
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

171

Hybrid Multiprocessor Real-Time Scheduling Approach

Ali A. Safaei1, Mehdi Alemi2, Mostafa S. Haghjoo3, Shirin Mohammadi4

 1 Department of Computer Engineering, Iran University of Science and Technology

Tehran, Iran

2 Department of Computer Engineering, Iran University of Science and Technology
Tehran, Iran

3 Department of Computer Engineering, Iran University of Science and Technology
Tehran, Iran

4 Department of Computer Engineering, Iran University of Science and Technology
Tehran, Iran

Abstract
Real-time scheduling is one of the most important aspects
of a real-time system design. To achieve a real-time
system’s requirement, especially to be fast, multiprocessor
systems are used. Generally, multiprocessor real-time
scheduling algorithms fall into one the two well-known
approaches: Partitioning or Global. The partitioning
approach has acceptable overhead for underlying system
but can NOT guarantee to provide an optimal schedule.
The global approach can provide this guarantee by holding
some preconditions and considerable overheads.
In this paper, an intermediate hybrid multiprocessor real-
time scheduling approach is proposed in which optimality
will be reached via the minimum overheads for underlying
system. Presenting and analyzing different feasible
paradigms for combination of the two existing approaches,
the proposed hybrid approach satisfies the two major goals
of this combination: optimality and lightweightness.
Experimental results show that the hybrid approach
outperforms the two existing ones.
Keywords: real-time scheduling, multiprocessor systems,
hybrid partitioning and global approaches.

1. Introduction

A real-time system has two notions of
correctness: logical and temporal. In particular, in
addition to producing correct outputs (logical
correctness), such a system needs to ensure that these
outputs are produced at the correct time (temporal
correctness). Selecting appropriate methods for
scheduling activities is one of the important

considerations in the design of a real-time system. A
major obstacle is that scheduling algorithms are
significantly more complex for multiprocessor
systems than for uniprocessor systems since the
scheduling algorithm must not only specify an
execution ordering of tasks scheduling problem on
each processor, but also determine the specific
processor on which each task must execute
assignment problem. Traditionally, there have been
two approaches for scheduling real-time tasks on
multiprocessor systems: Partitioning and Global
scheduling approaches.

In partitioning, each task is assigned to a single
processor, on which each of its jobs will execute, and
processors are scheduled independently. In other
words, each processor has its own task waiting queue.
The set of tasks is partitioned and each task is
assigned to the proper processor (task waiting queue)
according to the allocation algorithm. Each processor
executes tasks in its task waiting queue according to
its real-time scheduling policy (figure 1.(a)). The
main advantage of partitioning approaches is that
they reduce a multiprocessor scheduling problem to a
set of uniprocessor ones. Unfortunately, partitioning
has two negative consequences. First, finding an
optimal assignment of tasks to processors is a bin-
packing problem, which is NP-hard in the strong
sense. Thus, tasks are usually partitioned using non-
optimal heuristics. Second, task systems exist that are
schedulable if and only if tasks are not partitioned.
Still, partitioning approaches are widely used by
system designers.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

172

In global scheduling, all eligible tasks are stored
in a single priority-ordered queue; the global
scheduler selects for execution the highest priority
tasks from this queue. In other words, each task can
be executed over all processors. In fact, a task which
is started in a processor can migrate to any other
processor to be continued (figure 1.(b)) [1].
Unfortunately, using this approach with optimal
uniprocessor scheduling algorithms, such as the rate-
monotonic (RM) and earliest-deadline-first (EDF)
algorithms may result in arbitrarily low processor
utilization in multiprocessor systems. However,
recent research on proportionate fair (Pfair)
scheduling has shown considerable promise in that it
has produced the only known optimal method for
scheduling periodic tasks on multiprocessors.

(a)

(b)

Fig. 1 Multiprocessor real-time scheduling approaches. (a) The
partitioning approach (b) The global approach.

Generally, online real-time scheduling in
multiprocessor systems is a NP-hard problem [2].
The partitioning approach may not be optimal but is
suitable for real-time DSMS because: (1)
Independent real-time scheduling policies can be
employed for each task queue. Therefore, the
multiprocessor real-time scheduling problem is
simplified to single processor real-time scheduling.
(2) It has low run-time overhead which helps for
better performance [1]. The global approach has the
ability to provide optimal scheduling due the
migration capability, but has considerable overhead.
Furthermore, to have the optimal schedule, some
preconditions must be held which is not possible in
all applications [1].

To handle these deficits of the two existing
approaches, in this paper, an intermediate hybrid
multiprocessor real-time scheduling approach is
proposed which tries to benefits the advantages of the
two approaches, partitioning and global.

This paper is continued as follows: we present
related work in section 2. Different feasible
paradigms for combination of the two well-known
approaches are introduced and analyzed in section 3.
Our proposed hybrid multiprocessor real-time
scheduling approach is presented in section 4.
Simulation and performance evaluation of the
presented approach is presented in section 5. Finally,
we conclude in section 6.

2. Related Work

In [3] eight misconceptions in real-time
databases are discussed. One of the most a common
and important misconception is: “real-time
computing is equivalent to fast computing.” In fact,
fast processing does NOT guarantee time constraints.
In other words, although being fast is necessary but is
not sufficient. For a real-time system, there is a need
for other mechanisms (real-time scheduling, feedback
control, etc) to handle and satisfy time constraints.
To meet fast operation, many of real-time systems are
multiprocessor systems.

On the other hand, the main contribution in a
real-time system design is its real-time scheduling.
History of important events and key results in real-
time scheduling is reviewed in [4]. Multiprocessor
real-time scheduling which is totally different from
traditional single processor real-time scheduling is
classified into two approaches: global and
partitioning. Problems and algorithms related to these
approaches are discussed in [2]. Despite optimality of
PFair scheduling algorithms (such as PF [5], PD [6]
and PD2 [7]), partitioning is currently favored [8].
The reasons are: (a) PFair scheduling algorithms
have excessive overhead due to frequent preemptions
and migrations (b) PFair scheduling are limited to
periodic tasks (c) though partitioning approaches are
not theoretically optimal, they tend to perform well in
practice [8]. Utilization bound of EDF scheduling
policy with partitioning approach in multiprocessor
system is increased in comparison with single
processor systems. Utilization bound in these
environments depends on the employed allocation
algorithm and task size. Utilization bound of EDF for
multiprocessor systems with extended and complex
task model (e.g., resource sharing, jitter of task
release, deadlines less than period, aperiodic and
non-preemptive tasks) is studied in [9]. In order to
schedule soft deadline tasks in multiprocessor
systems efficiently, PFair scheduling algorithm
(known as optimal for hard real-time applications) is
extended in [55]. This extension (known as EPDF

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

173

PFair) considers tardiness bound and uses the global
approach as well as PFair.
In [11] supertasking is proposed to improve
processor utilization in multiprocessor real-time
systems. In this scheme, a set of tasks, called
component tasks, is assigned to a server task, called a
supertask, which is then scheduled as an ordinary
Pfair task. Whenever a supertask is scheduled, its
processor time is allocated to its component tasks
according to an internal scheduling algorithm.

3. Paradigms of Hybrid Multiprocessor
Real-Time Scheduling Approach

In general, real-time scheduling algorithms in
multiprocessor systems fall into one the two well-
known approaches: partitioning and global.

Partitioning multiprocessor real-time scheduling
approach is simpler and has an acceptable overhead
for the underlying multiprocessor system. So, it is
preferred to be employed in the real-world
operational systems, but it can’t guarantee to provide
an optimal schedule.

The reason is that, due to its static task
assignment and disability of tasks migration and
sharing processors’ capacity for executing a task, we
can NOT use the whole of system capacity
(utilization) in some cases and therefore, it may be
suboptimal. Besides, the partitioning approach
simplifies the multiprocessor real-time scheduling
problem to the uniprocessor ones (i.e., using the
optimal uniprocessor real-time scheduling algorithms
such as EDF1 or RM2 for each of processors’ tasks
waiting queues). Roughly speaking, partitioning
approach is more profitable when tasks’ set is static
and predefined.

However, in global approach which is proper for
dynamic task systems, we can expect for optimality
of the scheduling via employing task migration. But,
to reach this goal, some preconditions must be held
which are not promising forever in the real-world
operational systems. Moreover, the most important
deficit of the global multiprocessor real-time
scheduling approach is its considerable overhead for
the underlying system which causes the global
approach be out of use for applying in the real-world
multiprocessor real-time systems [2].

In this paper, in order to satisfy operational
systems requirements and make a trade-off between
optimality of the scheduling and system overloads, an
intermediate hybrid multiprocessor real-time
scheduling approach is proposed which combines the

1 Earliest Deadline First
2 Rate Monotonic

two existing approaches. It aims to employs the
benefits and advantages of the two existing
multiprocessor real-time scheduling approaches,
partitioning and global. The main goals of the
proposed hybrid approach are as followings:
a. Optimality: maximizing task system’s

scheduleability w.r.t. processors utilization
capacity.

b. Lightweightness: minimizing scheduling
overheads for underlying system.

In order to propose new hybrid multiprocessor

real-time scheduling approach to satisfy the desired
goals, different paradigms which could be imagined
via combing the two existing approaches are
considered and analyzed first. These paradigms can
be considered from the following perspectives.

3.2 Base of combination

By the two existing approaches, partitioning and
global, we can use each one as the base of the
combination while using the other one’s capabilities
to complete it and improve system performance.
Accordingly, the following options are possible:

I. Partitioning-based
In this method of combination, base of the

hybrid multiprocessor real-time scheduling approach
is the partitioning approach and whenever needed,
the global approach can be used to improve system
utilization and to be near optimal (e.g., via task
migration).

II. Global-based

In this method, base of the hybrid
multiprocessor real-time scheduling approach is the
global approach and tasks can migrate among
different processors. But in order to employ the
partitioning approach (for overhead reduction) some
of the tasks (as a batch of tasks) must be bound to a
specific processor.

Since, binding tasks to a specific processor
causes the ability of migration to be deprived from
them, binding all of the tasks in the task system leads
to no migration to happen in the system which
contradicts the claim of employing the global
approach.

So, increasing the number of binding tasks to
processors (due to applying partitioning approach)
causes decreasing the number of task migrations.

Roughly speaking, applying the partitioning
approach conflicts with applying the global approach.
So, the method of combination of approaches
practically is contrary to its definition.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

174

In [11], this method is used by modifying the
definition of the task. In other words, a new
abstraction of task is proposed in which real tasks as
component tasks of a supertask are bound to
processors whilst the supertask (logical concept) is
able to migrate between processors. So, we can say
that supertasking[11] uses the global-based method
of combination.

Also, from another point of view, precedence of
employing each of the two well-known
multiprocessor real-time scheduling approaches is
important.

3.2 Sequence of combination

Based on the precedence (time) of applying an
approach (base approach) rather than the other,
combination methods to have a hybrid approach is
classified as follows:

A. Serial employment
The two existing multiprocessor real-time

scheduling approaches are employed sequentially and
isolated (i.e., the second one will be started whenever
the first one completed) as shown in figure 2.

Fig. 2 Serial employment of multiprocessor real-time scheduling
approaches.

B. Concurrent employment
The two existing multiprocessor real-time

scheduling approaches are employed concurrently
over the scheduling time, as shown in figure 3:

Fig. 3 An example of concurrent employment of multiprocessor
real-time scheduling approaches.

Analogous to serial and concurrent scheduling
of transactions, the serial method of employment is
simpler and easier to implement and manage, while
the concurrent method, which is more complicated,
improves system performance.

There are many different cases of concurrent

employment of the two well-known multiprocessor
real-time scheduling approaches that discussing and
analyzing them is out of the scope of this paper.

On the other hand, in the serial method, w.r.t.
the existence of two approaches for multiprocessor
real-time scheduling (partitioning and global), the

two following cases are imaginable for serial
employment method:

a) Partitioning-first
As shown in figure 4, in the partitioning-first

method, first, tasks of the task system are assigned
and bound to the processors via the partitioning
approach until the situation in which no more task
can be assigned to any of the processors,
correspondingly.

Fig. 4 change point in partitioning-first method.

Change-point condition: all of the tasks (in the
task system τ = {ti |1 ≤ i ≤ N}) before task k are
assigned and bound to one of the processors and
weight of task k is greater than remained utilization
capacity of all of the processors.

)})({max)(()(;1,1 jrjkij PUtwtPMjki

(1)

In which M is number of processors, Pj←ti means
that tasks ti is bound to processor Pj, w(tk) indicates
weight of task k (i.e., e/p) and Ur(Pj) denotes
remained utilization of processor Pj.

In such a situation, the global approach will be
used and the remained tasks can migrate among the
processors to be completed.

Theorem 1: the partitioning-first method of

combination has the minimum system overhead.
Proof: the partitioning approach has minimum

overhead (w.r.t. the other choice, the global
approach). Since the partitioning-first method uses
partitioning approach as much as possible, therefore,
there will be no other feasible option to have less
overhead (i.e., no more chance to schedule the
remained tasks via the partitioning approach).

Also, in the second phase of the partitioning-
first method (i.e., employing the global approach),
employing the EPDF PFair scheduling algorithm [10]
which has the least overhead (among the algorithms
that are based on the global approach), will have the
minimum overhead in this phase.

b) Global-first
Since breaking down and migration of the tasks

can be possible forever (while processors’ utilization
capacity is not completely full), this method is
contrary with its definition; because we can use the
first approach (i.e., global) forever whilst the second

First approach Second approach

time

Change-point

First Second

time

Second First Second

Partitioning approach Global approach

time

Change-point

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

175

one never is used. Albeit, the second approach can be
used if we modify the definition of change-point
(condition for starting the second approach). But,
where is the proper choice for the change-point? The
later the change-point, the more the system overhead
(i.e., more usage of the global approach).

Fig. 5 Late change point in global-frist method.

On the other hand, the early change-point, as
shown in figure 6, does NOT necessarily provide the
least overhead. The reason is that in this method, at
first, tasks are scheduled using global approach (via
migrations between processors) which has more
overhead rather than the case that we could schedule
them on the empty processors via the partitioning
approach. Late change point and early change point
are shown in figure 5 and 6, respectively.

Fig. 6 Early change point in global-first method.

This deficit of the global-first method raises this
fact that in order to achieve the major goals of our
hybrid approach, the partitioning-first method is
strongly preferred.

4. Hybrid Multiprocessor Real-Time
Scheduling Approach

As discussed in section3, different paradigms
are imaginable for combining the two well-known
multiprocessor real-time scheduling approaches
(partitioning and global) in order to provide a hybrid
approach which have the advantages of the two
approaches. The major goals in the designing the
hybrid multiprocessor real-time scheduling approach
is to be optimal as well as have low overhead.

Among different paradigms that can be
considered via combination of the two existing
approaches, the portioning-based and partitioning-
first combination method introduces the best method.
The reason is that, this method has the most possible
usage of the partitioning approach (which has the
minimum overhead) and then uses the global
approach to make use of processors empty capacity

for execution of tasks in order to have optimal system
utilization.

Accordingly, the proposed hybrid
multiprocessor real-time scheduling approach is
partitioning-based and partitioning-first approach in
which the best algorithm of each of the partitioning
and global approaches (i.e., FF+EDF [12,2] and PD2
[7]) are employed.

The proposed hybrid multiprocessor real-time
scheduling approach consists of the following steps:

 All of the tasks in the task system τ are
assigned and bound to the specific
processors (e.g., using the First-Fit
algorithm [2]).

 Each processor schedules the tasks waiting
in its waiting queue with the EDF policy [2].

 These will be continued until the change-
point condition (equation (1)) holds.

 After this, remained tasks in the task system
(or even the tasks that are entered the system
newly (dynamic task system)) are
considered as tasks that must be scheduled
on set of processors which their utilization
capacity is reduced (updated with their
remained utilization capacity as equation
(2)):

i

ijjr twPUPUMjNi)()()(:1,1 (2)

In the the global approach (migration is allowed) the
proper PFair scheduling algorithm (e.g., PD2) is
employed.

5. Performance Evaluation

5.1 Experimental Setup

We implemented a real-time system prototype
in Java in Linux [13] environment on a machine with
Core i7 2930 processor and 6GB RAM. Each task is
modeled with two characteristics as (e, p) in which e
indicates its execution time and p its period.
Partitioning approach in which First-Fit algorithm [2]
is used as allocation algorithm and EDF is used as
single processor real-time scheduling algorithm
(named Partitioning) is compared with the global
approach in which PD2 PFair algorithm is employed
(named Global) and the proposed hybrid approach
which uses Partitioning-based and partitioning-first
combination method (in which FF-EDF and PD2
algorithms are employed respectively) (named
Hybrid). The task system consists of 15 each with the

Change-point

Partitioning approachGlobal approach

time

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

176

utilization (weight i.e., e/p) of 0.4. M (number of
processors) is equal to 4. Simulation duration is
1e+10 seconds and average values for 12 different
execution of this scenario is measured and compared.
The most important evaluated parameters are:

 DMR: deadline miss ratio according to
equation (3), which is the most important
parameter for a real-time system.

DMR = (number of rejected tasks + number of missed
tasks) / total number of tasks (3)

 Throughput: number of tasks executed in a
time unit.

Overheads such as communication or context-
switching are negligible because the employed
machines are cores of a multi-core CPU.

5.2 Experimental Results

Experimental results are shown in the following
figures. As expected, the global approach has better
performance compared to the partitioning approach;
also, as shown in figures 7 and 8, the proposed
hybrid multiprocessor real-time scheduling approach
has a considerable improvement in terms of deadline
miss ratio and system throughput rather than the
existing approaches, partitioning and global. To have
a comparison at a glance, the average value of the
two parameters are computed and illustrated in
figures 9 and 10.

Figures 7 and 8 illustrate comparison of deadline
miss ratio and system throughput, respectively
between the proposed hybrid multiprocessor real-
time scheduling approach and the two existing
approaches, partitioning and global.

Fig. 7 Comparison of deadline miss ratio.

Fig. 8 Comparison of system throughput.

Fig. 9 Comparison of deadline miss ratio in average case.

Fig. 10 Comparison of system throughput in average case.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

177

 Furthermore, to analyze the behavior of the proposed
approach w.r.t. increment of number of the tasks, the
values of deadline miss ratio and system throughput and
their average values when number of tasks in task system
is 100 are measured and shown in figures 11 through 14.

Fig. 11 Comparison of deadline miss ratio when number of tasks
increases.

Fig. 12 Comparison of system throughput when number of tasks
increases.

According to the results shown in figures 8 and 9, while
number of tasks increases, the proposed hybrid
multiprocessor real-time scheduling approach outperforms
the partitioning and global approaches in terms of deadline
miss ratio and system throughput. Also, the average values
of deadline miss ratio and system throughput while
increasing the number of tasks is shown in figures 13 and
14, respectively.

Fig. 13 Comparison of average DMR when number of tasks increases.

Fig. 14 comparison of average system throughput when number of tasks
increases.

6. Conclusion and Future Work

Generally, there are two approaches for
multiprocessor real-time scheduling, partitioning and
global. Although the partitioning approach provides an
acceptable overhead for the underlying system but it
doesn’t guarantee to be optimal. The global approach can
provide this guarantee but it needs some preconditions to
be hold; also, the most important deficit of the global
approach is its considerable overheads.

In this paper, an intermediate hybrid multiprocessor
real-time scheduling approach is proposed in which
optimality will be reached via the minimum overheads for
underlying system. Presenting and analyzing different
feasible paradigms for combination of the two existing
approaches, the proposed hybrid approach satisfies the
two major goals of this combination: optimality and
lightweightness. Experimental results showed that the
hybrid approach outperforms the two existing ones.

Some future works are as follow:
 Providing proper algorithms w.r.t. this hybrid

approach
 Formal analyzing of the proposed approach

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

178

Improving the usage of global-first method

References
[1] P. Holman and J. Anderson, "Group-based Pfair Scheduling",

Real-Time Systems , Volume 32, Numbers 1-2, pp. 125-168,
February 2006.

[2] John Carpenter, et. al., “A Categorization of Real-time
Multiprocessor Scheduling Problems and Algorithms”, in
Handbook on Scheduling: Algorithms, Models and
Performance Analysis, (2004).

[3] J. A. Stankovic, et. al., “Misconceptions About Real-Time
Databases”, Journal of Computer, Volume 32 Issue 6, June
1999.

[4] L. Sha, et. al., "Real Time Scheduling Theory: A Historical
Perspective", Real-Time Systems, 28, pp. 101-155, 2004

[5] N. Baruah,et. al., “Proportionate progress: A notion of
fairness in resource allocation,” Algorithmica, vol. 15, pp.
600–625, 1996

[6] S. Baruah, J. Gehrke, and C. Plaxton, “Fast scheduling of
periodic tasks on multiple resources”, in Proceedings of the
9th International Parallel Processing Symposium, April 1995,
pp. 280–288.

[7] J. Anderson and A. Srinivasan, " Mixed Pfair/ERfair
Scheduling of Asynchronous Periodic Tasks", Journal of
Computer and System Sciences , Volume 68, Issue 1, pp.
157-204, February 2004

[8] Anand Srinivasan, “Effcient and Flexible Fair Scheduling of
Real-time Tasks on Multiprocessors”, Ph. D. thesis,
University of North Carolina at Chapel Hill, 2003

[9] J. Lopez, M. Garcia, J. Diaz, and D. Garcia. “Worst-case
utilization bound for EDF scheduling on real-time
multiprocessor systems”. In Proceedings of the 12th
Euromicro Conference on Real-time Systems, pp. 25–33,
June 2000

[10] A. Srinivasan, and J. H. Anderson, “Efficient Scheduling of
Soft Real-time Applications on Multiprocessors”, Journal of
Embedded Computing, VOL. 1, NO. 3, pp. 51-59, June 2004

[11] Philip Holman and James H. Anderson, “Using Supertasks
to Improve Processor Utilization in Multiprocessor Real-
time Systems”, 15th Euromicro Conference on
Multiprocessor Real-Time Systems, ECRTS’03, pp.2-4,
2003

[12] Ali Safaei, et. al., “QRS: A Quick Real-Time Stream
Management System”, submitted to Journal of Real-Time
Systems, feb, 2010.

[13] M. Alemi, "Real-Time Task Scheduling in Data Stream
Management Systems", M. Sc. Thesis, Iran University of
Science and Technology, 2011

Ali A. Safaei received his B.S. and M.S. degrees in
computer engineering in 2001 and 2004, respectively. He is
currently a PhD student of computer engineering at the Iran
University of Science and Technology since 2005. His research
interests include parallel and real-time query processing, quality of
services and overload handling in data stream management
systems, semantic cache and multiple-query optimization.

Mehdi Alemi received his B.S. degree in computer science in
2009. He is currently M.S. student of computer engineering at the
Iran University of Science and Technology. He is interested in data

stream systems, IR, data mining.

Mostafa S. Haghjoo is an associate professor at the Iran
University of Science and Technology. He received his B.Sc. in
mathematics
and computer science from the Shiraz University in 1976. He
received his M.Sc. degree in computer science from the
George Washington University in 1978. He obtained his Ph.D.
degree in computer science from the Australian National University
in 1995..

Shirin Mohammadi received her B.S. degree in computer
engineering in 2007, She is currently a M.S. student of computer
engineering at the Iran University of Science and Technology since
2008. Her research interests include data stream management
systems, adaptive query processing, query response time
estimation, and real time scheduling.

