
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

296

A Reliable Distributed Grid Scheduler for Independent
Tasks

Kovvur Ram Mohan Rao1, Ramachandram S2, Vijaya Kumar Kadappa3 and Govardhan A4

 1 Department of Computer Science and Engineering, Vasavi College of Engineering, Osmania University

Hyderabad, Andhra Pradesh, 500031, India

2 Department of Computer Science and Engineering, Osmania University
Hyderabad, Andhra Pradesh, India

3 Department of Computer Applications, Vasavi College of Engineering, Osmania University
Hyderabad, Andhra Pradesh, 500031, India

4 Department of Computer Science and Engineering, JNTUH
Karimnagar, Andhra Pradesh, India

Abstract

Scheduling of jobs is one of the crucial tasks in grid environment.
We consider non-preemptive scheduling of independent tasks in a
computational grid. Recently, a general distributed scalable grid
scheduler (GDS) was proposed, which prioritizes mission-critical
tasks while maximizing the number of tasks meeting deadlines.
However, the GDS scheduler did not consider the reliability
factor, which may result in low successful schedule rates. In this
paper, we propose a novel distributed grid scheduler which takes
reliability factor (RDGS) into consideration with respect to the
failure of grid nodes. The proposed scheduler invokes the tasks
allocated to deficient grid nodes and maintains them in a queue.
Further the queued tasks are rescheduled to the other nodes of the
grid. It is observed that RDGS scheduler shows a significant
improvement in terms of successfully scheduled tasks as
compared to a variation of GDS without priority and deadlines
(GDS-PD). The results of our exhaustive simulation experiments
demonstrate the superiority of RDGS over the GDS-PD
scheduler.
Keywords: Grid Computing, Scheduling, Re-Scheduling,
Distributed Scheduler, Reliability

1. Introduction

Grid computing system is a collection of distributed
computing resources available over a local or wide area
network that appears to an end user or application as one

large virtual computing system. The aim of grid system is
to create virtual dynamic organizations through secure,
coordinated resource-sharing among individuals,
institutions, and resources. Grid computing is to provide
an unlimited power, collaboration, and information access
to everyone connected to grid [1] [2] [3].

Grid scheduling is a process of mapping grid tasks to grid
resources over multiple administrative domains. The grid
scheduler has four phases, which consists of resource
discovery, resource selection, job selection and job
execution. The responsibility of a scheduler is selecting
resources and scheduling tasks in such a way that the user
and application constraints are satisfied, in terms of
overall execution time and cost of the resources utilized
[5].

Quality-of-Service (QOS) support in resource
management and scheduling has been the focus of many
research studies in the computational studies. Ali Afzal et
al. [6] bring out a scheduling algorithm that minimizes the
cost of execution of workflows while ensuring that their
associated QOS constraints are satisfied. Cesar A.F.De
Rose et al. [8] present an explicit allocation strategy, in
which an adaptor automatically fits grid requests to the
resource in order to decrease the turn-around time of
application. Mustafizar et al. [7] propose an approach for

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

297

decentralized and cooperative workflow scheduling in a
dynamic and distributed grid resource-sharing
environment. The participants in the system such as the
workflow brokers, resources and users who belong to
multiple control domains, work together to enable a single
cooperative resource sharing environment. Peijie Huang et
al. [9] propose a method, which combines of an off-line
static strategy using time series prediction and an on-line
dynamic adjustment using reinforcement learning. The
superiority of this scheduling algorithm is that it shows
better load balancing of the whole hierarchical grid and
achieves higher success rate of the grid service request.
Ruay-Shiung Chang et al. [10] propose a balanced ant
colony optimization (BACO) algorithm for job scheduling
in the grid environment. The BACO algorithm balances
the entire system load while trying to minimize the
makespan of a given set of jobs. In contrast to these
methods, Cong Liu et al. [11] developed a general
distributed scalable grid scheduler (GDS) for independent
tasks with different priorities and deadlines. GDS
comprises of three phases: a multiple attribute ranking
phase, a shuffling phase, and peer-to-peer dispatching
phase.

However, the aforementioned methods do not consider the
reliability factor, which is vital in the context of grid
environment. There is no guarantee that the task will be
scheduled successfully if the system is not reliable. In
general, reliability is an ability of a system to perform and
continue its functions in routine circumstances, as well as
hostile or unexpected circumstances [13]. The reliability
of a grid scheduling scheme depends upon the following
three important factors:

 Task execution time: The time taken by the task
to complete its execution.

 Communication time: The time consumed in
communication in order to obtain the required
resources from the various nodes of the grid.

 Rate of failure: The rate of failure of elements of
grid computing system such as grid nodes,
communication channels.

As given by Min Xie et al. [4], failure rate function)(t

is defined as the probability that a device of age t will fail

in the small interval from t to dtt and is given by

)(

)()(
lim)(

0 ttR

ttRtR
t

t

The quantity R (t) represents the probability that system
will be successfully operating without failure in the
interval from time 0 to t.

In this work, we propose a distributed grid scheduler with
reliability factor with respect to failure of grid nodes. The
proposed scheduler also considers Communication to
Computing Ratio (CCR) [11], which is useful to decide
the appropriate grid site for scheduling tasks.

 The rest of the paper is organized as follows. In section 2,
we outline the grid model used in this work. Section 3
describes the proposed scheduling algorithm. Our
experimental results are presented in section 4. Finally we
conclude in section 5

2. Grid Model

Fig. 1 Grid Model

We consider the grid model as shown in Fig.1, for our
investigation. The grid model consists of geographically
distributed sites which are interconnected through WAN.
At each site, there is a Grid Resource (GR) consisting of
several machines of different processing capabilities and a
grid user have many tasks to be scheduled by the grid

100Mbps

Router 1 Router 2 Router 3

OU
10Mbps

100 Mbps

BSNL VCE

GR0

100 Mbps

GR1

GRID USER

GR–Grid Resource
OU–Osmania University
VCE–Vasavi College of Engineering
BSNL–Bharat Sanchar Nigam Limited

10Mbps

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

298

scheduler. The communication within the site (intra-site)
is fast Ethernet (100Mbps); where as the communication
across the sites (inter-site) is 10Mbps. Here we show a live
model with two well-known educational institutions in
India (VCE-Vasavi College of Engineering, OU-Osmania
University, Hyderabad) and BSNL, an Internet Service
Provider.

3. Reliable Distributed Grid Scheduler
 (RDGS)

In this section, we propose our scheduling algorithm
(RDGS), which meets the following objectives:

 RDGS exploits reliability factor with respect to
failure of nodes.

 RDGS is based on Communication to Computing
Ratio (CCR), which is used to decide local or
remote site for task scheduling.

 RDGS maximizes the total number of tasks
completing execution.

 RDGS makes use of re-scheduling concept.

3.1 Notation

The following notation is used in this paper.

Ti : i
 th Task

Q : Task Queue
U : Queue of tasks assigned to a failed node
Si : i

 th site with a number of machines
CCRi : communication to computing ratio for task Ti

Ni : i
 th grid node

Now, we present our proposed RDGS algorithm.

3.2 Proposed RDGS Algorithm

The proposed algorithm (RDGS) consists of two phases:
In the first phase all incoming tasks at each site are
classified based on CCR value. Next in the second
phase, scheduler assigns tasks to a specific resource on a
site. Those tasks that are unable to execute due to machine
failure are placed in a queue for resubmission.

First phase (classification of tasks based on CCR
value): At each site, the users may submit a number of
tasks with CCR values of ‘low’ and ‘high’. The scheduler
at each site puts all the incoming into task queue Q. If the
task CCR value is high (communication intensive), these

tasks are to be executed locally. If the task CCR value is
low (computational intensive), these tasks are executed
remotely.

Second phase (scheduling of tasks on a Grid Node with
rescheduling): To schedule a task Ti on a site Si, the
scheduler selects a node randomly to balance the load. If
the status of the selected node is ‘working’, the task Ti is
executed on the selected node. If the status of the selected
node is ‘failed’, the grid scheduler makes a provision for
Task Ti to put up in a queue U. Further the tasks in the
queue, U are simultaneously re-scheduled to other
available resources.

We present the algorithm in a more formal way as given
below. A user submits tasks to be executed, which are
maintained in a Task Queue, Q. For each task Ti in Queue,
Q we use RDGS () algorithm for scheduling.

Algorithm RDGS (Ti)
 begin

 1. If (CCR is ‘low’) then
 1.1 Ti is assigned to Remote Grid Site, Si
 1.2 Call RDGS-Execute (Ti , Si) for execution of Ti

 2 Else If (CCR is ‘high’) then
 2.1 Ti is assigned to Local Grid Site, Sj

 2.2 Call RDGS-Execute (Ti , Sj) for execution
 End

Algorithm RDGS-Execute (Ti, Sk)
 begin
 1. Select a node, Ni randomly at Grid Site, Sk
 2. Check the status of the node, Ni.
 3. If (Status of Ni is ‘Failed’)
 3.1 Insert Ti in Queue U.
 3.2 Re-schedule Ti by calling, once RDGS-Execute
 (Ti , Sk)
 4. Else (Status of Ni is ‘Working’) then
 4.1 Ti is scheduled to Node Ni
 End

. 4. Experimental Results and Analysis

In this section, we present our experimental results and
compare RDGS and GDS-PD (GDS without priority and
deadlines) schedulers.

4.1 Experimental Setup

We used the following parameters in our experimental
study: Task ID, Task length, Task file size, and Task
output size, Communication to computational Ratio
(CCR). We considered ‘low’, ‘high’ values for CCR.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

299

We assumed the number grid of nodes as 10% of the tasks
under consideration in our experiments. We varied number
of failed nodes as 5%, 8%, 10%, 16%, 20% of nodes under
consideration and obtained results. We computed
Successful Schedule Percentage (SSP) using number of
tasks successfully scheduled and total number of tasks.

We used GridSim [12] simulator for simulating Grid
environment and the experimental results are shown in
Figs. (2)-(3). We used Pentium-4 based system with CPU
clock speed of 3GHz, 2.99 GB RAM running with
Windows XP operating system.

4.2 Discussion of Results

Experiment 1 (Varying Number of tasks and fixed
number of failed nodes): We plotted Figs. (2)(a)-(e) by
computing Successful Schedule Percentage (SSP) with
varying number of tasks. For each of these cases, we
assumed fixed number of failed nodes (5%, 8%, 10%,
16%, and 20%) as shown in Figs. (2)(a)-(2)(e). From the
Figs. 2(a)-2(e), we observed that RDGS scheduler shows
improved SSP as compared to GDS-PD scheduler with
varying number of tasks. With minimum node failure (i.e.
5%) RDGS shows higher SSP i.e. 99% (hence higher
reliability) against 96% with GDS-PD method. With
maximum node failure (i.e. 20%), RDGS shows
significantly better SSP (95%) as compared GDS-PD
method (75%). As the node failure rate increases RDGS is
able to achieve much better SSP as compared to GDS-PD
scheduler, thus showing high reliability. Also note that
GDS-PD scheduler’s reliability is worsened with increased
node failure. In other words, RDGS is able to cope-up
well with failed grid nodes, where as GDS-PD is lagging.

5 Percent Grid Node Failure

72.00

76.00

80.00

84.00

88.00

92.00

96.00

100.00

0 2000 4000 6000 8000 10000 12000

Number of Tasks
(a)

S
S

P

GDS-PD

RDGS

8 Percent Grid Node Failure

72.00

76.00

80.00

84.00

88.00

92.00

96.00

100.00

0 2000 4000 6000 8000 10000 12000
Number of Tasks

(b)

SS
P

GDS-PD

RDGS

10 Percent Grid Node Failure

72.00

76.00

80.00

84.00

88.00

92.00

96.00

100.00

0 2000 4000 6000 8000 10000 12000
Number of Tasks

(c)

S
S

P GDS-PD

RDGS

16 Percent Grid Node Failure

72.00

76.00

80.00

84.00

88.00

92.00

96.00

100.00

0 2000 4000 6000 8000 10000 12000
Number of Tasks

(d)

SS
P

GDS-PD

RDGS

20 Percent Grid Node Failure

72.00

76.00

80.00

84.00

88.00

92.00

96.00

100.00

0 2000 4000 6000 8000 10000 12000

Number of Tasks
(e)

S
S

P GDS-PD

RDGS

Fig. 2 Successful Schedule Percentage of RDGS & GDS–PD with

varying number of tasks

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

300

Experiment 2 (Varying Percentage of Failure Nodes
and Fixed number of tasks): We plotted Figs. (3)(a)-3(e)
by computing SSP with varying percentage of failure rate
and fixed number of tasks. For each these cases, we
assumed fixed number of tasks as 2000, 4000, 6000, 8000,
10000 in Figs. (3)(a)-3(e) respectively. From the Figs.
3(a)-(e), we observed that RDGS scheduler shows
improved and consistent SSP as compared to GDS-PD
Scheduler. In other words, as the percentage of failed
nodes increases (from 4% to 20%), fall in SSP of RDGS is
not significant, where as GDS-PD shows wide variation in
SSP. For RDGS, the variation in SSPs is 5% and the
corresponding difference in SSPs for GDS-PD is 20%. In
other words, RDGS is robust against failure in grid nodes.

2000 Tasks

72.00

76.00

80.00

84.00

88.00

92.00

96.00

100.00

0 4 8 12 16 20 24

Percentage of Failure Nodes
(a)

SS
P GDS-PD

RDGS

4000 Tasks

72.00

76.00

80.00

84.00

88.00

92.00

96.00

100.00

0 4 8 12 16 20 24

Percentage of Failure Nodes
(b)

S
S

P GDS-PD

RDGS

6000 Tasks

72

76

80

84

88

92

96

100

0 4 8 12 16 20 24

Percentage of Failure Nodes
(c)

S
S

P

GDS-PD

RDGS

8000 Tasks

72

76

80

84

88

92

96

100

0 4 8 12 16 20 24

Percentage of Failure Nodes
(d)

S
S

P

GDS-PD

RDGS

10000 Tasks

72

76

80

84

88

92

96

100

0 4 8 12 16 20 24

Percentage of Failure Nodes
(e)

SS
P GDS-PD

RDGS

Fig. 3 Successful Schedule Percentage of RDGS and GDS-PD with

varying number of failure nodes

Experiment 3 (Computational Requirements): We
analyze here the computational requirements of RDGS and
GDS-PD schedulers by varying number of tasks from
2000 to 10000 (in steps of 2000) with 10% fixed grid
node failure rate. We computed additional computational
requirements for RDGS to provide better reliability as
compared to GDS-PD scheduler (Table.1). From the table
(last column) it is evident that RDGS provides better
reliability (better SSP) at the cost of an insignificant
additional computational time (3.3% to 4.2%).

Table.1 Computational time requirements of RDGS & GDS-PD
Schedulers

No.of
tasks

No.of
Nodes

SSP Comp. Time Addl.
comp
Time
(2)-(1)

GDS
-PD

RDGS
GDS-

PD
(1)

RDGS

(2)

2000 200 88.75 99.15 14387 14862 3.3 %

4000 400 87.78 98.93 28817 29875 3.6%

6000 600 88.55 99.02 42992 44825 4.2%

8000 800 89.11 99.06 57386 59807 4.2%

10000 1000 88.90 98.88 71745 74718 4.1%

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

301

5. Conclusion

We proposed a reliable distributed scheduler, which
promised an improved successful schedule rate in spite of
grid node failures. The proposed scheduler shows superior
successful schedule percentage at the cost of insignificant
additional computational requirements. The proposed
method is very useful in grid environment because there is
a possibility for any node to get failed due to various
factors. In future we improve the method by extending it
different categories of tasks by taking parameters such as
deadlines, priority, etc.

References
[1] L.J. zhang, J.Y.Chung, and Q. Zhou, Developing grid
computing applications, part 1: Introduction of a grid architecture
and toolkit for building grid solutions, IBM Corporation New
York, October 2002.
[2] T. Hawk, Remarks at, Grid computing planet conference and
expo, June 2002.
[3] D. Minoli, A Networking approach to grid computing.
Hoboken, New Jersey: Wiley Interscience, A John Wiley & Sons,
Inc.,, 2005.
[4] Min Xie, Yuan Shun Dai, and Kim Leng Poh, Computing
System Reliability Models and Analysis. Kluwer
Academic/Plenum Publishers, New York, 2004.
[5] Maozhen Li, Mark Baker, The Grid Core Technologies, A
John Wiley & Sons, Inc.,, 2005.
[6] Ali Afzal, A. Stephen McGough, John Darlington, Capacity
planning and scheduling in grid computing environments, Future
Generation Computer Systems 24(2008),404-414.
[7] Mustafizur Rahman, Rajiv Ranjan, Raj Kumar Buyya,
Cooperative and decentralized workflow scheduling in global
grids, Future Generation Computer Systems (2009).
[8] Cesar A.F.De Rose, Tiago Ferreto, Rodrigo N. Calheirros,
Walfredo Cirne, Lauro B.Costa, Daniel Fireman, Allocation
strategies for utilization of space-shared resources in Bag of
Tasks grids, Future Generation Computer Systems 24(2008),331-
341.
[9] Peijie Huang, Hong Peng, Piyuan Lin , Xuezhen Li , Static
strategy and dynamic Adjustment: An efficient method for grids
task scheduling, Future Generation Computer Systems
25(2009),884-892.
[10] Ruay-Shiung Chang, Jih-Sheng Chang, Po-Sheng Lin, An
Ant algorithm for balanced job scheduling in grids, Future
Generation Computer Systems 25(2009),20-27.
[11] Cong Liu, Sanjeev Baskiyar, A general distributed scalable
grid scheduler for independent tasks, J. Parallel Distrib. Comput.
69(2009) 307-314.
[12] Buyya R K, Murshed M, Anthony S, Marcos D de A,
Agustin C, GridSim Tool kit 4.1: A Grid simulation toolkit for
resource modeling and application scheduling for parallel and
distributed computing (2007).
[13] Wikipedia (visited Feb 2009) Reliability, [online],
http://en.wikipedia.org/wiki/Reliability.

 Kovvur Ram Mohan Rao is a part-time Ph.D student at
Department of CSE, JNTUH, Hyderabad, India and also full time
member of faculty at Department of Computer Science and
Engineering, Vasavi College of Engineering, Hyderabad, India. His
research interests are in Computer Networks, Distributed Systems
and Grid Computing. He received his Bachelors degree in
engineering from Nagpur University, Nagpur, India in 1993 and
Masters Degree in Computer Science and engineering from
Osmania University, India in 2000. He has 17 years of teaching
experience. Mr. Rao is an annual member of IEEE and life
member Computer Society of India. Mr. Rao published his
research papers in several International conferences.

Dr.S. Ramachandram received Ph.D. degree in Computer
Science and Engineering from Osmania University in 2005,
M.Tech. from Osmania University in 1985 and B.E. in from
Osmania University in 1983. He is working as a Professor of
Osmania University, Hyderabad. He has published around 45
papers in various national and international Journals/conferences.
Dr. Chandram is an annual member of IEEE, senior member of
CSI, Fellow IETE and member of ACM. His research of interest
includes Computer Networks, Distributed systems, Mobile
computing and grid computing.

Dr.Vijaya Kumar Kadappa is presently working as Associate
professor in the Dept. of Computer Applications, Vasavi College of
Engineering, Hyderabad, India. Dr. Kumar obtained his Ph.D. from
University of Hyderabad, India. He received his Bachelors degree
in Science from Sri Krishna Devaraya University, Anantapur, India
in 1995 and Masters Degree in Computer Applications from
University of Mysore, India in 1998. He has 11 of teaching
experience. His research interests are Pattern Recognition, Data
Mining and Clustering. Dr. Kumar is a life member of IEEE, Indian
Unit of International Association of Pattern Recognition, ISTE and
Computer Society of India. Dr. Kumar has published his research
papers in several International journals and conferences.

Dr.A.Govardhan received Ph.D. degree in Computer Science and
Engineering from Jawaharlal Nehru Technological University in
2003, M.Tech. from Jawaharlal Nehru University in 1994 and B.E.
in from Osmania University in 1992. He is working as a Principal of
Jawaharlal Nehru Technological University, Jagitial. He has
published around 50 papers in various national and international
Journals/conferences. He is also a member in various professional
bodies including CSI, ISTE, IAENG, FSF and WASET. His areas
of interest include Databases, Data Warehousing & Mining,
Information Retrieval, Computer Networks, Image Processing and
Object Oriented Technologies.

