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Abstract 

Image segmentation is an essential preprocessing tread in a 
complicated and composite image dealing out algorithm. In 
segmenting arial image the expenditure of misclassification 
could depend on the factual group of pupils. In this paper, 
aggravated by modern advances in contraption erudition 
conjecture, I introduce a modus operandi to make light of 
the misclassification expenditure with class-dependent 
expenditure. The procedure assumes the hidden Markov 
model (HMM) which has been popularly used for image 
segmentation in recent years. We represent all feasible 
HMM based segmenters (or classifiers) as a set of points in 
the beneficiary operating characteristic (ROC) space. 
optimizing HMM  parameters  is  still an  important and 
challenging work  in  automatic  image segmentation  
research  area. Usually the Baum-Welch (B-W) Algorithm is 
used to calculate the HMM model parameters.  However, 
the  B-W  algorithm  uses an  initial  random  guess  of  the  
parameters,  therefore  after convergence the output tends  to 
be close to this  initial value of the algorithm,  which  is  not 
necessarily  the  global  optimum  of the model  parameters.  
In this project, a Adaptive Baum-Welch (GA-BW) is 
proposed. 

Key terms—Convex hull, hidden Markov models, 
image segmentation, ROC convex analysis, ROC curve, 
Genetic Algorithm; HMM training; Baum-Welch 
algorithm.. 

1.INTRODUCTION 

IMAGE segmentation extracts explicit information 
a b o u t  c o n t i n u o u s , and it allows human observers 
to understand images clearly by focusing specific 
regions of interest. For this reason, it is often used as an 
initial procedure to simplify a sophisticated and complex 
image processing system. S e g mentation often requires 
smooth boundary between regions for different classes, and 
hidden Markov model (HMM) is possibly one of the most 
popular models for it. The HMM assumes that the true 
hidden class has Markovian dependency and, thus, has 
smooth boundary between segmented r e g i o n s .  

 

 The popularly used Markov models have two 
parameters, which we denote by α and β, where indicate 
the popularity of each class over images and the other  
indicates the strength of spatial coherence. The parameters 
are estimated in segmentation procedures or pre-decided by 
an expert. In real example, the cost of misclassification can 
depend on the classes. 

 

 For example, in cancer diagnosis, misclass ifying  cells 
normal cells pays much higher cost than  normal cells to 
tumor cells; or, in segmenting and detecting military targets, 
mistakenly detecting targets to non targets may cost more 
than the other type of misclassification. However, all 
existing segmentation procedures do not take into account the 
cost of misclassification, particularly the unequal cost that 
depends on the classes. 

 
But In this existing System to segment aerial images with 
two classes, “Artificial region” and “natural region,” which 
could be used for target recognition and tracking. Here, the 
cost of misclassifying targets (or Artificial region) is higher 
than that of misclassifying non-targets (or natural region) to 
targets. However, the  B-W  algorithm  uses an  initial  
random  guess  of  the  parameters,  therefore  after 
convergence the output tends  to be close to this  initial 
value of the algorithm,  which  is  not necessarily  the  
global  optimum  of the model  parameters.  In this project, a 
adaptive Baum-Welch (BW) is proposed. 

 
2. REVIEW OF ROC 
 
The ROC convex analysis draws great attention in the 
ma-chine learning society. In a two-class problem (positive 
and negative class), the ROC curve (or set) is the plot of the 
probability of false positive decision (false positive rate, 
FPR) and that of true positive decision (true positive rate, 
TPR). The ROC convex hull analysis finds an optimum 
point in an ROC space to minimize the misclassification 
cost of classifier, which is defined on which costs s of 
classifiers are the same. 
  
              Cost (ι) = FPR(ι) + FNR(ι)                                  (1) 
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Then, the ROC convex analysis finds the optimal classifier as 
the classifier whose (FPR, TPR) pair is the tangential point 
between these iso-cost lines and the convex hull of the ROC 
curve. 
 
The ROC convex analysis requires the entire set of feasible 
classifiers. In the HMM-based segmentation, the model has 
two unknown parameters which are estimated in 
segmenting the image .Fixing these two parameters, not 
estimating, provides the set of classifiers which are indexed 
by the ROC set is the set Where FNR(ι) implies false 
negative rate which is equal to 1-TNR(ι). Once 
misclassification cost is given, we have a family 
 
       α = (Unit cost of FNR / Unit cost of FPR)                  (2) 
 
on which costs of classifiers are the same. Then, the ROC 
convex analysis finds the optimal classifier as the classifier 
who’s (FPR, TPR) pair is the tangential point  
 
3. HMM TRANING SYSTEMS 
 
The model parameters of an HMM can be expressed as a set 
of three elements:  λ  = {A, B, n } [11].   Where: 
 

 A= { aij } is the state transition probability matrix, 
each element aij represent the probability that the 
HMM model will transit from state i to state j. 
Elements of matrix A must satisfy the next two 
conditions: 
 
aij ≥: 0                  where   1≤ i, j ≤3                     (3) 
 
 Σ3

j=0 bij =1       where1≤i,j≤3                               (4) 
 

• 
 B ={bij ( k )} is the observation probability matrix, 

such that bij is the probability that the observation 
Ok has been generated by state i. Elements of 
matrix B must satisfy the next two conditions: 
 

  bij ≥: 0            where 1≤ i, j ≤3                             (5) 
 
Σ3

j=0 bij=1    where1≤i,j≤3                                    (6) 
 
 

 Π = {πi} is the initial state distribution vector, and 
every πi express the probability that the HMM 
chain will start at state i. Elements of vector n must 
satisfy the next two conditions: 

 
   Πi ≥ 0               where 1≤I≤ 3                              (7) 
  

Σ3
j=0  Πi   =1                                                          (8) 

                                                                                                                        

 
HMM Training is the process of HMM parameter 
calculation. This is shown in figure 1, the training tools use 
the  speech data and their transcriptions to estimate the 

HMM parameters then the recognizer will use these HMMs 
to classify the unknown speech utterances 
 
 
4. HMM TRAINING USING B-W 
ALGORITHM 
 
The B-W algorithm provided by MixtGaussian toolbox has 
been used to train the HMM. After an initial guess of the 
HMM parameters is made, the B-W algorithm is run 
for 20 iterations to get more accurate parameters. As result 
we get a continuous density mixture Gaussian HMM. 
Finally transcriptions of unknown speech utterances will be 
made by the recognizer module to determine how accurate 
are the  HMM's parameters. 
 
 
5. Modified HMM using Baum  Welch   
 

.The algorithm has two steps: 
 

1) Calculating the forward probability and the 
backward probability for each HMM state. 

 
2) On the basis of this, determining the frequency of 

the transition-emission pair values and dividing it by 
the probability of the entire string . This amounts to 
calculating the expected count of the particular  
transition-emission pair. Each time a particular 
transition is found, the  value of the quotient of the 
transition divided by the probability of the  entire 
string goes up, and this value can then be made the 
new value of the transition. 

5.1 Baum-Welch Algorithm 

This method can be derived using simple ``occurrence 
counting'' arguments or using calculus to maximize the 
auxiliary quantity 
  

        Q (λ, λ’) = ∑q p{Q/O} Log[P{O, q, λ’}         (9) 

 

Over λ’[]. A special feature of the algorithm is the 
guaranteed convergence. To describe the Baum Welch 
Algorithm also known as forward backward algorithm .We 
need to define two more auxiliary variables, in addition to 
the forward and backward variables defined in a previous 
section. These variables can however be expressed in terms 
of the forward and backward variables.  

Σ3
j=0  Πi   =1                                                         (10) 

 

First one of those variables is defined as the probability of 
being in state i at t=t and in state j at t=t+1. Formally 
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                    Figure: 1 HMM training process[1] 
 

,  

     Єt =P {qt = i, qt+1 = j/O , λ}                                         (11)                               

This is the same as,  

      Єt = [P {qt = i, qt+1 = j/O ,λ}] / P {O/λ}                     (12)                             

Using forward and backward variables this can be expressed 
as,  

Єt = [ αt(i)aijβt +1(j)bj(at+1) ] / ∑i=n
N∑j=n

N[ αt(i)aijβt  

+1(j)bj(at+1) ]                                                                    (13) 

The second variable is the a posteriori probability,  

           Γi(i) = P {qt = i|O, λ}                                             (14) 

that is the probability of being in state i at t=t, given the 
observation sequence and the model. In forward and 
backward variables this can be expressed by,  

           γi  = [αiβt(i)] / ∑i=1
N [αiβt(i)]                                   (15)  

One can see that the relationship between γi  and Єt (i,j)  is 
given.  Now it is possible to describe the Baum-Welch 
learning process, where parameters of the HMM is updated 
in such a way to maximize the quantity, P {o|λ}. Assuming 
a starting model λ=(A,B,π),we calculate the α’s and β’s 
using the recursions 5 and2, and then Є’s and  β’s using 12 
and15. Next step is to update the HMM parameters 
according to equations 16 to18, known as reestimation 
formulas.  

      Π’i= γi (i) ,                   1 ≤  i ≤ N                              (16)                      

      

 a’ij = ∑t=1
T-1 Єt (i , j) / ∑t=1

T-1γt(i)  1 ≤  i ≤ N            

   1 ≤  i ≤ N              (17) 

These reestimation formulas can easily be modified to deal 
with the continuous density case too. Convergence It can be 
proven that if current estimate is replaced by these new 
estimates then the likelihood of the data will not decrease 
(i.e. will increase unless already at a local maxima/critical 
point). See Durbin, Section 11.6 for discussion of avoiding 
local maxima and other typical pitfalls with this algorithm. 

 

6. HMM TRAINING USING HYBRID GA-
BW ALGORITHM 

 
In MixtGaussian toolbox implementation a 3 hidden state 
continuous density mixture Gaussian HMM with 105 
observation symbols have been used, this configuration can 
well describe the speech utterance. Thus, the HMM model 
parameters is Ie = {A, B, n }, where A is a 3 by 3 transition 
probability matrix, B a 3 by 105 matrix, n is the initial 
probability of states vector of size 3. 
  
6.1  Encoding Method 
 
    It is vital to find a genetic representation of the model 
parameters before applying GA to solve the optimization 
problem. In genetics, chromosomes are comprised by a set 
of basic elements called genes, in our case the elementary 
information is the elements of every probability matrixes  A, 
B and n.  
 
We choose to concatenate the rows of each matrix in the 
model parameters I.e., thus the chromosomes will be 
represented as an array of real numbers as shown in Fig. 2. 
 
6.2. Hybrid GA-BW 
 
 We present a hybrid GA-BW algorithm due to slow 
convergence and high computational power needed by 
classical GA, especially when the generated chromosomes 
cannot satisfy the conditions (13), (14), . . . ,(18). For this 
reason, not included in the offspring and they are replaced 
by new chromosomes.  
 
6.3. Fitness Function 
 
  The fitness function is an evaluation mechanism of them 
chromosome; a higher fitness value reflects the chances of 
the chromosome to be chosen in the next generation. The 
log  likelihood [1] has been used, and it represents the 
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 Figure 2. Chromosome encoding 
 
probability that the training observation utterances have 
been generated   by the current model parameters and it is a 
function of the  following form [2]: 
 
 
 
1)   Apply B-W algorithm to generate the initial 
Population  P(O), where P(O) = {C], C2, ... , CN}, and Cj is 
one chromosome. 
 
2)  Calculate the fitness function F(Cj) of every 
chromosome Cj within the actual population 
P(t). 
 
3)  Select a few chromosomes for the intermediate 
population P'(t). 
 
4) Apply crossover to some chromosomes   P'(t). 
 
5) Apply mutation to few chromosomes in P'(t) 
 
6) Apply three iterations of B-W algorithm to the population 
P(t) for each ten generations. 
 
7) t = t+l; if not convergence, then go to: 2). 
 
 
Fig 3: Steps followed in crossover and mutation using BW 
 
 
 
6.4. Mutation  
 
Mutation selects randomly few chromosomes and alters 
some genes to produce new chromosomes. The 
"Mutationadaptfeasible" function of GA toolbox has been 
used to satisfy the conditions (3), (4) . . . (8). 

 
6.5 Selection and Crossover 
 
  Selection mimics the survival of fittest mechanism seen in 
Nature. Chromosomes with higher fitness values have a  
greater probability to survive in the succeeding generations. 
Then some elements from the population pool will be 
selected to apply crossover. Portions of genes will be 
exchanged between each Couple of chromosomes. The 
couple of chromosomes. The default GA toolbox selection 
and crossover functions have been used in the 
implementation. 
 
7. ROC CONVEX HULL ANALYSIS 
 
 In a binary classifier, the ROC curve (or space) plots two 
accuracy measures of a classifier, FPR and TPR. Suppose we 
use a continuous classification score X to diagnose a certain 
disease, and we classify a subject into a disease (positive) 
group if his/her score is higher than a given critical point; 
otherwise, we classify him/her into non disease group 
(negative) group.  
 
The optimal ROC curve is the one produced by the classifiers 
which has the maximum TPR given FPR. The optimal 
ROC curve has several geometrical properties including  
Convexity .Suppose it is not convex on an interval  
[ a , b ] b e l o n g s  t o  [ 0 , 1 ]  ,where a and b correspond 
to critical values c1 and c2 in the way that the FPR at c1 and 
c2  is a and b respectively. Then, for the diagnosis with 
critical values C Є [c1, c2] we find a better diagnostic system 
(classifier) which has the same FPR but higher TPR by 
randomly choosing between two diagnoses with critical 
values c1 and c2 . Thus, the convex hull of the observed ROC 
curves  represents the ROC curve of the set of potentially 
optimal classifiers. We let D in ROC space be the set of 
(FPR, TPR)s of all classifiers we consider, and D’be the set 
of their random mixtures. Then, D’ is the smallest convex 
region which contains . The goal of this letter is to find the 
classifier which minimizes the cost (1) among classifiers in . 
Since FNR (ι) = 1- TPR (ι), Cost (ι) = α FPR(ι) + ( TPR(ι)) 
and 
 
                TPR(ι) = 1- Cost (ι) + α FPR  (ι)                   (18) 
       
We represent the cost functions Cost(ι)s in the ROC space. 
Then, the intercept of the iso-cost line (2) is 1- Cost(ι)and, 
as in Fig.3, the point to minimize the cost is the tangential 
one between the line with slope α and the convex area D’. 
  
In summary, proposed procedure to find the cost-effective 
classifier has the following steps: 

S1) We define a set of classifiers, say c , to be 
considered. In case of HMM-based segmentation, 
this becomes a set of classifiers corresponding to 
each of two parameters using 
S2) We compute FPRs and TPRs of classifiers in 
and plot them. This defines the region D in the 
ROC space. Further, we get the ROC convex hull 
region D of D’ .  
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S3) We find the tangential point between the line 
with slope in (2) and the ROC convex hull region 
D’. The classifier corresponding to the found 
tangential point is the most cost-effective classifier. 

 
8. COST MINIMIZATION IN HMM-BASED 

IMAGE SEGMENTATION 
 
In this section, we find the HMM-based classifier to 
minimize the (expected) cost of misclassification (1) 
(ECM).  To get better understanding of the problem, we 
begin with HMM without spatial coherence such as GMM 
[1]. The model assumes that the testing image is composed 
of many 
 
 

 
 
 
Fig. 4. ROC convex hull analysis: Given different 
misclassification cost, the intersection of ROC convex hull 
and iso-cost line provides the optimal classifier minimizing 
the total class-dependent misclassification cost. 
 
independent sub-blocks, say Xk s for k= 1,2,      K . The 
model has unknown parameter γ which indicates the 
prevalence of each class. We let γ be the ratio of prior 
probability of positive class (class P) to that of negative 
class (class N). Then, given γ , the optimal classifier to 
minimize the ECM among all classifiers is the maximum a 
posteriori (MAP) classifier that assigns xk  to class N, for 
each , if 
               
           Fn (xk) / Fn (x k)  ≥  ( 1/α )                                      (19) 
where Fn(Xk) and  Fn(Xk)  is the probability density function 
of class N and class P, respectively. In GMM, both Fn(X) 
and Fp(X) are density functions of the GMM. Suppose we 
denote the classifier in (3) given γ as C(γ) , and their 
collection as F . We further find that this collection is 
invariant to the cost α. In other words, we always have same 
collection D regardless of what  α we choose. 
 
In practice, to find the optimal classifier, we set α  to be an 

arbitrary fixed number, and we consider the set of 
conditionally optimal classifiers which minimize the cost of 
misclassification given γ ≥ 0 . We let D be the set of their 
FPRs and TPRs in the ROC space. Following the steps in 
the previous section, we get D’and find the tangent point γ*  
and between the line (2) and  D’. 
 
Now, we move to the HMM-based segmenter. The HMM 
based segmenter assumes that the hidden process is from the 
Markov random field having two unknown parameters γ and 
β; the parameter γ is the parameter that represents the 
magnitude of magnetization of the random field which 
implies the dominance of class P against class N in common 
words; it is also related to the ratio of the prior probability of 
P to N;  β is the parameter to measure the strength of spatial 
coherence. For example, The HMGMM model uses the 
generalized bond percolation (BP)  model. Let  Z={Zij, (i,j) 
Є  i,j =  1,2,3,……n} with Z ij= -1 or 1: Z ij= 1 and Z ij= - 1 
implies the class P and  N, respectively. The generalized BP 
assumes that the probability Z is  
 
P(Z; α,β)=1/ψ(γ,β) exp { Zij log γ + ncon(Z) logβ + ndis  

 

(Z)log(1-β)                             (20) 
 

Where ncon(Z) (ndis(z) )  is the number of concordant (dis-
concordant) adjacent pairs which are neighbors to each 
other. Here, ψ (α,β) is the partition function that is 
 
  ∑n exp{∑Zij log γ + ncon(Z) logβ + ndis (Z) log(1-β)       (21) 
 
   As in the spatially uncorrelated model, we consider the 
collection F of  MAP classifier C(γ,β) , which, given γ and 
β, assigns the observed image X= {  xij, i ,j= 1,2,……,n}to 
Ž=arg max P(Z/x;γ,β). We let C(γ,β) be the MAP classifier, 
given γ and  β, and F be the collection of C(γ,β)s. We further 
define D and D’ similarly. To find the optimal classifier, 
again, we compute the tangential point between the line (2) 
and D’, the convex hull of D in the ROC space. 
  In HMM-based segmenter, evaluation of D is 
computationally quite intensive in practice. Here, we 
introduce a suboptimal but fast algorithm for it. Many 
algorithms are studied from deterministic annealing to 
simulate annealing to Markov chain Monte Carlo method to 
find the MAP. They often assume γ=0 and estimate β , the 
parameter of spatial coherence in finding the MAP. For 
example, in [11], the parameter β is estimated using the 
maximum likelihood estimate (MLE) along with the Gibbs 
sampler. The MLE is β�MLE = E{ncon(Z|X)/ total  number of 
edges}, and we approximate the right hand side of the 
equation using Monte Carlo method to get the estimate. 
   We let β�(γ) be the estimate of β given γ, and we 
approximate the boundary points of  D’ with FPRs and 
TPRs of  C(γ, β�(γ)) by moving . As stated before, knowing 
boundary  dD is sufficient to find the tangential point 
between iso-cost lines and  D. The approximated boundary, 
denoted by dD� , is a curve from  (0,0) to (1,1). Finally, 
dD� is approximated by the convex hull of  dD�, and the 
optimal classifier is found using the procedure in Section 2. 
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11. EXAMPLE 
 
In this section, we apply the procedure in Section 5 
tosegment the aerial image with HMM with generalized 
BW-GA model  in 6. The aerial image is composed of many 
sub-blocks which are classified into “natural” regions or 
“man-made” regions. We call the “natural” sub-block as 
“negative” and “man-made” one as “positive.” The 
HMMBWGA  model has two parameters  γ and β which 
reflects the overall portion of man-made and spatial 
coherence between adjacent sub-blocks, respectively. Each 
(γ, β) introduces a classifier, say C (γ ,β) ,and a point of 
(FPR, TPR) in the ROC space. We let be the collection of 
all these (FPR, TPR)s. 
 

 
 
Fig.5 R O C convex hull analysis 
 
 
 
 
In the experiment, we vary exp(γ)from 0.35 to 2.85 by 0.1, 
and we get the empirical FPRs and TPRs from the 
segmented results Z� . We then compute the convex hull of 
(FPR, TPR)s of C(γ,β�(γ))s to approximate the convex hull 
of D. We denote the convex envelope as dD’. Fig. 4  plots 
C(γ, β(γ))s and their convex envelope in the ROC space. 
 
We find the optimal classifier to minimize the 
misclassification cost (1) is the one that corresponds to the 
tangential point between the (2) and  dD’�. The dD’� is 
piecewise linear function with 11 supporting points (points 
that have changes in slope). Each point on is the optimal 
classifier to minimize the cost for a specific choice of  α. 
 
Now, we report some details of the analysis for ,α=0.5,1, 
and 2. First, Fig. 6 plots the misclassification cost of the 11 
supporting points for each α = 0.5 , 1, or 2. It confirms  that 
the chosen classifiers minimize the cost given α. Second, 
classifiers we consider, and   be the set of their random mix- 
tures. Then, is the smallest convex region which 
contains . The goal of this letter is to find the classifier 

which minimizes the cost (1) among classifiers in . Since 
and given different misclassification b   cost, the intersection 
of ROC convex hull and iso-cost line provides the optimal 
classifier minimizing time. the segmenter tends to classify 
both “natural” and “man-made” blocks to “man-made” ones. 
Finally, the original HMMBW-GA in [11] is the classifier 
with exp (γ) = 1 . Its FPR and TPR is 0.22 and 0.97, 
respectively, which is close to the (approximated) boundary 
of D’ . Some computation shows that the HMMBW-GA is  
close to the optimal for between 0.16 and 
 
 

 
 

Fig 6: Roc convex curve : Plot FPR & TPR for all 
choices of fixed  γ and its fixed β and its convex hull  

 The Baum-Welch algorithm gives you both the most likely 
hidden transition probabilities as well as the most likely set 
of emission probabilities given only the observed states of 
the model. The Baum-Welch algorithm is essentially the 
Expectation-Maximization algorithm applied to a HMM; as 
a strict EM-type algorithm you're guaranteed to converge to 
at least a local maximum, and so for unimodal problems find 
the MLE. It requires two passes over your data for each 
optimizes the Gaussian parameters considering as a fitness 
function the results of the classification application.  

  Results show the improvement of GA techniques for 
human activities recognition. algorithm that is based on the 
definition of the real observations as a mixture of two 
Gaussians for each state. The application of the GA follows 
the same principle but the optimization is carried out 
considering the classification. In this case, GA techniques 
for human activities recognition. 

 
12. EXPERIMENTAL STUDY 
 
The experimental study consist of using the HMM model 
parameter resulting from both B-W and hybrid GA-BW 
training systems, to classify a set of unknown image 
utterances. The image database  used in the study comes 
with MixtGaussian toolbox download file, the training data 
contains digits from 1 to 15, each digit is repeated by 15 
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speakers, and the testing data contains the same digit 
repeated by 10 speakers. The recognition software is 
implemented in the MixtGaussian toolbox to. This test is 
repeated ten times as it is shown in table. 
 
 
Training 
technique 

1 2 3 4 5 6 7 8 9 10 

BW 68 76 76 72 68 76 68 84 72 64 
GA-BW 76 64 88 72 84 76 72 80 76 72 

 
Table 1: Recognition rate for both BW and GA-BW within 
10 experiments 
 
From the results of table 1 it is difficult to statute about the 
quality of B-W and GA-BW algorithms in term of 
recognition rate. However it is clear from results from table2 
that GA-BW algorithm performs better than the classical B-
W algorithm. We believe that this improvement is due to 
global searching ability of GA . In the near future it will be 
used in continuous satellite aerial image classification. 
 
 

Training 
Technique 

Minimum Maximum Average 

BW 64% 84% 72.67% 

GA-BW 64% 88% 76% 

 

Table 2: Minimum Maximum & Average of recognition rate 
for both BW & GA-BW 

CONCLUSION 

The user can get a better image about the arial image and 
also tumour cells and location exactly and not randomly .A 
Hidden Markov Model (HMM) is used as an efficient and  
robust technique for human activities classification. The 
HMM evaluates a set of image recordings to classify each 
scene as a function of the future, actual and previous scenes. 
The probabilities of transition between states of the HMM 
and the observation model should be adjusted in order to 
obtain a correct classification. In this work, these matrixes 
are estimated using the well known Baum-Welch algorithm 
that is based on the definition of the real observations as a 
mixture of two Gaussians for each state. However, the  B-
W  algorithm  uses an  initial  random  guess  of  the  
parameters,  therefore  after convergence the output tends  to 
be close to this  initial value of the algorithm,  which  is  not 
necessarily  the  global  optimum  of the model  parameters.  
In this project, a Adaptive Baum-Welch (GA-BW) is 
proposed. The application of the GA follows the same 
principle but the optimization is carried out considering the 
classification. In this case, GA techniques for image 
activities recognition.  Under the same conditions the hybrid 
GA-BW algorithm performs better than Baum-Welch 
method. We believe that this improvement is due to global 

searching ability of GA . In the near future it will be used in 
continuous satellite aerial image classification. 
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