
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 141

A Frame Work for Frequent Pattern Mining Using Dynamic
Function

Sunil Joshi1, R S Jadon2 and R C Jain3

 1 Computer Applications Department, Samrat Ashok Technological Institute
Vidisha, M.P. , India

2 Computer Applications Department, Madhav Institute of Technology and Science
Gwalior, M.P. , India

3 Computer Applications Department, Samrat Ashok Technological Institute
Vidisha, M.P. , India

Abstract
Discovering frequent objects (item sets, sequential

patterns) is one of the most vital fields in data mining. It is
well understood that it require running time and memory
for defining candidates and this is the motivation for
developing large number of algorithm. Frequent patterns
mining is the paying attention research issue in association
rules analysis. Apriori algorithm is a standard algorithm of
association rules mining. Plenty of algorithms for mining
association rules and their mutations are projected on the
foundation of Apriori Algorithm. Most of the earlier
studies adopted Apriori-like algorithms which are based
on generate-and-test candidates theme and improving
algorithm approach and formation but no one give
attention to the structure of database. Several
modifications on apriori algorithms are focused on
algorithm Strategy but no one-algorithm emphasis on least
transaction and more attribute representation of database.
We presented a new research trend on frequent pattern
mining in which generate Transaction pair to lighten
current methods from the traditional blockage, providing
scalability to massive data sets and improving response
time. In order to mine patterns in database with more
columns than rows, we proposed a complete framework
for the frequent pattern mining. A simple approach is if we
generate pair of transaction instead of item id where
attributes are much larger then transaction so result is very
fast. Newly, different works anticipated a new way to
mine patterns in transposed databases where there is a
database with thousands of attributes but merely tens of
stuff. We suggest a novel dynamic algorithm for frequent
pattern mining in which generate transaction pair and for
generating frequent pattern we find out by longest

common subsequence using dynamic function. Our
solutions give result more rapidly. A quantitative
investigation of these tradeoffs is conducted through a
wide investigational study on artificial and real-life data
sets.
Keywords: Longest Common Subsequence, Frequent Pattern
mining, dynamic function, candidate, transaction pair,
association rule, vertical mining

1. Introduction

Frequent Pattern Mining is most dominant problem in
association mining. Plenty of algorithms for mining
association rules and their mutations are projected on the
foundation of Apriori Algorithm. Most of the earlier studies
adopted Apriori-like algorithms which are based on generate-
and-test candidates theme and improving algorithm approach
and formation but always focus on item id instead of
transaction id. Several modifications on apriori algorithm are
focused on algorithm Strategy but no one-algorithm
emphasis on least transaction more attribute representation of
database.
Most of the preceding work on mining frequent patterns is
based on the horizontal representation. However, recently a
number of vertical mining algorithms have been projected for
mining frequent itemsets. Mining algorithms using the
vertical representation have shown to be effective and usually
do better than horizontal approaches [11]. This benefit stems
from the fact that frequent patterns can be counted via tidset
intersections, instead of using complex interior data
structures like the hash/search trees that the horizontal
algorithms need [10]. Also in the vertical mining, the
candidate creation and counting phases are done in a single

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 142

step. This is done because vertical mining offers usual
pruning of unrelated transactions as a result of an
intersection. Another characteristic of vertical mining is the
utilization of the autonomy of classes, where each frequent
item is a class that contains a set of frequent k-itemsets
(where k > 1) [6]. The vertical arrangement appears to be a
usual choice for achieving association rule mining's purpose
of discovering associated items. Computing the supports of
itemsets is simpler and quicker with the vertical arrangement
since it involves only the intersections of tid-lists or tid-
vectors, operations that are well-supported by the current
database systems. In difference, complex hash-tree data
structures and functions are required to perform the same
function for flat layouts. There is an automatic reduction of
the database before each scan for those itemsets that are
significant to the following scan of the mining process are
accessed from disk. In the horizontal arrangement, however,
irrelevant information that happens to be part of a row in
which useful information is present is also transferred from
disk to memory. This is because database reductions are
moderately hard to implement in the horizontal arrangement.
Further, still if reductions were possible, the irrelevant
information can be removed only in the scan following the
one in which its irrelevance is exposed. Therefore, there is
always a reduction delay of at least one scan in the horizontal
layout.
A simple approach is if we generate pair of transaction
instead of item id where attributes are much larger then
transaction then result is very fast. Recently, different works
proposed a new way to mine patterns in transposed databases
where a database with thousands of attributes but only tens of
objects [15]. In this case, mining the transaction pair runs
through a smaller search space. None algorithm filters or
reduces the database in each pass of apriori algorithm to
count the support of prune pattern candidate from database.
Most of the preceding work on vertical mining concentrates
on intersection of transaction [12]. This is based on
intersection of perpendicular tid-vector where it is a set of
columns with each column storing an IID and a bit-vector of
1’s and 0’ to represent the occurrence or nonexistence,
respectively, of the item in the set of customer transactions. If
we use list-based layout then it takes much less space than
the bit-vector approach (which has the overhead of openly
representing absence) in sparse databases. We make the case
in this paper and use list-based layout [16]. To find
intersection we use dynamic technique instead of traditional
approach. We suggest a novel dynamic algorithm for
frequent pattern mining in which we generate transaction pair
and for generating frequent pattern we find out by longest
common subsequence using dynamic function.
The rest of this paper is structured as follows. Section II
introduces the problem and reviews some efficient related
works. The projected method is described in section III.
Section IV explains in details the projected FPMDF

algorithm. A justification with Example is given in Section
V. The investigational results and assessment show in section
VI. Finally Section VII contains the conclusions and
upcoming works

2. Frequent Pattern Mining

Frequent Itemset Mining came from efforts to determine
valuable patterns in customers’ transaction databases. A
customers’ transaction database is a series of transactions (T
= t1. . . tn), where each transaction is an itemset (ti I). An
itemset with k elements is known as k-itemset. In the rest of
the paper we make the (practical) assumption that the items
are from a prearranged set, and transactions are stored as
sorted itemsets. The support of an itemset X in T, denoted as
suppT(X), is the number of those transactions that hold X,
i.e. suppT(X) = |{tj : X tj}|. An itemset is frequent if its
support is larger than a support threshold, originally denoted
by min supp. The frequent itemset mining problem is to
discover all frequent itemset in a given transaction database.
The primary Algorithm Proposed for finding frequent
itemsets, is the APRIORI Algorithm [1]. This algorithm was
enhanced later to obtain the frequent pattern quickly [2]. The
Apriori algorithm employs the downhill closure property—if
an itemset is not frequent, any superset of it cannot be
frequent either. The Apriori Algorithm performs a breadth-
first search in the search Space by generating candidate k+1
itemsets from frequent k-itemsets. The occurrence of an
itemset is computed by counting its happening in each
transaction. Numerous variants of the Apriori algorithm have
been developed, like AprioriTid, AprioriHybrid, direct
hashing and pruning (DHP), Partition algorithm, dynamic
itemset counting (DIC) etc.[3] . FP-growth [4] is a well-
known algorithm that uses the FP-tree data structure to get a
condensed representation of the database transactions and
employs a divide-and conquer approach to decompose the
mining problem into a set of smaller problems. In spirit, it
mines all the frequent itemsets by recursively determining all
frequent 1-itemsets in the restrictive pattern base that is
proficiently constructed with the help of a node link
structure. In algorithm FP-growth-based, recursive
production of the FP-tree affects the algorithm’s complexity.
Most of the preceding work on association mining has
utilized the conventional horizontal transactional database
arrangement. However, a number of vertical mining
algorithms have been proposed recently for association
mining [5, 6, 9, 11, 12]. In a vertical database each item is
associated with its equivalent tidset, the set of all transactions
(or tids) where it appears. Mining algorithms using the
vertical format have shown to be very valuable and usually
do better than horizontal approaches. This advantage stems
from the fact that frequent patterns can be counted via tidset
intersections, instead of using complex internal data

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 143

structures (candidate generation and counting happens in a
single step). The horizontal approach on the other hand needs
complex search/hash trees. Tidsets offer ordinary pruning of
extraneous transactions as a result of an intersection (tids not
relevant drop out). Furthermore, for databases with lengthy
transactions it has been shown using a simple cost model,
that the vertical approach reduces the number of I/O
operations [7]. In a current study on the integration of
database and mining, the Vertical algorithm [8] was shown to
be the best approach (better than horizontal) when forcefully
integrating association mining with database systems. Eclat
[9] is the primary algorithm to find frequent patterns by a
depth-first search and it has been shown to execute fine.
They use vertical database representation and count the
support of itemset by using the intersection of tids. However,
pruning used in the Apriori algorithm is not applicable during
the candidate itemsets generation due to depth-first search.
VIPER [5] uses the vertical database layout and the
intersection to accomplish a excellent performance. The only
difference is that they use the compacted bitmaps to represent
the transaction list of each itemset. However, their
compression method has limitations especially when tids are
uniformly distributed. Zaki and Gouda [10] developed a new
approach called dEclat using the vertical database
representation. They store the difference of tids, called
diffset, between a candidate k-itemset and its prefix k -1
frequent itemsets, instead of the tids intersection set, denoted
here as tidset. They calculate the support by subtracting the
cardinality of diffset from the support of its prefix k-1
frequent itemset. This algorithm has been exposed to gain
significant performance improvements over Eclat. However,
diffset will drop its advantage over tidset when the database
is sparse.
Most of the preceding work on mining frequent patterns is
based on the horizontal illustration. However, recently a
number of vertical mining algorithms have been projected for
mining frequent itemsets. Mining algorithms using the
vertical representation have exposed to be effective and
usually do better than horizontal approaches [11]. This
advantage stems from the fact that frequent patterns can be
counted via tidset intersections, instead of using complex
internal data structures like the hash/search trees that the
horizontal algorithms require [10]. The candidate generation
and counting phases are done in a single step in vertical
mining. This is done because vertical mining offers ordinary
pruning of irrelevant transactions as a result of an
intersection.
Another characteristic of vertical mining is the utilization of
the autonomy of classes, where each frequent item is a class
that contains a set of frequent k-itemsets (where k > 1) [6].
The vertical arrangement appears to be a natural choice for
achieving association rule mining's objective of discovering
correlated items. Computing the supports of itemsets is
simpler and faster with the vertical arrangement since it

involves only the intersections of tid-lists or tid-vectors,
operations that are well-supported by existing database
systems. In contrast, complex hash-tree data structures and
functions are required to perform the same function for
horizontal layouts. There is an automatic reduction of the
database before each scan in that only those itemsets that are
significant to the following scan of the mining process are
accessed from disk. In the horizontal layout, however,
irrelevant information that happens to be part of a row in
which useful information is present is also transferred from
disk to memory. This is because database reductions are
comparatively hard to implement in the horizontal
arrangement. Further, even if reduction were promising, the
irrelevant information can be removed only in the scan
following the one in which its irrelevance is discovered.
Therefore, there is always a reduction delay of at least one
scan in the horizontal layout.
Most of the preceding work on vertical mining concentrates
on intersection of transaction [12]. This is based on
intersection of perpendicular tid-vector where it is a set of
columns with each column storing an IID and a bit-vector of
1’s and 0’ to represent the occurrence or nonexistence,
respectively, of the item in the set of customer transactions. If
we use list-based layout then it takes much less space than
the bit-vector approach (which has the overhead of openly
representing absence) in sparse databases. We make the case
in this paper and use list-based layout [16]. To find
intersection we use dynamic technique instead of traditional
approach. We suggest a novel dynamic algorithm for
frequent pattern mining in which we generate transaction pair
and for generating frequent pattern we find out by longest
common subsequence using dynamic function

3. Dynamic Function

The longest common subsequence problem is one of the
frequent problems which can be solved powerfully using
dynamic programming. “The Longest common subsequence
problem is, we are given two sequences X=<x1,x2----------
xn> and Y=<y1,y2---------ym> and wish to find a maximum
length
 common subsequence of X and Y” for example : if
X=<A,B,C,B,D,A,B> and Y=<B,D,C,A,B,A> then The
sequence <B, C, B, A> longest common subsequence. Let us
define CC [i, j] to be the length of an LCS of the sequences
xi and yj. If either i=0 or j=0, one of the sequence has length
0, so the LCS has length 0. The Optimal substructure of the
LCS Problem gives the recursive formula in fig.1

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 144

0 0 0

(,) 1, 1 1 , 0

max , 1 , 1, , 0

if i or j

C i j C i j if i j and xi yj

c i j c i j if i j and xi yj

Figure 1. Longest Common Subsequence Recursive Formula

4. Algorithm

The Novel algorithm works over the entire database file, now
apply Apriori like Algorithm in which first we generate
transaction pair with longest common subsequence of item id
instead of item id pair. For each Iteration we apply following
sequence of operation until condition occurred. First generate
the transaction pair and prune with empty longest common
subsequence by dynamic function. To count the support ,
instead of whole database for each pruned pattern we find all
subset and display it and also stored new transaction pair and
its attribute common subsequence so that next iteration we
trace above subsequence. To find longest common
subsequence we used dynamic function which faster then
traditional function. Write pruned transaction pair list with
attribute common subsequence so that in next pass we used
this pair list instead of all pair list. An advantage of This
approach is in each iteration database filtering and reduces,
so each iteration is faster then previous iteration

Algorithm FPMDF (Frequent Patterns Mining
Using Dynamic Function)
I. Given Database T with ∂(Min. no. of transaction)

II. K: =2.
III. While Lk-1≠ { } do
IV. Ck=Compute each pair of each previous transaction

pair .
V. Computer LCS of Item id for each previous

transaction pair.
VI. Lk=Prune Transaction Pair having empty LCS.

VII. If ∂<=k then Fk=All_Subset(Lk)
VIII. K:=K+1

5. Explanation with example which support
the arguments

Study the following transaction database
.T={T1,T2,T3,T4,T5 >, Assume σ=40%, Since T contains 5

records, it means that an itemset that is supported by at least
two transactions is a frequent set and output shown in fig.2

TABLE I. GIVEN DATASE T (C1)

TI
d

Attributes (Item Id)

1 1,2,5,6,7,9,10,15

2 1,3,14

3 2,3,5,6,7,8,9,12

4 4,10,15

5 2,4,5,7,9,11,13

Now Apply Algorithm

Iteration 1

Generate Transaction Pair with two elements with Longest
Common Subsequence (LCS) By Dynamic Function of
Attributes

TABLE II. C2

TId Attributes (Item Id)

1
,2

1

1,3 2,5,6,7,9

1,4 10,15

1,5 2,5,7,9

2,3 3

2,4 NIL

2,5 NIL

3,4 NIL

3,5 2,5,7,9

4,5 4

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 145

Prune C2 by removing Transaction pair having Empty LCS
of attributes.

Figure 2. Frequent Pattern with support 60%

TABLE III. L2

TId Attributes (Item Id)

1
,2

1

1,3 2,5,6,7,9

1,4 10,15

1,5 2,5,7,9

2,3 3

3,5 2,5,7,9

4,5 4

If σ=40%, frequenct set support record=2 then

 F2=All_Subset(L2)

F2 :={ 1,2, 3, 4, 5, 6,
7,9,10,15,(2,5),(2,6),(2,7),(2,9),(5,6),(5,7),(5,9),(6,7),(6,9),(
7,9),(10,15),(2,5,6),(,2,5,7),(2,5,9),(2,6,7),(2,6,9),(2,7,9),(2,
5,6,7),(2,5,6,9),(2,5,7,9), (2,6,7,9),(5,6,7,9),(2,5,6,7,9)}.

Iteration 2

Generate Transaction Pair with 3 elements with Longest
Common Subsequence (LCS) By Dynamic Function of
Attributes

TABLE IV. C3

TId Attributes (Item Id)

1 ,2,3 NIL

1,2,4 NIL

1,2,5 NIL

1,3,4 NIL

1,3,5 2,5,7,9

1,4,5 NIL

Prune C2 by removing Transaction pair having Empty LCS
of attributes.

TABLE V. L3

TId Attributes (Item Id)

1,3,
5

2,5,7,9

If σ=40%, frequenct set support record=2 then
 F3=F2 U All_Subset(L3)

F3:={1,2,3,4,5,6,
7,9,10,15,(2,5),(2,6),(2,7),(2,9),(5,6),(5,7),(5,9),(6,7),(6,9),
(7,9),(10,15),(2,5,6),(,2,5,7),(2,5,9),(2,6,7),(2,6,9),(2,7,9),(
2,5,6,7),(2,5,6,9),(2,5,7,9),(2,6,7,9),(5,6,7,9),(2,5,6,7,9) }

If σ=60%, frequenct set support record=3 then
 F3= All_Subset(L3)

F3 :={ 2,5, 7,9,(2,5), ,(2,7),(2,9), (5,7),(5,9),(7,9),

,(2,5,7),(2,5,9), ,(2,7,9),(5,7,9),(2,5,7,9), }

6. Experimental results

In this section we performed a set of experiments to evaluate
the effectiveness of the frequent pattern mining using
dynamic function method. The algorithm DFPMT was
executed on a Pentium 4 CPU, 2.26GHz, and 1 GB of RAM
computer. It was implemented in Java. The experiment
database sources are T40I4D100K, provided by the QUEST
generator of data generated from IBM's Almaden lab. The
experimental dataset contains data whose records are set to
10. The testing results of experiments are showed in Fig.3. In
the Fig.3, the horizontal axis represents the number of
support in database and the vertical axis represents mining
time. The three curves denote different time cost of the
algorithm Apriori, FP Growth and FPMDF with different
minsup.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 146

T10I4D100K_10

0

20

40

60

80

100

120

140

160

15 16 17 18 19 20

Support(%)

T
im

e(
m

s) Apriori

FP Grow th

FPMDF

Figure 3. The test results of apriori, FP Growth and DFPMT

6. Conclusion

Discovering frequent objects (item sets, sequential patterns)
is one of the most vital fields in data mining. It is well
understood that it require running time and memory for
defining candidates and this is the motivation for developing
large number of algorithm.. We presented a new research
trend on frequent pattern mining in which if the number of
transaction are very less as compare to attributes or items
specially in medical fields then instead of generating item id
pair we generate pair of transaction with longest common
subsequence of item ids. Then we gave an approach to use
this framework to mine all the itemset satisfying. We used
dynamic function which is superior to conventional function
for finding longest common subsequence. We also presented
a new research trend on filtering the database in all iteration.
Further investigations are required to clear the possibilities of
this method

Acknowledgments

We thank Sh. R. S. Thakur and Sh. K K Shrivastava for
discussing and giving us advice on its implementation.

References

[1] R. Agrawal, T. Imielinski, and A.N. Swami, “Mining Association

Rules between Sets of Items in Large Databases,” Proc. ACM
SIGMOD Int’l Conf. Management of Data, pp. 207-216, May
1993.

[2] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules,” Proc. 20th Int’l Conf. Very Large Data
Bases, pp. 487-499, 1994.

[3] B. Goethals, “Survey on Frequent Pattern Mining,” manuscript,
2003.

[4] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without
Candidate Generation,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 1-12, May 2000.

[5] P. Shenoy, J.R. Haritsa, S. Sudarshan, G. Bhalotia, M. Bawa, and D.
Shah. Turbo-charging vertical mining of large databases. In ACM
SIGMOD Intl. Conf. Management of Data, May 2000.

[6] M. J. Zaki. Scalable algorithms for association mining. IEEE
Transactions on Knowledge and Data Engineering, 12(3):372-390,
May-June 2000.

[7] B. Dunkel and N. Soparkar. Data organization and access for
efficient data mining. In 15th IEEE Intl. Conf. on Data Engineering,
March 1999.

[8] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association
rule mining with databases: alternatives and implications. In ACM
SIGMOD Intl. Conf. Management of Data, June 1998.

[9] M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “New
Algorithms for Fast Discovery of Association Rules,” Proc. Third
Int’l Conf. Knowledge Discovery and Data Mining, pp. 283-286,
1997.

[10] M.J. Zaki and K. Gouda, “Fast Vertical Mining Using Diffsets,”

Proc. Ninth ACM SIGKDD Int’l Conf. Knowledge Discovery

and Data Mining, pp. 326-335, 2003.

[11] M. Song, S. Rajasekaran. (2006). “A Transaction Mapping
Algorithm for Frequent Itemsets Mining” , IEEE Transactions on
Knowledge and Data Engineering , Vol.18, No.4, pp. 472-481,
April 2006.

[12] M. jamali, F. taghiyareh (2005) “Generating Frequent Pattern
through Intersection between Transactions

[13] Sunil Joshi , Dr. R. C. Jain : accepted and published research paper
in The IEEE 2010 International Conference on Communication
software and Networks (ICCSN 2010) on “A Dynamic Approach
for Frequent Pattern Mining Using Transposition of Database”
from 26 - 28 February 2010

[14] Finding Longest Increasing and Common Subsequences in
Streaming Data David Liben-Nowell_ y dln@theory.lcs.mit.edu
Erik Vee_ z env@cs.washington.edu An Zhu_ x
anzhu@cs.stanford.edu November 26, 2003

[15] B. Jeudy and F. Rioult, Database transposition for constrained
closed pattern mining, in: Proceedings of Third International
Workshop on Knowledge Discovery in Inductive Databases
(KDID) co-located with ECML/PKDD, 2004.

[16] M. J. Zaki and C. J. Hsiao. CHARM: An e±cient algorithm for
closed itemset mining. In Proc. 2002 SIAM Int. Conf. Data Mining
(SDM'02), pages 457{473, Arlington, VA, April 2002.

Sunil Joshi is presently working as a Ass. Professor, Computer
Applications at Samrat Ashok Technological Institute Vidisha
(M.P). He has 9 years teaching experience and 2 years research
experience. His research areas include Data mining.

R S Jadon is presently working as a Head, Computer Applications
at Madhav Institute of Technology and Science, Gwalior. He has
12 years research experience. He has presented research papers
in more than 30 national and international conferences and
published more than 30 papers in national and international
journals. His research areas include Video Data Processing.

R C Jain is presently working as a Director and Head; Computer
Applications at Samrat Ashok Technological Institute Vidisha He
has 30 years teaching experience and 15 years research
experience. He has presented research papers in more than 100
national and international Conferences and published more than

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 147

150 papers in national and international journals. His research
areas include Data mining and Network security.

