continues to generate elite 
chromosomes for computing predicted surface fluxes until 
stability of Latent heat error (fig.2). The stability error 
phase is characterized by a little changing in reproductive 
individual’s adaptation. The convergence will be reached 
during generation when the best individual is founded to 
the medium one (fig.1). The estimation of Priestley-Taylor 
formulation has been improved then the TSEB Model 
performance will come acceptable with best parameters 
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giving by 10 generations. We proceed in the following to 
experiment 10 runs of GA to show best parameters 
changing and test stability reproduction procedure with 10 
individuals’ population and 10 generations. During error 
stabilization error process, the 10 runs of GA shows 
(table.1) changing in parameters value, since αp is ranging 
between 0.72 to 1.00 and fg vary from 0.26 to 0.79. These 
optimized values for αp and fg are less than the standard 
value (αp =1.26 and fg=1 for wet conditions), then we can 
considered them for semi arid area. Optimized values for 
fg are conforming to irrigated area explaining conditions 
supporting soil and canopy transpiration. GA gives 
sometimes optimal parameters corresponding to minimum 
error before reaching its stabilization, but GA continue 
computing process since there is no stopping criterion for 
this case to reduce calculation time. The mean parameters 
value optimized in 10 previous runs of αp and fg (table.1) 
are respectively 0.93 and 0.61. Now let us see the 
influence of these optimal mean values to TSEB Model. 
Figures 3 and 4 present the comparison of measured and 
predicted daily latent heat before and after optimization 
process. These figures show an improvement of latent heat 
representativeness. The correlation becomes from (0.43) to 
(0.45), the bias is reduced from (+240 W.m-2) to (+15 
W.m-2), and the root mean square have been improved 
from (251 W.m-2) to (63 W.m-2). Furthermore the 
measured and predicted latent heat evolve both in the same 
direction expect during irrigation event, because soil is 
submerged by traditional irrigation system water.   

6. Conclusion  

In this comparison of cases studied here, we observe that 
GA stability is essential to optimize parameters . The 
results obtained don’t change significantly from each 10 

runs, then the optimal vector is   . 
We have tried to show that genetic algorithm is a powerful 
method to optimize parameters of Priestley-Taylor 
approximation of canopy transpiration. Instead of standard 

values of    for wet regions, which 
depend on climatic and soil characteristic, GA  gives  an 
optimal values as < αp=0.93,fg=0.61 > for semi-arid area. 
Stability optimization is essential, furthermore the GA can 
be identifying another minimum of optimal parameters in 
the beginning of computation, but the computation 
continue since there is no stopping criterion other than the 
final generation. 

The results show an improvement of canopy transpiration 
then also enhance the TSEB Model performance, since 
correlation, bias and root mean square error become 

respectively equal 0.45, +15 W.m-2, and 63 W.m-2. Thus, 
the results obtained in this study show the most important 
support of Genetic Algorithm in the calibration and 
optimization processes. This GAs optimization could 
replace measures terrain and long experiments since it 
improve results mostly by making use of fitness function 
and genetic operators such as selection, crossover and 
mutation. However, the set of canopy transpiration was 
improved.  

Appendix A 

TSEB Equations 

Soil and vegetation temperature contribute to the 
radiometric surface temperature in proportion to the 
fraction of the radiometer view that is occupied by each 
component along with the component temperature. In 
particular, assuming that the observed radiometric 
temperature, (Trad) is the combination of soil and canopy 
temperatures, the TSEB model adds the following 
relationship (Becker and Li, 1990) to the set of (Eqs 12 
and 13): 

 
    Trad(θ) = [f(θ). Tc4 + (1-f(θ)) . Ts4]1/4                     

(A.1) 
 

where Tc and Ts are vegetation and soil surface 
temperatures, and f(θ) is the vegetation directional 
fractional cover (Campbell and Norman, 1998). 
     
     f(θ) = 1 – exp(-0.5 LAI / cos(θ))                 (A.2) 

 
The simple fractional cover (fc) is as follows: 
 

            fc = 1 – exp (-0.5 LAI)                        (A.3) 
 

LAI is the leaf area index, and the fraction of LAI that is 
green (fg) is required as an input and may be obtained 
from knowledge of the phenology of the vegetation. 
 
The total net radiation Rn  (Wm-²) is  
 

   Rn = H + LE + G   (A.4) 
where H (Wm-²)  is the sensible heat flux, LE (Wm-²)  is 
the latent heat, and G (Wm-²)  is the soil heat flux. The 
estimation of total net radiation, Rn can be obtained by 
computing the net available energy considering the rate 
lost by surface reflection in the short wave (0.3/2.5µm) 
and emitted in the long wave (6/100µm): 
 
      Rn = (1- αs).SW + εs.LW – εs.σ.Trad4             (A.5) 
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where SW (Wm-²)  is the global incoming solar radiation, 
LW (Wm-²)  is the terrestrial infrared radiation, αs is the 
surface albedo, εs is the surface emissivity, σ is the Stefan-
Boltzmann constant, Trad (°K) is the radiometric surface 
temperature. 
The estimation of soil net radiation, Rns can be obtained 
by 
 
     Rns = Rn exp(-Ks LAI / )               (A.6) 

 
where  ks is a constant ranging between 0.4 to 0.6 and  
is the zenithal solar angle. 
 
The  Rnc is the canopy net radiation as 
 
                                         Rnc= Rn- Rns           (A.7) 

 
where Rn is obtained using (A.4-5) and  is the solar 
zenith angle. The soil heat flux, G (Wm-²)  can be 
expressed as a constant fraction cg (≈0.35) of the net 
radiation at the soil surface by  

                   G = cg Rns                            (A.8) 
 

The constant of cg (≈0.35) is midway between its likely 
limits of 0.2 and 0.5 (Choudhury et al 1987). The canopy 
latent heat LEc is given by Priestly-Taylor approximation 
(Priestly-Taylor. 1972). 
 

                           (A.9) 
 
where αp is the Priestly-Taylor  constant, which is initially 
set to 1.26 (Norman et al 1995; Agam et al 2010), fg  is 
the fraction of the LAI that is green, ∆ is the slope of 
saturation vapor pressure versus temperature curve, Γ is 
the psychrometer constant (e.g: 0.066 kPa C-¹ ). If no 
information is available on fg, then it is assumed to be 
near unity. As will become apparent later (A.9)   is only an 
initial approximation of canopy latent heat. 
If in any case LEc ≤ 0, then LEc is set to zero (i.e: no 
condensation under daytime convective conditions) 
The sum of the contribution of the soil and canopy net 
radiation, total latent and sensible heat is according to the 
following equations 
 

        Rns= Hs + LEs + G                 
 (A.10) 

 
         Rnc= Hc + LEc                

(A.11) 
 

        LEt = LEc+ LEs          (A.12) 
 

where the subscript s and c designs soil and canopy. 
The TSEB model considers also the contributions from the 
soil and canopy separately and it uses a few additional 
parameters to solve for the total sensible heat Ht which is 
the sum of the contribution of the soil Hs and of the 
canopy Hc according to the following equations 
 

                       (A.13) 
 

                                     (A.14) 
 

                                  (A.15) 
 

Where ρ (Kg.m-3) is the air density, Cp is the specific heat 
of air (JKg-1 K-1), Ta (°K) is the air temperature at certain 
reference height, which satisfies the bulk resistance 
formulation for sensible heat transport (Kustas et al, 2007). 
Ra (sm-¹) is the aerodynamic resistance to heat transport 
across the temperature difference that can be evaluated by 
the following equation (Brutsaert, 1982): 
 

                     
(A.16) 

 

Where   is the height of air wind measurements,  is 
the wind friction velocity, do (m) is the displacement 
height, Z0,H is a roughness parameter (m) that can be 
evaluated as function of the canopy height (Shuttleworth 
and Wallace, 1985), k is the von Karman's constant (≈0.4), 
ΨH is the diabatic correction factor for heat is computed 
(Paulson, 1970): 
 

                    (A.17) 
 

where  is a universal function for heat defined by: 
(Brutsaert, 1982; Paulson, 1970) 
 

                                   
(A.18) 

 
The term ξ is dimensionless variable relating observation 
height Z, to Monin-Obukhov stability Lmo.     
Lmo is approximately the height at which aerodynamic 
shear, or mechanical, energy is equal to buoyancy energy 
(i.e: convection caused by an air density gradient). It is 
determined from 
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                        (A.19) 
 

Where ρ (Kgm-3) is the air density, Cp is the specific heat 
of air (JKg-1 K-1), Ta (°K) is the air temperature at certain 
reference height, H is a sensible heat flux, LE is a latent 
heat flux, and  λ  is the latent heat. 
Friction velocity is a measure of shear stress at the surface, 
and can be found from the logarithmic wind profile 
relationship: 

                           (A.20) 

Where Ua is the wind speed and  is the diabatic 
correction for momentum. 
 
 The Rs (sm-1) is the soil resistance to the heat transfer 
(Goudrian, 1977; Norman et al 1995; Sauer et al 1995; 
Kustas et al, 1999), between the soil surface and a height 
representing the canopy, and then a reasonable simplified 
equation is: 
 

                                                  
(A.21) 
 
Where a’ = 0.004 (ms-1) , b’ = 0.012  and Us  is the 
wind speed in (ms-1) at a height above the soil surface 
where the effect of the soil surface roughness is minimal; 
typically 0.05 to 0.2 m. These coefficients depend on 
turbulent length scale in the canopy, soil surface 
roughness and turbulence intensity in the canopy and are 
discussed by (Sauer et al. 1995). If soil temperature is 
great than  air temperature the constant a’  becomes a’=c 
.(Ts-Tc)(1/3) with c=0.004 
  
 Us is the wind speed just above the soil surface as 
described by (Goudriaan 1977): 
 

      (A.22) 
 
Where the factor (a) is given by (Goudriaan 1977) as 
 

                
 (A.23) 

 
The mean leaf size (s) is given by four times the leaf area 
divided by the perimeter. 

 is the wind speed at the top of the canopy, given by: 
 

            (A.24) 
 

Where Ua is the wind speed above the canopy at height Zu 
and the stability correction at the top of the canopy is 
assumed negligible due to roughness sublayer effects 
(Garratt, 1980; Cellier et al, 1992). 

TSEB implementation and algorithm 

The TSEB model is run with the use of ground thermal 
remote sensing and meteorological data of Agdal site 
during 2003. Some model constant parameters are 
supposed invariable along time such as the Priestly-Taylor  
constant αp, albedo, emissivity, leaf area index (LAI), the 
fraction of the LAI that is green (fg) , leaf size (s), the 
vegetation height and a constant fraction (cg) of the net 
radiation at the soil surface. These considerations are 
certainly some consequences on model results according 
to seasons.  The Priestly-Taylor  constant αp  is fixed to 
1.26  (McNaughton and Spriggs 1987).  The albedo, value 
of 0.11 is an annual averaged measured with CNR1, and a 
surface emissivity of 0.98, the leaf area index (LAI) is 
equal to 3 (Ezzahar et al, 2007).  The fraction of LAI (fg) 
that is green is fixed to 90% of vegetation (i.e: 10% of 
vegetation could be considered no active). The mean leaf 
size (s), is given by four times the leaf area divided by the 
perimeter (s=0.01). The average height of the olive trees is 
6 meters. The fraction  of the net radiation at the soil 
surface is fixed to cg=0.35. 
Sensible and latent heat flux components for soil and 
vegetation are computed by TSEB , only in the 
atmospheric surface layer instability. Note that the storage 
of heat within the canopy and energy for photosynthesis 
are considered negligible for the instantaneous 
measurements. The total computed heat flux components 
are then from equations (A.5-8). 
The canopy heat fluxes are solved by first estimating the 
canopy latent heat flux from the Priestley-Taylor relation 
(A.9), which provides an initial estimation of the canopy 
fluxes, and can be overridden if vegetation is under stress 
(Norman et al., 1995). Outside the positive latent heat 
situation, two cases of stress occur, when the computed 
value for canopy (LEc) or soil (LEs) latent heat become 
negative which are an unrealistic conditions.  
In the first case, the normal evaluation procedure is 
overridden by setting (LEc)  to zero and the remaining 
flux components are balanced by (A. 1-10-11-13-15). But 
in the second case, (LEs) is recomputed by using specific 
soil Bowen Ratio determined by �=Hs/LEs  and flux 
components are next balanced by (A.1-10-11-13-15). 
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In order to solve (A.15) additional computations are 
needed to determine soil temperature, and the resistance 
terms Rah and Rs but as will become apparent, they must 
be solved iteratively. Soil temperature is determined from 
two equations: one to relate the observed radiometric 
temperature to the soil and vegetation canopy temperature, 
and another to determine the vegetation canopy 
temperature. The composite temperature is related to soil 
and canopy temperatures by (A.1). The resistance 
components are determined from (A.16), for Rah and the 
following equation (Sauer et al., 1995) for Rs (A.18).  
To complete the solution of the soil heat flux components, 
the ground stock heat flux can be computed as a fraction 
of net radiation at the soil surface (A.8). 
Applying energy balance for the two source flux 
components resolves the surface fluxes, which cannot be 
reached directly because of the interdependence between 
atmospheric stability corrections, near surface wind speeds, 
and surface resistances (A.16-17). In these equations, the 

stability correction factors  and ΨH depend upon the 
surface energy flux components H and LE via the Monin-
Obukhov roughness length Lmo.  
TSEB computation for solving the surface energy balance 
by ten primary unknowns and ten associated equations 
(Table.1), needs an iterative solution process by setting a 
large negative value to Lmo (i.e: in  highly unstable 
atmospheric conditions). This permits an initial set of 
stability correction factors ΨM and  ΨH to be computed. 
Computed iteration is repeated until Lmo converges. 
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Figures  

Table 1: Results of Ten Runs genetic algorithm 

Runs Error Stabilization 

αp fg  
1 0.75 0.65 66.4 
2 0.72 0.59 71.1 
3 1.9 0.26 67.0 
4 1.00 0.78 85.2 
5 0.82 0.71 78.2 
6 0.72 0.49 77.1 
7 0.94 0.61 84.7 
8 0.76 0.79 69.9 
9 0.95 0.55 66.4 
10 0.78 0.73 85.1 

 

 

Fig. 1  Iterative procedure of a Genetic Algorithm to TSEB Model 

 Fig. 2 Error evolution during genetic algorithm with 10 generations and 
10 individual’s population 

 

 
Fig. 3 Comparison between  predicted  and  measured latent  heat 

before optimization   with Standard values of K=< αp=1.26, fg=1 > 
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Fig. 4 Comparison between  predicted  and  measured latent  heat after  
optimization   with optimal values of K=< αp=0.93,fg=0.61 > 


