
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

571

Co-operative Scheduled Energy Aware Load-Balancing

technique for an Efficient Computational Cloud

T.R.V. Anandharajan1, Dr. M.A. Bhagyaveni2

 1 Research Scholar, Department of Electronics and Communication, Anna University, College of Engineering
Chennai – 600 025, Tamilnadu, India

2 Asst. Professor, Department of Electronics and Communication, Anna University, College of Engineering
Chennai – 600 025, Tamilnadu, India

Abstract

Cloud Computing in the recent years has been taking its
evolution from the scientific to the non scientific and
commercial applications. Power consumption and Load
balancing are very important and complex problem in
computational Cloud. A computational Cloud differs from
traditional high-performance computing systems in the
heterogeneity of the computing nodes, as well as the
communication links that connect the different nodes together.
Load Balancing is a very important component in the
commodity services based cloud computing. There is a need to
develop algorithms that can capture this complexity yet can be
easily implemented and used to solve a wide range of load-
balancing scenarios in a Data and Computing intensive
applications. In this paper, we propose to find the best
EFFICIENT cloud resource by Co-operative Power aware
Scheduled Load Balancing solution to the Cloud load-
balancing problem. The algorithm developed combines the
inherent efficiency of the centralized approach, energy efficient
and the fault-tolerant nature of the distributed environment like
Cloud.
Keywords: Cloud Computing, Load Balancing, Green
computing, Boundary scheduling approach.

1. Introduction

Cloud Computing is a computing model, where
resources such as computing power, storage, network
and software are abstracted and provided as services on
the Internet in a distributed environment. Billing models
for these services are generally similar to the ones
adopted for public utilities.
 On-demand availability, ease of provisioning,
dynamic and virtually infinite scalability are some of the
key attributes of cloud computing.
 An infrastructure setup using the Cloud

Computing model is generally referred to as the “Cloud”.
The following are the broad categories of services
available on the Cloud [8]:

• Infrastructure as a Service (IaaS)
• Platform as a Service (PaaS)
• Software as a Service (SaaS)

 This Cloud is generally available as a service to
anyone on the Internet. However, a variant called
“Private Cloud” is increasingly becoming popular for
private infrastructure that has some of the attributes of
the Cloud as mentioned above.
 Amazon Web Services (AWS) is one of the
major players providing IaaS. They have two popular
services – Elastic Compute Cloud (EC2) and Simple
Storage Service (S3). These services are available
through web services. The client tools can use EC2 and
S3 APIs to communicate with these services. The
popularity of these APIs has encouraged other Cloud
products to provide support for them as well.
 Using the Cloud Computing paradigm, a host of
companies promise to make huge compute resources
available to users on a pay-as-you-go basis. These
resources can be configured on-the-fly to provide the
hardware and operating system of choice to the customer
on a large scale. Given the current infrastructure
bandwidth and topologies utilized in these commercial
offerings, however, the only current feasible market
would be small energy and memory foot-marks
embarrassingly parallel or loosely coupled applications,
which inherently require little to no inter-processor
communication. While providing the infrastructure
(bandwidth, latency, memory, etc.) the numbers of

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

572

physical resources, the resources are distributed and
shared among many users, and the resources may be
heterogeneous and highly active. Advanced resource
monitoring, analysis, and configuration tools can help
address these issues, since they bring the ability to
efficiently and dynamically provide and respond to
information and communication about the platform and
application state and would enable more appropriate,
efficient, and flexible use of the resources. Additionally
such tools could also be of benefit to cloud providers,
users, and applications by providing more efficient
resource deployment in general.

2. Preliminaries

Cloud and other distributed systems rely on bulk
processing and in turn run lot of discrepancies in the
implementation. Bulk processing parallel programs have
the property that the problem can be divided into sub
problems or jobs, each of which can be solved or
executed in roughly the same way. Each run consists of I
iterations of P jobs, which are distributed on P
processors: each processor receives one job per iteration.
The processor receives a job, and the IT is equal to the
maximum of the individual job times plus the
synchronization time. In this section, we briefly discuss
the two main methods to cope with the dynamics of our
Cloud environment: DS and EA.

2.1 Dynamic Scheduling

Dynamic Scheduling deals with the scheduling of the
Cloud jobs from the sensors located globally and
available on the internet. Cloud Computing shares its
major base on the Internet. HTTP protocol our protocol
here. Computational Cloud is the paradigm where we are
going to show our focus Dynamic Scheduling starts with
the execution of an iteration of the jobs from a Cloud
User 'CN '. However, at the end of each iteration, the
processors predict their memory and the processing time
for the next iteration. We select one processor to be the
DS scheduler. After every N iteration, the processors
send their prediction to this scheduler. Subsequently, this
scheduler calculates the various job required parameters
suitable for the resource to process the job and schedules
the load distribution given those predictions and sends
relevant information to each Cloud client. The load
distribution is optimal when all cloud resource finish
their execution exactly at the same time. Finally, all
resources redistribute the load. The effectiveness of DS
partly relies on the dividing possibilities of the job. We
introduce the concept of a method that selects and
matches jobs to the cloud resources. To this end, it

measures and defines a threshold Z during the run. After
each iteration, the method gives a preference for a given
type of implementation, based on a comparison of Z with
the threshold value Z. In this method, the processor that
redistributes the load in DS. The steps to be taken are the
same as in the DS phase:

1) The cloud resource send their
prediction to the scheduler,

2) The cloud scheduler computes the load
distribution, and

3) The scheduler informs redistribution of
load.
 At the end of each iteration, the processors
predict their processing speed for the next iteration. Our
proposed algorithm takes threshold value into account
and the load is bounded accordingly.

3. Dynamically Scheduled Load balancing
algorithm using Boundary Value

The load balancing algorithm is done before it reaches
the processing servers the job is scheduled based on
various parameters and scheduled through a scheduler
which implements the load balancing algorithm. The job
will then be scheduled to the processing severs and the
processed jobs will be sent to the Client interface for the
knowledge of the data processed.

Fig. 1 Cloud Scheduling Architecture.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

573

Many cloud vendors like Amazon EC2 instance can
handle at most 400 Mbps combined ingress and egress
traffic. For some application Google App Engine is only
able to handle 10 Mbps in/out or less traffic because of
its quota mechanism. HTTP protocol can instruct the
client to send the request to another location instead of
returning the requested page. Hence a front-end server
can load balance traffic to a number of back-end servers.
 A standard way to scale web applications is by
using a hardware-based load balancer [3]. The load
balancer assumes the IP address of the web application,
so all communication with the web application hits the
load balancer first. The load balancer is connected to one
or more identical web servers in the back-end.
Depending on the user session and the load on each web
server, the load balancer forwards packets to different
web servers for processing.
 In this paper, LB algorithm is proposed which
performs the job to resource matching in the dynamically
varying Cloud environment. The job information is
placed in the job pool and the resource information is
placed in the resource pool. In the job pool, the job
information such as job id, required free memory,
required CPU speed, required node count and execution
time of job is present. Similarly in the resource pool, the
resource and topology related information such as
resource id, available free memory, CPU speed, delay to
reach the resource, number of hop count to reach the
resource and the number of task remaining in resource or
cluster queue are present. First this LB algorithm
calculates the total load of the resource C by adding all
the resource load information at time T as follows,

 N21TN C++C+C=C (1)

where C1, C2, …, CN are the Cloud heterogeneous
resources in the Computational Cloud Environment.
Then we compute the mean of Cloud resource MCN by

taking the ratio of the ∑ CTN to the total number of
resource available 'C'.

 MCN = TNC / C (2)

Then set the upper and lower boundary by using the
equation and the parameter X. The Maximum and
Minimum value of the of the resource C is expressed as,

 CαX =MCN +X (3)

CαY =M CN− X

 (4)

where X is the Boundary value.

 Resource which has the load greater then
CαX is said to be overloaded and the resource which

have the load lesser then CαY is said to least loaded by
exploiting equation. A resource is Bearable load then

resource load is in the state between CαX and CαY .
Suppose, if the load information exceeds the boundary
value, then the load balancing policies such as selection,
information and location policy are considered to
migrate the job to other resources which are below the
boundary value. If the resource is overloaded then we
find the
 The Dynamic Scheduling (DS) algorithm using
Boundary Value approach is as shown in Algorithm 1.

Algorithm 1

Dynamic Scheduling using boundary value approach

Algorithm LoadBalancing;
begin
 get information of all Cloud resource
 set the boundary value of the resource as Z

 if (ξC L <Z) then
 set CN as minimum load resource Cmin

 else if (ξC L >Z) then
 set CN as maximum load resource Cmax

 else
 set CN as moderate load resource Cbearable ;

 for (all the resources) do

 if (the load ξC L of the resource CN = Cmax) then
 node is overloaded
 select (node)

 else if (the load ξC L of the resource CN = Cmin) then
 node is least loaded
 get the job for execution
 else
 resource is moderately load
 no need for job selection here
end;

This algorithm will get the resource load

information from the Cloud Resources, which is present

in the scheduler. First this DS algorithm assigns ξC L ,
is the estimated load of Cloud Resource C. If the load
ξC L of the resource CN falls below the Threshold load

Z, then the resource load is assigned as,

 CMIN = CN (5)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

574

Suppose, if the load ξC L of the resource CN is greater
than the threshold load Z, then the resource load is
assigned as,

 CMAX = CN (6)

In case, if the load ξC L of the resource CN is equal to
the Threshold load Z, then the resource load is assigned
as,

 Cbearable = CN, (7)

where ξC L denotes the load of the resource CN.
 Using equations identify the overloaded
resource and then finally use load balancing policies
such as selection, information and location policy to
migrate the job to other least loaded resources which are
below the Boundary value. If the resource is overloaded
means Job Selection (JS) algorithm is used which works
as shown.

Job Selection (JS) algorithm

Procedure select (node);
begin
 for (all the overloaded resource)

 while (C Max)
 find one job from resource queue and
 compute the completion time of job FCN in
each
 resource.
 for (all least loaded resource)
 choose the best resource *CN having minimum
 completion time of job
 then migrate the job to the resource
end;

 In some cases, the completion time of the job
get doubled when it is migrated to the remote resource.
So in-order to provide the better solution to load
balancing, it is necessary to estimate the Finish time or
Completion time of the job in remote resource before it
is being migrated to the remote location. The Completion
Time of Job (F) in each least loaded resource is
calculated as follows,

 FC N =JT+FW (8)

where the FCN represents the completion time of job JN
at the resource CN, JT denotes the latency of the job JN to
reach the resource CN and FW denotes the completion
time of waiting job at resource CN.
 In the Job Selection algorithm for each job in
the overloaded resource, it calculates the completion
time of job in the remote resource and chooses the

resource having minimum completion time as the best
resource for job transfer to the Cloud resource. Here
choosing the best resource for JN is expressed as follows,

 NNN1N FC,,FCminof=C* (9)

where *CN represent the appropriate Cloud resource

for migrating job JN. Where the FCN represents the
completion time of job JN at the resource C1 ,C2 ,.., CN.
Once the Job Selection algorithm is executed
successfully, we can realise the load balancing and also
the work load can be distributed among all the Cloud
resources. As a result of load balancing and job
selection, waiting time and latency of the job is reduced,
and increases the overall performance of the Cloud
resource. Since Cloud Computing deals with the various
on-the-fly adaptations of servers and processors
available at that point of time that a client access with his
set of jobs.

4. Energy Aware balancing using
ErfDVS

Energy is the integral over time in power [2]. Energy
consumption depends on the power potentially available
in a device and since the resources in the cloud are all
commodity based and needs to analyze the available
power and use the energy to the maximum possible.
Speed is cube root of Power and hence we need to scale
speed in order to find the energy and a good energy
aware scheduling can be done. Normally the processors
run at their maximum frequency and they need to be
scaled for a distributed application like a cloud
environment.
 Energy consumption can be reduced by
reducing the supply voltage and it depends on the
devices status and in a standby position the device
consumes less power and our approach will first find the
least loaded processor and the find the power consumed
and in turn will give us the EFFICIENT cloud resource
available. By varying the frequency of operation we can
reduce the power consumption. We take the RAM
frequency of operation into account ERfDVS (estimated
ram frequency dynamic voltage scaling) since we are
going to deal with the thin clients and the processor as a
commodity in Cloud environment. According to the
model in [7], total CPU power changes only when a job
begins or ends its execution. The energy is equal to the
product of total CPU power during the interval between
the previous begin or end event and the current one and
the interval duration Ii:

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

575

ii TP=Energy (10)

where i = 1 to 2 * Tot Jobs – 1 and

 idleframidleframframframi PN+PN=P (11)

where I = 1 to n

n is the number of frequencies available in the used

frequency set. P fram is sum of dynamic and static
components of CPU ram power running at the fth

supported frequency. Pidlefram can have two values as

we already described. N fram and N idlefram are
numbers of processors running at the fth supported
frequency and idling, respectively.

5. Experimental analysis and performance
evaluation

In the result phase the main focus is to show the result,
as the proposed Load Balancer performs well, when
comparing to the Normal Load Balancer by considering
all the challenging issues. We have simulated the result
by exploiting ten resources and hundreds of jobs. The
simulated values from parallel performance loads and the
parameters for resource and job are taken for simulated
cloud environment [5],[6]. The load is calculated by the
arrival and service rate are calculated and is scheduled
based on the load and scheduled by our load balancer.

Fig. 2

Fig. 3

Fig. 4

Fig. 5

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

576

6. Conclusion and future work

Our proposed Dynamic Scheduled Load Balancer model
(DS) in the scheduler is developed with all the features.
The result obtained with performance evaluation, can
balance the load, decreases the elapse time and increase
the utilization of the Cloud resource, which are idle or
least loaded. So the obtained result shows the proposed
Load Balancing algorithms perform better than normal
Load balancer with respect to delay and load. The
analysis is shown in the figure 2, 3, 4 and 5. These
analysis shows that cloud computing environment can
help in analyzing loads in various heterogeneous loads
and the efficiency of the cloud resource can be harvested
based on these analysis.
 Our future work would be in working towards
load balancing and Job Selection for the available
appropriate Cloud resource between the scheduler in the
real Cloud environment which is highly dynamic and
distributed in nature, with everything available as a
service it is very important for going for an appropriate
Cloud resource which can offer the best Quality of
Service for Cloud Customer at last it is the Customer
Satisfaction which can lead a Good Technology as Cloud
Computing.

References

[1] Menno Dobber, Rob van der Mei, and Ger Koole “Dynamic
 Load Balancing and Job Replication in a Global-Scale Grid
 Environment: A Comparison” IEEE TRANSACTIONS ON
 PARALLEL AND DISTRIBUTED SYSTEMS, vol. 20, no.2,
 pp 207, Feb 2009.
[2] Encyclopedia of algorithms, Springer.
[3] F5 Networks. http://www.f5.com.
[4] Samee Ullah Khan, Ishfaq Ahmad, “A Cooperative Game
 Theoretical Technique for Joint Optimization of Energy
 Consumption and Response Time in Computational Grids”
 IEEE TRANSACTIONS ON PARALLEL AND
 DISTRIBUTED SYSTEMS, vol. 20, no. 3, pp 346,
 Mar 2009.
[5] D.Feitelson, Parallel workloads
 http://www.cs.huji.ac.il/labs/parallel/workload.
[6] U.S. Department of Energy, US Energy Information
 Administration (EIA) report,
 www.eia.doe.gov/cneaf/electricity/epm/table5 6 a.html.
[7] C. Hsing Hsu and W. Chun Feng. A power-aware run-time
 system for high-performance computing. Sc, 0:1, 2005.
[8] http://en.wikipedia.org/wiki/Cloud_computing.

Anandharajan TRV received his B.E. degree in Electronics and
Communication Engineering from Anna University, Chennai,
India in 2005 and M.E. degree in Applied Electronics from Anna
University, Chennai, India in 2007. His current area of research
is cloud computing and green IT. His current area of interest
includes communication systems, operating systems and

distributed computing. He is a Life member Computer Society of
India, student member in IEEE and member in IACSIT and
IAENG.

Dr. M.A. Bhagyaveni received her B.E. degree in Electronics
and Communication Engineering from GCT, Coimbatore, India in
1997 and M.E. degree in Optical Communication from CEG,
Gunidy, India in 1999 and Ph.D. degree from CEG, Guindy, India
in 2006. She is currently working as Assistant Professor in the
Department of Electronics and Communication Engineering,
CEG Campus, Anna University, Chennai, India. Her present
research interests include Wireless communication, Digital
communication, MIMO systems, Ad hoc networks, Sensor
networks, Cloud computing, Cognitive radio technologies. She
has published more than 20 papers in National/International
Conferences and Journals. She is a member of IEEE and
several international association bodies.

