
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 164

A Framework for Modelling Software Requirements

Dhirendra Pandey1, Ugrasen Suman.2, A.K. Ramani2

1 Member IEEE, Department of Information Technology,
Babasaheb Bhimrao Ambedkar University,

Lucknow-226025, India

2 Schools of Computer Science & IT,
Devi AhilyaVishwavidyalaya,

Indore, MP, India,

Abstract

Requirement engineering plays an important role in producing
quality software products. In recent past years, some approaches
of requirement framework have been designed to provide an end-
to-end solution for system development life cycle. Textual
requirements specifications are difficult to learn, design,
understand, review, and maintain whereas pictorial modelling is
widely recognized as an effective requirement analysis tool. In
this paper, we will present a requirement modelling framework
with the analysis of modern requirements modelling techniques.
Also, we will discuss various domains of requirement
engineering with the help of modelling elements such as
semantic map of business concepts, lifecycles of business
objects, business processes, business rules, system context
diagram, use cases and their scenarios, constraints, and user
interface prototypes. The proposed framework will be illustrated
with the case study of inventory management system.
Keywords: Requirement Modelling, Inventory Control and
Management System, Requirement Engineering (RE).

1. Introduction

Requirement Engineering (RE) is the process of collecting,
analyzing and modelling software requirements in a
systematic manner [1, 2, 3]. Requirement modelling is the
major challenge of automotive software development [4].
One of the main problems of RE is to describe the
requirements in terms of concise and manageable formal
models and to integrate models to form a consistent and
complete understanding of the software to be developed.
Requirements modelling and analysis are the most
important and difficult activities in the software
development. Software development is becoming more
mature by advancing development processes, methods,
and tools. The famous Christ Honour and Other Served
(CHAOS) has reported the statistics published by Standish
Group show that still only about one third of software
projects can be called successful, i.e. they reach their goals
within planned budget and time [5]. Research on post-

mortem projects’ analysis shows that the major problems
comes when the requirements elicitation, analysis,
specification, and management is not performed regularly.
Deploying successful requirements process in a concrete
organization is an important issue for software
practitioners [6, 7]. While companies continue to use text-
based documents as major means for specifying and
analyzing requirements, the graphical requirements
modelling are getting increasingly more attention in
industry. This trend has increased after Object
Management Group (OMG) standardized Unified
Modelling Language (UML) [8]. As we know, that a
picture is worth a thousand words. It is also applies in
requirements analysis, where business people have to
communicate with software developers, who do not know
their domain and speak a different technical language.
Additionally, UML tools support refining requirements
models with design and implementation details for
enabling traceability, validation, prototyping, code
generation and other benefits. In large software
development projects, these features are very important for
evolving and managing requirement models.

There are some practical problems with UML complexity
and lack of unified method or framework for requirements
engineering [9]. Practitioners and scientists propose
different approaches for eliciting and analyzing software
requirements. The most popular tools that are used in
modern requirements analysis is use cases. It was adopted
by numerous companies, and described in requirements
engineering textbooks [10, 11]. UML provides Use Case
diagram for visualizing use case analysis artifacts.
However, requirements analysis is not limited to use cases.
In fact, they capture only end user-level functional
requirements. A lot of research is also made in specifying
business goals and processes, performing domain analysis.
Although it was shown that UML might be extended and
used for business modelling, the business modellers’

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 165

community was not satisfied by UML, and created a new
Business Process Modelling Notation (BPMN), which has
become OMG standard as well. In many cases, they also
apply Integration Definition for Function Modeling
(IDEF) notations [12, 13]. In domain analysis, analysts
continue to apply old-style Entity Relationship (ER)
notation, which was popular in database design since 70s
[141]. A significant attention is paid to business goals,
business rules, business object lifecycles, business roles
and processes in organization, which also can be done
using UML [15, 16].

Real-time and embedded system developers have also
come up with a different flavour of UML – System
Modelling Language (SysML). It defines requirements
diagram and enables capturing various non-functional and
detailed functional requirements [17]. Also, it establishes
specific links between requirements and other elements.
Most popular requirements text books introduce various
diagrams based on both UML and other informal
notations, e.g. system context diagram, and hand-drawn
user interface prototypes [11, 18]. The mentioned
requirements artefacts can be modelled using UML. Since
UML is a general purpose modelling language with more
than 100 modelling elements (UML meta classes) and
without standardized method, practitioners apply it only
fragmentally, and at the same time, they do not make use
of its powerful capabilities to define consistent, integrated,
and reusable requirements models. Various researches
have already been performed to produce framework for
creating UML models for MDD (Model-Driven
Development) [12, 15]. This paper extends it with more
focus on the details of a specific part of the framework by
applying UML concepts for requirements modelling.

Most requirement documents are written in natural
languages and represented in less structured and imprecise
formats. Including requirement phase, artifacts created in
phases of software life cycle are required to be modelled
and integrated, so the traceability, consistency, and
completeness can be ensured [19, 20]. The Organisation of
paper as follows. We propose an effective framework for
requirement modelling using some demonstrated
examples, which is discussed in detail with various phases
in Section 2. Future scope of this research is discusses in
section 3. Finally, Section 4 describes the concluding
remarks.

2. Requirements modelling framework

Most requirement documents are written in ambiguous
natural languages which are less formal and imprecise.
Without modelling the requirement documents, the

knowledge of the requirement is hard to understand [17,
18]. The lack of framework for guiding requirements
models is one of the main issues. In academic community,
researchers propose many detailed and focused
requirements development methods [20, 21]. However,
most of these methods resulting from academic research
are too complex for practical application and solve just
specific specialized issues. A simple and adaptable
framework for requirements modelling with demonstrated
examples are created using available tools on a realistic
case study gives much more value for practitioners.

We have proposed requirements modelling framework
using UML concepts for model-driven software
development, which is shown in Figure 1. This framework
consists of five major phases, namely; feasibility study,
requirement collection and specification, analysis of
business requirements, system requirement modelling and
system design. Further, analysis of business requirements
includes business conception and association, business
object life cycle and business tasks and methods and
system requirement modelling incorporates actors, use
cases and their scenario. The following subsections will
discussed each phases of the proposed framework with the
help of UML diagram and using examples.

Figure 1: Requirement Modelling Process

2.1 Feasibility Study

Feasibility study starts when the developer faces the
problem in existing system and hence recognizes a need
for developing/ improving the system. It aims to

Analysis of Business
Requirements

System Requirement
Analysis and
Modelling

Business conception and
association

Business objective life cycle

Business tasks and methods

Use cases

Use case scenario/ Examples

Actors

Requirements modelling Framework

Requirement
elicitation and
specification

System Design

Designer
comment

Modeller’s
comments

Feasibility

System
Requirements

Business
Requirements

Draft
Requirements

Modification
Required Yes

Coding *Optional

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 166

objectively and rationally uncover the strengths and
weaknesses of the existing business or proposed venture,
opportunities and threats as presented by the environment,
the resources required to carry through, and ultimately the
prospects for success. In its simplest term, the two criteria
to judge feasibility are cost required and value to be
attained. As such, a well-designed feasibility study should
provide a historical background of the business or project,
description of the product or service, accounting
statements, details of the operations and management,
marketing research and policies, financial data, legal
requirements and tax obligations. Generally, feasibility
studies precede technical development and project
implementation.

2.2 Requirement elicitation, collection and
specification

Requirement elicitation and development phase mainly
focuses on examining and gathering desired requirements
and objectives for the system from different viewpoints
(e.g., customer, users, constraints, system's operating
environment, trade, marketing and standard etc.).
Requirements elicitation phase begins with identifying
stakeholders of the system and collecting raw
requirements from various viewpoints. Raw requirements
are requirements that have not been analysed and have not
yet been written down in a well-formed requirement
notation. The elicitation phase aims to collect various
viewpoints such as business requirements, customer
requirements, user requirements, constraints, security
requirements, information requirements, standards etc.

Typically, the specification of system requirements starts
with observing and interviewing people [1, 2, 3].
Furthermore, user requirements are often misunderstood
because the system analyst may misinterpret the user’s
needs. In addition to requirements gathering, standards and
constraints are also play an important role in systems
development. The development of requirements may be
contextual. It is observed that requirement engineering is a
process of collecting requirements from customer and
environment in a systematic manner. The system analyst
collects raw requirements and then performs detailed
analysis and receives feedbacks. Thereafter, these
outcomes are compared with the technicality of the system
and produce the good and necessary requirements for
software development [3].

Requirements requirement specification (SRS) document
is produced after the successful identification of
requirements. It describes the product to be delivered
rather than the process of its development. Also, it
includes a set of use cases that describe all the interactions

that users will have with the system/software [2]. In
addition to use cases, the SRS also contains non-functional
requirements. Non-functional requirements are
requirements which impose constraints on the design or
implementation. SRS is a comprehensive description of
the intended purpose and environment for software under
development. The SRS fully describes what the software
will do and how it will be expected to perform. An SRS
minimizes the time and effort required by developers to
achieve desired goals and also minimizes the development
cost. A good SRS defines how an application will interact
with system hardware, other programs and users in a wide
variety of real-world situations. Parameters such as
operating speed, response time, availability, portability,
maintainability, footprint, security and speed of recovery
from adverse events are evaluated in SRS.

2.3 Analysis of business requirements

Many organizations already have established their
procedures and methodologies for conducting business
requirements analysis, which may have been optimized
specifically for the business organization. However, the
main activities for analysing business requirements are
identifying business conception and association,
determining business object life cycle, and identifying
business tasks and methods. If these exist, we can use
them. However, we must follow the following factors to
create requirement models:

(A) Identification of key stakeholders- The first step toward
the requirement analysis and collection is Identification of
the key people who will be affected by the project. Such
as, project's sponsor responsible users and clients. This
may be an internal or external client. Then, identify the
end users, who will use the solution, product, or service.
Our project is intended to meet their needs, so we must
consider their inputs.

(B) Capture stakeholder requirements- Another approach
towards analysis of business requirement is capturing the
requirement from stakeholders. In this approach, the
requirement engineer requests stakeholders or groups of
stakeholders for their requirements from various sources
for the new product or service.

(C) Categorize requirements- Requirements can be
classified into four categorized to make analysis easier for
software design:
 Functional requirements (FR) – FR defines how a

product/service/solution should function from the
end-user's perspective. They describe the features
and functions with which the end-user will interact
directly.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 167

 Operational requirements (OR) – OR operations
that must be carried out in the background to keep
the product or process functioning over a period of
time.

 Technical requirements (TCR) – TCR defines the
technical issues that must be considered to
successfully implement the process or create the
product.

 Transitional requirements (TSR) – TSRs are the
steps needed to implement the new product or
process smoothly. TSR is indicates that how the
requirements are behave as the consequence of
external requirements

(D) Interpret and record requirements- Once we have
gathered and categorized all requirements determine which
requirements are achievable, and how the system or
product can deliver them. The following steps should be
taken to interpret the requirements:
 Define requirements precisely – Ensure that the

requirements are not ambiguous or vague, clearly
worded, sufficiently detailed, related to the business
needs and listed in sufficient detail to create a
working system or product design.

 Prioritize requirements – Although many
requirements are important, some are more important
than others, and budgets are usually limited.
Therefore, identify which requirements are the most
critical, and which are less.

 Analyze the impact of change – carry out an impact
analysis to make sure that we understand fully the
consequences our project will have for existing
processes, products and people.

 Resolve conflicting issues – Sit down with the key
stakeholders and resolve any conflicting requirements
issues. We may find scenario analysis helpful in doing
this, as it will allow all those involved to explore how
the proposed project would work in different possible
futures.

 Analyze feasibility – Determine reliability and easy-
to-use the new product or system. A detailed analysis
can help identify any major problems.

Business conception and association: Different
methodologists have been proposed by various researchers
for business conception and association techniques but still
disagree on beginning of business information systems
development [10]. In our proposed research, the starting
point should be business concept analysis and analysis and
their relationships which are shown in Figure 2. For this
purpose we can apply simple organisational working
model using only classes with names and without more

detailed information, associations with names and role
multiplicities. Such models are discussed by business
analysts and domain experts who are usually not familiar
with object-oriented analysis and design.

Therefore, it is very important that all the other elements
of the model, such as aggregations, compositions,
generalizations, interfaces, enumerations, etc., should not
be used for conceptual analysis. Keeping it simple enables
even UML novices to understanding it after getting a little
explanation. Additionally, we can provide textual
descriptions for each of these concepts and generate
printable or navigable domain vocabularies. We believe
this should be the first artifact since it sets up the
vocabulary, which should be used for defining other
requirement model elements, cases, etc.

Figure 2: Analysis model for business conception and association

Business object life cycle: Requirements models are used
when gathering requirements, and during systems analysis.
Whether we consider eliciting requirements to be a
separate activity, or a part of systems analysis, the
importance of correct requirements must be a high priority
for us. Building accurate models means that we can
guarantee the correctness of our requirements. All
engineering disciplines use models to develop the products
they intend to build. Requirements models are used to
discover and clarify the functional and data requirements
for software and business systems. Additionally, the
requirements models are used as specifications for the
designers and builders of the system.

Organizations have business rules for managing business
objects. In many cases, business rules regulate how
important business objects change states and are
applicable only when object is in a particular state.
Requirement modelling is one of the important tools to
understand these changes. The states also serve as a part of
terminology, which will be used in other business and
requirements models. State machine diagrams should be
created only for those business concepts that have dynamic

Supplier Request Credit/ issue

Demands

Model

Description Items

Sorting

Enquir

Create

Agreed to

Issue
Copy of

Associated to

Makes

Request

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 168

states. Business modellers should define triggers on all
transitions in state diagram.

In business modelling for transition triggers, most people
use informal signals that in most cases correspond to
actions of business roles. Also, time and property change
triggers are used to express various states changes
according to time or data based business rules. It is
possible to define inner triggers that happen inside one
state and doesn’t fire a transition. In inventory
management system, register (data store) is checking for
availability of reservation for supplier. If available,
supplier is assigned by a unique id to them and after that
issue the item. Manufacturer notifies the overdue of
product item and after one year the identified item will be
notified as lost or damaged. Example of this concept is
shown in Figure 3.

Figure 3: Business object lifecycle in Inventory Control and
Management System

Business tasks and methods: After learning domain
terminology and business rules concerning lifecycles of
business objects, we can identify business tasks and
methods, and associate roles to processes in which they are
involved.

Figure 4: Inventory system process (tasks and methods)

We recommend to model business roles with actors, and
business processes, if modellers need to visually separate
it from system actors and use cases. The business roles
association to business processes is best done within
specialized use case diagram or editable relationship
matrix.

In Figure 4, we are showing inventory processes with the
supplier and manufacturer role perspectives. The role of
supplier and manufacturer are different. Supplier starts the
work with finding the wanted product at manufacturer site.
Supplier makes reservation for the product; if the
reservation is available he gets the item. After supplying
the product he can be return the product due to damage or
complaining by the customer with in prescribed date.

The first step in moving from domain analysis to
requirements definition is use case analysis. We propose to
do use case analysis using different steps such as identify
the actors and group them into primary (main users),
secondary (administration, maintenance, and support),
external systems, and pseudo (e.g. time). We have defined
main system use cases in a sketch use case diagram using
pictorial form in figure 4.

The manufacturer registers the reservation of product,
which is requested by the supplier. If the product is
available, he may issue it to the supplier. If not,
manufacturer put the reservation to the waiting list until
the product is not available. On availability, manufacturer
notify to the first waiting supplier (Supplier is too many).
Otherwise he may cancel the reservation after prescribed
date. The business processes are usually modelled in two
forms, i.e. “as is”, represents current situation, and “to be”,
represents target situation that should be reached after

Supplier Manufacturer

Find wanted product

Make request

Get product

Return product after

Supply product

Product
available

O
ne

w
ee

k

Contact librarian in a
week

Put product status to waiting list

Notify first waiting

Register the products

Register product

Register return

Product

Available Not available

product

Supplier
regularity

No

Yes

No

Yes

A
ft

er
 o

n
e

w
ee

k
, c

an
ce

l r
es

er
va

ti
on

Product return

Product

Reservation

Notification

Product

Available

Entry / checking for any demands

Assigned

Entry/ notify about availability

Issued

Issue at timely return/ Notify about overdue

Register

Lost

After 1 Year

Damaged

Lost

After maximum pending
time

 Issue

Waiting order Cancel/ Notify

In progress

R
et

ur
n

R
et

ur
n

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 169

automation or refactoring [10]. For software developers it
is important to know which parts in target business
processes the software system should implement or
support.

2.4 System requirements modelling using case study

Requirement modelling is an important activity in the
process of designing and managing enterprise
architectures. Requirements modelling helps to
understand, structure and analyse the way business
requirements are related to Information Technology
requirements, and vice versa, thereby facilitating the
business-IT alignment. It includes actors, use cases and
use case scenario. Each of these is further describe in
following subsection:

Actors: An actor is a user or external system with which a
system being modelled interacts. For example, in our
inventory management system involves various types of
users, including supplier, inventory management system,
human resources, and manufacturer. These all users are
actors. At the same time, an actor is external to a system
that interacts with the system. An actor may be a human
user or another system, and has some goals and
responsibilities to satisfy in interacting with the system.

It is also necessary to generate actor who giving compact
overview of the whole model. We have to prepare
requirement specification model that incorporates the
package details diagram, showing package use cases, their
associations with actors and relationships between use
cases including uses cases. For making good requirement
modelling system engineer prepares activity diagrams
visualizing scenarios of complex use cases. In model, the
activities should be nested within appropriate use cases
and assigned as their behaviours. And finally we describe
use cases according to pre-defined templates, e.g. rational
unified process use case document, actors in Figure 5.

Figure 5: Issueing the product for supplier

Use case and Use case scenario: A use case in software
engineering and systems engineering is a description of a
potential series of interactions between a software module
and an external agent, which lead the agent towards
something useful. A use case diagram in the UML is a
type of behavioral diagram defined by and created from a
Use-case analysis. The purpose of use case is to present a
graphical overview of the functionality provided by a
system in terms of actors, their goals and any
dependencies between those use cases. Also, it is useful to
show what system functions are performed for which
actor.

Requirement models are used to captures only
functionality that the end-user needs from the system. The
other requirements such as non-functional requirements or
detailed functional requirements are not captured in
standard requirement modelling diagrams. The simplest
way is to describe those in simple textual format and
include references to use cases, their scenarios, etc.
Another approach is to create specific requirements
modelling.

Figure 6: Register product return

For example, introduce stereotypes for each important
requirement type with tags consisting requirement specific
information and define types of links for tracing
requirements, such as derive, satisfy, support. Another
aspect on which system analyst’s work in some projects is
definition of data structure. It can be done using
conventional requirement modelling diagrams. If
necessary, object diagrams can also be used for defining
samples for explanation or testing of data structure defined
in class diagrams. Since the focus here is on data structure,
class operations compartments can be hidden in the
diagram (Figure 6).

Identify supplier

Select returned
products

Confirm return

Librarian Inventory management System

Get issued product

Get issued loan details

Penalty to supplier

Issued

Assign products for waiting list

Over due

On time

More items

No more
items

Find product

Make request

Make the reservation

Review supplier profile

Register issued product

Register product return

Penalize supplier

Notify
about
availability

Include

Product info
system

Supplier

 Time

Inventory System

Manufacturer

Extend
(Waiting reservation)

Extend
(Waiting reservation)

Extend
 Due to Overdue

Issue the Book

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 170

Comparing to conceptual analysis, more elements are used
here, such as attributes and association end specifications,
enumerations, and generalization. Although such model is
considered to be part of design, in practice quite often it is
created and maintained by system analysts. For data-
centric applications, it is very important to do data-flow
diagrams showing information flows between different
classifiers, e.g. system-context diagram indicates
information flows from system to outside world entities,
i.e. actors or external systems that need to be integrated.

Figure 7: Information flow model

The previous requirements modelling artifact for which
system analyst might be responsible is user interface
prototypes. The prototype itself can theoretically be
mapped to UML Composite Structure diagram. However,
when focusing on separate screen prototypes, people
sometimes loose the screens which can be used by each
actor, and the possibilities to navigate from each screen to
the other screens. For capturing this information, we can
create GUI navigation map, which is shown in Figure 7. In
Figure 7, we use state diagram, where each state represents
a screen, in which user is at the moment, and transition
triggers represent GUI events, such as mouse double-click
or clicking on some button, Using this requirement model,
system developers create an effective software on
inventory control and management system. The user
interface diagram model is shown in Figure 8.

Figure 8: User interface diagram model

Finally, we emphasize that the requirements analysis work
should be iterative and incremental. Also, the ordering of
modelling tasks might be different based on taken
approach, or some steps might be omitted.

2.5 System design

After the successful completion of system requirement and
modelling phase, the draft (raw) requirement may be
provided to the design team. Design team check the
validity of these draft requirements and starts to design the
system or software model. Basically, system design is the
process of designing developing and implementation of
the proposed system as per the requirement obtained
during the analysis of existing system. The main objective
of the system design is to develop the best possible design
as per the requirements from users and working
environment for operating the information system. It is the
process of defining the architecture, components, modules,
interfaces, and data for a system to satisfy specified
requirements. Systems design is therefore the process of
defining and developing systems to satisfy specified
requirements of the user. Object-oriented analysis and
design methods are becoming the most widely used
methods for computer systems design. The UML has
become the standard language in object-oriented analysis
and design. It is widely used for modelling software
systems and is increasingly used for high designing non-
software systems and organizations.

After the designing of the system model, designer
evaluates the efficiency of the design model. If any
modification is remaining in the model, designer again
checks the validity of requirements and asks for correction
with comments. The process will stopped until the clear
cut clarification is not received by the design team. This
section is very important because according to the
software engineering approach the design is the bridge the
gap between requirement analysis and coding of the final
software development

3. Discussion and future scope

The paper discusses implementation of requirement
modelling for various requirements analysis purposes and
mapping of conventional requirements artifacts into
system elements. We have also presented some modelling
aspects, which are necessary for ensuring that the
requirements elements that are mapped to the same UML
element can be differentiated. We can also find critics on
using UML as requirements specification language, most
of the issues can be solved using UML tool with rich

Entry the Supplier
information

Supplier Profile

Login

Issuing detail

Home

Issue details

Reservation details

Reservation detail

Home

Product Browse

Browse

 Browse

Select category/ Refresh
Titles

Product Detail

Search

On - match

Multiple
Matches

Get detail
Browse

Make reservation

Cancel reservation

Supplier

Inventory
system Product

info System

Manufacture

Issue
Product
Supplier
Category

Product
Issue

Searc

Specification

Issue
Products
specification
Item
Notification

Reservation
Request

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694‐0814
www.IJCSI.org 171

possibilities for modelling environment customization and
extensions [18]. On the other hand, there are also
suggestions to use more UML for requirements analysis
and visualizations [20]. Multiple authors provide
numerous papers on more detailed approaches to
customizing unified modelling language for specific
requirements modelling needs, such as analyzing
scenarios, modelling user interface prototypes, refining
requirements [21, 22]. Some researchers also suggest that
UML can be specialized for early phase requirements
gathering process but the proposed framework emphasizes
that early phase modelling should focus on same types of
artifacts with less detail.

4. Conclusions

In this paper, we have discussed the major requirements
artifacts described in requirements engineering literature
can easily be mapped to elements of UML. Also, we have
depicted a conceptual framework for requirements
modelling with illustrated examples for inventory control
and management system. Our future research work will
focus on more detailed management for requirements
modelling framework and development of different demo
version for different management system.

References
[1] D. Pandey, U. Suman, A. K. Ramani, Social-Organizational

Participation difficulties in Requirement Engineering Process- A
Study, National Conference on ETSE & IT, Gwalior Engineering
College, Gwalior,2009.

[2] Dhirendra Pandey, U. Suman, A.K. Ramani, Design and
Development of Requirements Specification Documents for
Making Quality Software Products, National Conference on ICIS,
D.P. Vipra College, Bilaspur, 2009.

[3] Dhirendra Pandey, U. Suman, A.K. Ramani , An Effective
Requirement Engineering Process Model for Software
Development and Requirements Management, IEEE Xplore, 2010,
Pp 287-291

[4] M. Broy, I. Kruger, A. Pretschner and C. Salzmann. Engineering
Automotive Software. Proceedings of THE IEEE. 95(2): 356-373,
Febrary 2007.

[5] D. Rubinstein Standish Group Report: There’s Less Development
Chaos Today. SD Times, March 1, 2007.

[6] J. Aranda , S. Easterbrook , G. Wilson Requirements in the wild:
How small companies do it. 15th IEEE International Requirements
Engineering Conference (RE 2007), pp. 39-48.

[7] M. Panis, B. Pokrzywa, Deploying a System-wide Requirements
Process within a Commercial Engineering Organization. 15th IEEE
International Requirements Engineering Conference (RE 2007), pp.
295- 300.

[8] Object Management Group. Unified Modelling Language:
Superstructure. Formal Specification, 15th IEEE International
Requirements Engineering Conference (RE 2007), 2007.

[9] G. Engels., R. Heckel, and S. Sauer, UML – A Universal Modelling
Language? In M. Nielsen, D. Simpson (Eds.): ICATPN2000, LNCS
1825, pp. 24-38, 2000.

[10] I. Jacobson, Object-Oriented Software Engineering. Addison
Wesley Professional, 1992.

[11] K. Wiegers. Software Requirements. 2nd edition, Microsoft Press,
2005.

[12] Object Management Group. Business Process Modelling Notation
Specification. Final Adopted Specification, version 1.0, 2006.

[13] O. Noran. UML vs. IDEF: An Ontology-oriented Comparative
Study in View of Business Modelling. Proceedings of International
Conference on Enterprise Information Systems, ICEIS 2004, Porto,
2004.

[14] P. Chen, P.-S. The entity-relationship model – toward a unified
view of data. ACM Transactions on Database Systems (TODS),
vol. 1 (1), 1976.

[15] Van Lamsweerde, A. Goal-Oriented Requirements Engineering: A
Guided Tour. RE'01 – International Joint Conference on
Requirements Engineering, Toronto, 2001, pp.249-263.

[16] M. Penker , H. Eriksson, E. Business Modelling With UML:
Business Patterns at Work. Wiley, 2000.

[17] Object Management Group. Systems Modelling Language. Formal
Specification, version 1.0, 2007.

[18] E. Gottesdiener, The Software Requirements Memory Jogger: A
Pocket Guide to Help Software and Business Teams Develop and
Manage Requirements. GOAL/QPC, 2005.

[19] M. Glinz, Problems and Deficiencies of UML as a Requirements
Specification Language. 10th International Workshop on Software
Specification and Design, 2000, p.11 - 22

[20] S. Konrad, H. Goldsby, K. Lopez, Visualizing Requirements in
UML Models. International Workshop REV’06: Requirements
Engineering Visualization, 2006.

[21] H. Behrens, Requirements Analysis and Prototyping using
Scenarios and Statecharts. Proceedings of ICSE 2002 Workshop:
Scenarios and State Machines: Models, Algorithms, and Tools,
2002.

[22] Da Pinheiro, P. Silva, The Unified Modelling Language for
Interactive Applications. Evans A.; Kent S.; Selic B. (Eds.): UML
2000 – The Unified Modelling Language. Advancing the Standard,
pp. 117-132, Springer Verlag, 2000.

Dhirendra Pandey is a member of IEEE and IEEE Computer
Society. He is working in Babasaheb Bimrao Ambedkar University,
Lucknow as Assistant Professor in the Department of Information
Technology. He has received his MPhil Degree in Computer
Science from Madurai Kamraj University, Madurai, Tamilnadu,
India. Presently, he is perusing PhD in Computer Science from
School of Computer Science & Information Technology, Devi
Ahilya University, Indore (MP).

Dr. Ugrasen Suman has received his PhD degree from School of
Computer Science & Information Technology (SCSIT), DAVV,
Indore. Presently, he is a Reader in SCSIT, Devi Ahilya University,
Indore (MP). Dr. Suman is engaged in executing different research
project in SCSIT. He has authored more than 30 research papers.

Professor (Dr.) A. K. Ramani has received his ME and PhD
Degree from Devi Ahilya Vishwavidyalaya, Indore (M.P.). Dr.
Ramani has authored more than 100 research papers and
executing several major research projects. Presently, he is the
Head of the Department in SCSIT, Devi Ahilya University, Indore
(MP).

