
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

565

Refactoring, Way for Software Maintenance

Madhulika Arora1, Dr. S. S. Sarangdevot 2, Vikram Singh Rathore3, Jitendra Deegwal4, and Sonia Arora5

1 PhD Scholar,Gyan Vihar University,

 Jaipur (Raj)302025, INDIA

2 Director of IT & CS
Department, Janardan Rai Nagar Rajasthan Vidyapeeth University,

 Udaipur (Raj)331401, INDIA

3 PhD Scolar, University of Rajasthan,
Jaipur (Raj)302004, INDIA

4 PhD Scholar, Gyan Vihar University,
Jaipur (Raj)302025, INDIA

5 Lecturer, Phonics Engineering College
 Imlikehra Rorkee, Uttrakhand- 247667 INDIA

Abstract
Now days, most object-oriented software systems are
developed using an evolutionary process model. In
evolutionary development lifecycle, it needs to change
from time to time. An important kind of change to object-
oriented software is Refactoring. The motive of refactoring
is to improve the quality of the software system, such as its
understandability, extensibility and maintainability, without
affecting its overall functionality and behavior.
Keywords: Refactoring, Software Maintenance, Eclipse,
Quality of Software.

1. Introduction

Quality of Software can be improved by Good
modularity. It facilitates extensibility and evolution,
independent development of components, improves
comprehensibility, eases verification. The value of
modularity is even quantifiable. Developing software
requires working with a number of concerns, or
considerations a developer might have about the
implementation of a software system. If any software
is enriched with good modularity, each concern is
implemented in only one module, and each module
implements only a small number of concerns. This
type of structure helps the developer manage
complexity. To deal with any one concern they only
have to look at one module, and to understand any
one module they only have to think about a small
number of concerns.

Any useful software system requires constant
evolution and change. Often those changes require
that the software be re-modularized, so that the
system becomes easier to understand, extend, or
maintain. For this type of need, researchers and
developers have developed the practice of
refactoring. As described in, refactoring are
parameterized transformations of a system’s source
code intended to improve a system’s structure with
regards to informally expressed goals, such as
maintainability, changeability, readability,
performance, or memory demands. Traditional
refactoring are generally behavior preserving.
Modern software development environments include
built-in support for semi-automated refactoring.
Because of this beneficial impact to software design,
some modern integrated development environments
(IDEs), such as Refactoring Browser and Eclipse,
provide semiautomatic support for applying the most
commonly used, low-level refactoring, such as for
example “Rename Field” and “Move Method”.
Refactoring support within IDEs has made it less
cumbersome and expensive to improve code quality.
Refactoring activities are more challenging when we
talk about reuse-based development. Software reuse
simplifies the design of new systems but, at the same
time, their design and implementation heavily
depends on the components they reuse. If the
application developer wants to refactor the
application code, their activity has to be limited to
changing the internal implementation of the

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

566

application elements. At the same time, the
developers of the reusable components should limit
themselves to extending the components’ application
programming interface (API) and should not remove
or change existing parts of the API, or else they may
cause the client applications to fail.
As the underlying component framework is adopted,
the cost of breaking client code becomes higher,
which is why components developers often have to
refrain from making changes that might improve the
quality of the components. The potential challenges
that refactoring may bring about in the context of
reuse-based development gives rise to the need for
understanding how this activity is actually practiced.
Unfortunately, little work has been done on
investigating what fraction of changes over the
lifecycle of object-oriented software system are
refactoring and of what type. This may be because
there has been no substantial tool support for
detecting and classifying structural evolution which
is coming from refactoring and, more often than not,
available documentation, change logs and release
notes, reports only a subset of the actual changes.
Thus, several important questions remain
unanswered:

o What type of support should modern IDEs
provide and how might this support be
implemented?

o What proportion of the structural changes in
the evolution of a system are the results of
refactoring?

o What are the typical refactoring applied in
practice?

o What aspects of a system’s structural
evolution can be automatically gathered?

o Which of these types are “safe” to client
applications that reuse the refactored
system?

In this paper, we describe a detailed case study we
conducted on the structural evolution of Eclipse.
Eclipse is a large-scale industrial framework that has
been under development for about four years. In the
process, it has acquired a large user base and a
multitude of applications have been built on it.
Eclipse is built as a plugin-based framework. Its users
can simply use it as an IDE, but they can also extend
or build their own plugins from the existing ones.
Since version 3.0, Eclipse introduced a concept of a
rich client platform, which allows its users to build
stand-alone applications from a subset of plugins.
Therefore, studying the structural evolution of
Eclipse can help us understand the design
requirements for refactoring-based development
environment from the perspectives of both the
component developers and component users.

2. Related Work
Griswold and Opdyke officially introduced the term
refactoring virtually at the same time. Their work
provides the theoretical basis for automated
refactoring realized in many refactoring tools, most
particularly the Smalltalk Refactoring Browser.
Contemporary IDEs, such as Eclipse, typically offer
some forms of refactoring support. Fowler
popularized refactoring by providing a catalogue of
refactoring.
As the main concentration is object oriented
programming now a days so most refactoring
research has targeted low-level program
transformations in functional and object-oriented
systems. Refactoring has recently become an integral
part of the evolutionary software development
methodology, such as “Extreme Programming”. The
books of Fowler and Kerievsky present a good
general idea of the refactoring and how they can be
used to carry out architectural and design changes.
Opdyke’s Ph.D. thesis catalogs a number of
refactoring, and lists a set of invariants that a
refactoring must conform in order to be behavior-
preserving, such as “type-safe assignments”. In this
paper, we illustrate our empirical study on the
structural evolution of a large software project and
summarize what the fraction of changes are behavior-
preserving program transformations.
There has been some work at investigating the
detection of refactoring. Demeyer et al define four
heuristics based on the comparison of source-code
metrics of two subsequent system snapshots to
identify refactoring of three general categories.
Rysselberghe investigated the use of clone-detection
to identify move and renaming refactoring. Godfrey
and Zou use origin analysis to detect the merging and
splitting of source-code entities. The empirical study
we conducted relies on a novel structural differencing
algorithm, that enables the identification of a rich set
of elementary structural changes and fairly complex
refactoring, which provides a firm base for us to
study the structural evolution of a large object-
oriented software project at fine-grained level.
 Modern IDEs, such as Eclipse, offer automated
support for most commonly used refactoring, such as
rename or move. In this paper, we compare the
refactoring that were in reality performed in the
development of the object-oriented software system
with those supported by IDEs, and extract that
modern IDEs do not supply automated support for all
frequently used refactoring, especially high-level
refactoring, such as for example inheritance-
hierarchy reorganizations, that involve a set of
relevant program entities.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

567

Refactoring the reused components is often limited
by the fear of breaking client code. When the
breaking API changes happen, the developers of
component-based applications take the burden of
migrating their codes to the new version of reused
components.
The results of our study confirm the usefulness of
such migration tool support in the refactoring-based
development environment beside the limitations of
current tool support, especially the lack of support for
high-level refactoring. Dig and Johnson also
conducted a similar empirical study on the role of
refactoring in API migration. Both their study and
ours found similar results. Their analysis relies on the
changes documented in the release notes shipped
with software systems. Our analysis is based on the
structural changes, which reports changes in much
more detail than what is covered in the
documentation. This enables us to understand the
actual refactoring practice and draw out some high-
level design requirements for refactoring-based
development environments.

3. Eclipse
There are numerous reasons why we choose Eclipse
as the subject for our case study. First, the system has
been undergoing substantial evolution in the past
three years and we were interested to see how much
of this evolution involves refactoring. This was an
especially interesting question; given the fact the
Eclipse is an IDE that supports refactoring. Second, it
is well documented, especially the major releases on
which we have focused, and that enables us to better
assess the correctness of our refactoring extraction
method. Third, the system is a platform on which
multiple applications have been developed and this
gives us the opportunity to study the possible impact
of refactoring of reusable frameworks to their
applications.
Eclipse consists of three subprojects and in this case
study, we have focused on the JDT subproject, which
defines about 40% of the classes and interfaces of the
whole Eclipse platform. There is substantial increase
in the number of program entities and relations
between the pairs of versions we examined as
opposed to small changes in the in-between versions
that we excluded from our case study. This is
additional evidence that Eclipse, most likely,
underwent many changes when evolving from
previous versions to these major releases.

4. Types of Refactoring
Refactoring, which can be viewed as series of
elementary structural changes to a set of related
entities, should be performed one step at a time,
Fowler shows how a series of “small” refactoring can
lead to the “big” changes, such as the introduction of
design pattern. By looking at a set of changes as a
coherent whole, we may gain a better understanding
of the design evolution of a software system and the
refactoring it has suffered, and consequently be in a
better position to assess the state-of-the-art in tool
support for the practice.
The refactoring support that Eclipse provides
representative of the state-of-the-art today. We
reviewed the currently available refactoring tools and
IDEs (www.refactoring.com/tools.html) and Eclipse
supports a superset of the refactoring.
4.1. CONTAINMENT-HIERARCHY

REFACTORING
Projects are organized in terms of subsystems,
packages, and reference types; such organization
makes the dependencies among the various
components explicit and makes it easier to identify
the use of a component by its implied container. The
developers often restructure the containment
hierarchy at different levels.
The Eclipse plugins contribute different features to
the platform. A new plugin may be introduced as the
appropriate placeholder for features that were
originally placed in other plugins. In version 3.0,
three new plugins, jdt.junit.runtime,
ltk.core.refactoring and ltk.ui.refactoring, were split
from two existing plugins, jdt.junit and jdt.ui (the
“core refactoring” and “ui refactoring” folders)
respectively; several packages were either moved or
extracted into the new plugins.
Classes can be grouped into Package, depending on
their behavioral dependencies. When a package has
too many classes to be easily understandable and is
not cohesive because these classes are responsible for
very different features, a new package may be
extracted to hold some important groups of classes.
For example,
org.eclipse.jdt.internal.ui.refactoring.reorg was
extracted from org.eclipse.jdt.internal.ui.refactoring
in the same plugin, and
org.eclipse.jdt.internal.formatter.comment in jdt.core
was extracted from
org.eclipse.jdt.internal.ui.text.comment in the jdt.ui
plugin.
Other times, a package is removed and its contents
may be inlined to other package(s). For example,
three classes of the removed package
org.eclipse.jdt.internal.corext.template were inlined

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

568

to org.eclipse.jdt.internal.corext.template.java
package.
Java classes and interfaces can define their own
nested types.
Sometimes, the top-level types may be converted to
nested type of a particular class in order to group
together the relevant classes and make the
dependencies among them clear. On the other hand,
nested types may be converted to top-level so that
they are available to other classes. In Java,
anonymous classes are widely used to avoid creating
a bunch of simple subclasses or implementations of
interfaces.
However, when the anonymous classes grow so large
that the code becomes difficult to read or maintain,
they may be converted to nested type.
All these changes can be accomplished by various
types of refactoring: convert anonymous class to
nested, convert nested (top-level) type to top-level
(nested), move member class, and extract or inline
package. Three of them are supported in modern
IDEs, such as Eclipse, while the other three are not
explicitly supported.
4.2. INHERITANCE - HIERARCHY

REFACTORING
Programming to interfaces and not to
implementations is an important tenet of object-
oriented development. When the client is
implemented to be agnostic of the internal
implementation of the server class, assuming only the
specification of its public behavior interface, the
server retains the flexibility to evolve. As long as the
public interface remains the same, modifications to
its implementation will not break its clients. A
consequence of the programming-to-interfaces
principle is the “Extract Interface” refactoring. For
example, in version 3.1, a new interface
IChangeAdder was introduced for class
JUnitRenameParticipant and its two subclasses
ProjectRenameParticipant and
TypeRenameParticipant.
When two (or more) classes carve up a substantial
part of their behaviors, their common features may be
extracted to a superclass.
For example, in version 3.1, a superclass
HierarchyRefactoring was extracted (involving 57
field and method pull-ups) from PullUpRefactoring
and PushDownRefactoring. When a class defines
features that are only applicable in some cases, a
subclass may be extracted for that subset of features.
For example, a subclass Import- MatchLocatorParser
was extracted from MatchLocatorParser, which holds
two methods that are used only for compilation unit.
Collapsing hierarchies is another important
refactoring that deals with generalization. When a

superclass does not deliver much functionality or a
subclass is not that different from its superclass, the
two may be merged. For example, in version 2.1, the
superclass BufWriter was inlined into subclass
VerboseWriter; in version 3.0, three subclasses
MemberTypeDeclaration, LocalTypeDeclaration, and
AnonymousLocalTypeDeclaration were inlined into
their superclass
TypeDeclartion.
Finally, within the inheritance hierarchy, common
fields and methods of subclasses were pulled up to
the superclass, while the fields and methods that were
only applicable to some subclasses were pushed
down to them.
4.3. CLASS-RELATIONSHIP REFACTORING
Object-oriented systems are basically designed
around classes that model abstractions of real-world
entities and/or encapsulations of a coherent set of
behaviors. Classes work together with each other to
deliver the application functionalities.
In Java, interfaces are used to define static final
constants; the classes may apply them to access the
constants or access them in the static way. For
example, in version 2.0, class JavaPartitionScanner
and FastJavaPartitionScanner used to define four
same constants, which were extracted to a new
interface IJavaPartitions implemented by the two
classes in subsequent release 2.1. This refactoring
also removed the repetition. When the constants are
only used by a single class and its subclasses, the
interface may be inlined. For example, in version 3.1,
the constant interface BindingIds was detached and
the constants it defined were inlined to the class
Binding.
Complex classes are sometimes inconsistent because
they are liable for delivering many responsibilities.
Such classes should be simplified by extracting some
of their features into other classes, created for exactly
that purpose. The simplified class can then pass on to
the newly created class to deliver its responsibilities.
For example, in version 3.0, a new class
DeltaProcessingState was extracted from
DeltaProcessor; DeltaProcessor newly declared a
field of type DeltaProcessingState, to which it
delegates the maintenance of the global state of delta
processing.
Another frequent case involves the extraction of
helper or utility class. For example, the helper class
RefactoringExecutionStarter was extracted from
ReorgMoveAction in version 3.1.
When a class does not have many responsibilities, its
features may be inlined. For example, class
ReferenceScopeFactory that used to define a single
public method creating an instance of
IJavaSearchScope was inlined to
JavaSearchScopeFactory in version 3.1. Sometimes,

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

569

the helper class may be inlined to the class depending
on it. For example, SuperReferenceFinder was
inlined into PullUpRefactoring.
Developers often introduce new entities before they
realize that similar features already exist. In such
cases, the inline-class refactoring can be used to
remove duplication. For example, in version 2.1.3,
there were three Util classes scattered in three
packages; in version 3.0, they were inlined into a
single Util class.
4.4. INTERNAL CLASS REFACTORING
Eclipse supports various types of refactoring that
rearrange the code within a class, including,
generalize type, introduce factory, change method
signature, and extract or inline method. We identified
a large number of such refactoring in Eclipse’s
evolution history.
However, Eclipse does not support the refactoring of
information hiding, downcast type, introduce
parameter object, which also often being applied.
On the other hand, Eclipse supports several
refactoring that change the code within a method,
such as extract local variable, extract constant,
convert local variable to field.
Eclipse is basically built as a plugin-based
framework. It is an IDE as well as a software
development kit. The developers can easily build
their own plugins by extending the existing ones and
then integrate them into Eclipse. About 70% of
structural changes can be expressed in terms of
refactoring from the perspective of the Eclipse
framework developers, as we discussed in last
section. To them, a refactoring, such as move
method, affects only the structure of the software and
not its behavior. However, it is simply impossible for
Eclipse developer to update all the third-party plugins
built on it when they refactor the code. Thus, to third-
party plugin (framework-based application)
developers, such a refactoring may be a breaking
change, which indicates that they have to migrate
their code to the new version of Eclipse; such
migration is often perceived as disturbing.
About 60% of structural changes that can be
expressed in terms of refactoring, the references to
the affected entities in client applications can be
automatically updated, if the relevant information of
the refactored components can be gathered through
the refactoring engine. This means that a refactoring-
based development environment can benefit a lot
from refactoring-migration tools, such as CatchUp .
However, the refactoring that CatchUp can record
and replay are only renamings and moves. These
account for about 70% of the tedious updating tasks
that may be handled automatically for applications
that use the refactored components. However, there
exist several other frequently used low-level

refactoring, such as “information hiding”, “downcast
type”, which CatchUp do not support. Furthermore,
the current refactoring-migration tools are unaware of
the impact of higher-level refactoring, such as
inheritance- hierarchy refactoring.

5. Support is still missing for
higher-level refactoring

Modern IDEs, such as Eclipse, support the most
commonly used, low-level refactoring, including
renaming, move generalize type.
But they do not support “downcast type” and
“information hiding” refactoring, which our case
study shows are also frequently applied.
Especially for the “information hiding” changes, we
found out (see section 5.1.4) that a class may have
several members to hide; manually hiding all of them
could be error-prone.
Eclipse supports moving static fields and methods to
a specified type, but it treats moving instance fields
simply as a textual move and the references to the
moved instance fields will not be updated.
Furthermore, Eclipse only supports moving instance
methods to types of its parameters or types of fields
declared in the same class as the method. The Eclipse
“pull up” and “push down” refactoring support
moving instant fields and methods to their direct
superclass or subclass. However, in our case study,
instance fields and methods may be moved to any
type, which may or may not be directly related to
their current declaring class.
Eclipse supports some of the “bigger” refactoring,
but it lacks support for the refactoring of the
containment and inheritance hierarchies and general
class relationships.
Although one may still achieve the same results by
applying a set of small, primitive refactoring, we
believe that, by combining the relevant low-level
changes into composite high-level refactoring, it
becomes more efficient to convey and implement the
specific intent of the change. Suppose, for example,
that we want to extract a helper class C that contains
an instance method M declared in D.
With current tool support, the developer may perform
the following activities: create a new class C; declare
a new field F of C in class D; move M to C and then
remove the field F. It seems that copy and paste
would be an easier solution. However, as summarized
in, about 22% of the copies the developer leaves off-
screen references unchanged or only copies part of
the code being distributed within several files.
Based on our findings of the refactoring actually
applied to Eclipse throughout its evolution history, an
effective refactoring tool should support the

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

570

following (in addition to what are commonly
supported in current IDEs):

 information hiding refactoring, such as “hide
a group of method in a class”,

 more flexible move of instance field and
method in terms of object-oriented entity
instead of simply text;

 a refactoring user interface to collect the
information about more complex refactoring
tasks, such as those refactoring inheritance-
hierarchy.

6. Conclusions
Refactoring is an activity crucial for evolutionary-
development processes. The basic idea is that the
design can become more cohesive, less coupled and
therefore easier to read and maintain through local
code restructurings. Several IDEs support some types
of refactoring, usually the simpler ones and there has
been some initial research as to how API-breaking
refactoring can be migrated to client applications.
The objective of our case study has been to (a)
examine the actual refactoring practice in the context
of a realistic framework with substantial evolution
history and many client applications and (b) to come
up with some requirements and design suggestions
for tools purported to support the practice.
Although, we cannot argue that Eclipse is a typical
software project – in fact it is difficult to characterize
the properties that a typical project should have – it is
certainly a software framework of realistic size and
interesting evolution history and that makes it an
appropriate test-bed for evaluating our method.
We examined three pairs of subsequent major Eclipse
releases and we discovered that indeed refactoring is
a frequent practice and it involves a variety of
restructuring types, ranging from simple element
renamings and moves to substantial reorganizations
of the containment and inheritance hierarchies.
Although many of them are behavior preserving from
the point of view of Eclipse – as advocated – they
may still affect the behavior of the client applications.
To support the developers of these applications to
carry them over to the next release of the API, a tool
should be able to treat refactoring as composite
commands possibly consisting of a set of other
refactoring. Each such refactoring command should
remember all its effects to the framework and should
be able to replay them and also propagate them in the
context of the application. Current refactoring- tool
support falls short on the compositional requirement
and refactoring-migration tools are also limited in
that they are not aware of the whole impact of
complex refactoring. A design differencing capability

could potentially be a helpful utility in both contexts:
it could recognize related changes when the
refactoring is not applied explicitly through using the
refactoring tool which could then be replayed by the
refactoring migration tool.

7. References
[1] A.J. Ko, H.H. Aung and B.A. Myers. Eliciting design
requirements for maintenance-oriented IDEs: A detailed
study of corrective and perfective maintenance tasks.
Proceedings of 27th ICSE, pp. 126-135, 2005.
[2] Balaban, F. Tip and R. Fuhrer. Refactoring support for
class library migration. Proceedings of the 20th OOPSLA,
pp. 265-279, 2005.
[3] D. Dig and R. Johnson. The role of refactoring in API
evolution.Proceedings of ICSM, 2005.
[4] D. Roberts, J. Brant and R.E. Johnson. A refactoring
tool for Smalltalk. Theory and Practice of Object System 3,
4 (1997), 253–263.
[5] Eclipse, http://www.eclipse.org
[6] E. Gamma, R. Helm, R. Johnson and J. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison- Wesley, 1994.
[7] F.V. Rysselberghe and S. Demeyer. Reconstruction of
successful software evolution using clone detection.
Proceedings International Workshop on Principles of
software Evolution, pp. 126–130, September 2003.
[8] J.D. Choi, M. Gupta, M. Serrano, V.C. Sreedhar and S.
Midkiff. Escape analysis for Java. Proceedings of
OOPSLA, pp. 1-19, 1999.
[9] J. Henkel and A. Diwan. CatchUp! Capturing and
replaying refactoring to support API evolution.
Proceedings of the 27th ICSE, pp. 274-283, 2005.
[10] J. Kerievsky. Refactoring to Patterns. Addison-
Wesley, 2004.
[11] K. Beck. Extreme Programming Explained: Embrace
Change.Addison-Wesley, 1999.
[12] K.J. Lieberherr and I. Holland. Formulations and
Benefits of the Law of Demeter. SIGPLAN Notices
24(3):67-78, March 1989.
[13] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999.
[14] M. Godfrey and L. Zou. Using origin analysis to detect
merging and splitting of source code entities. IEEE
Transactions on Software Engineering, 31, 2 (2005), 166-
181.
[15] OMG Unified Modeling Language Specification,
formal/03- 03-01, Version 1.5, (2003),
http://www.omg.org.
[16] P. Kruchten. The 4+1 View Model of Architecture.
IEEE Software, 12, 6 (1995), 42-50.
[17] S. Demeyer, S. Ducasse and O. Nierstrasz. Finding
refactoring via change metrics. ACM SIGPLAN notices, 35,
10 (2000),166-177.
[18] W.F. Opdyke. Refactoring Object-Oriented
Frameworks. Ph.D. Thesis, University of Illinois at
Urbana-Champaign, 1992.
[19] Z. Xing and E. Stroulia. UMLDiff: An algorithm for
objectoriented design differencing. Proceedings of the 20th
International Conference on Automated Software
Engineering, 2005.

