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Abstract 

In this paper, an alternative approach for texture classification 
using an invariant texture representation and a tree matching 
kernel is proposed.  The approach identifies regions of a given 
texture image using a Speed-Up Robust Feature or SURF 
descriptor. The regions of all training texture images are then 
clustered into a tree of non-uniformly shaped regions based on 
the distribution of them using a hierarchical k-means algorithm. 
The tree structure forms a tree of keypoints to be used for 
determining similarities between two texture images. The 
similarity is computed based on an approximate matching kernel 
called a tree matching kernel.  Finally, Support Vector Machines 
(SVMs) with the tree matching kernels are constructed to classify 
textures. The performances of the proposed method are evaluated 
through experiments performed on textures from the Brodatz and 
UIUCTex datasets. The experiment results demonstrate that the 
proposed approach is quite robust to scale, rotation, deformation 
and viewpoint changes and achieves higher classification rates 
than some other well known methods. 
Keywords: Texture Classification, Tree of Keypoints, SURF 
Descriptor, Support Vector Machines, Tree Matching Kernel, 
Hierarchical K-means Clustering. 

1. Introduction 

In the visual world, textures can be regarded as the visual 
appearances of surfaces and may be perceived as being 
directional or non-directional, smooth or rough, coarse or 
fine, regular or irregular, etc. Several textures are observed 
on both artificial and natural objects and scenes. The 
surface characteristics of textures can be used to recognize 
objects in an image, to segment an image and to understand 
an image [27]. So, textures play an important role in many 
image analyses, computer vision and pattern recognition tasks. 
However, environment and illumination conditions can affect 
the appearance of textures, and so complicate the  
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tasks. Textures in real images can vary in scale, brightness, 
and rotation as imaging conditions change. Therefore, to 
enable texture analysis in real images, texture representation 
should be invariant to imaging conditions such as non-rigid 
deformation, viewpoint, scaling and lighting. A brief review of 
the invariant texture analysis methods is presented in [17]. 
 
The goal in this research is to perform texture classification 
that is robust to the mentioned environment and illumination 
conditions. A texture representation, which is invariant to the 
conditions, along with the new classification method is 
proposed.  Our approach consists of the following steps: (1) 
Constructing an invariant texture representation step that 
consists of feature detection and then extraction of texture 
regions, which are invariant to the conditions due to both 
geometric and photometric transformations. We propose that 
Speeded Up Robust Features (SURF) is to be used as local 
invariant descriptors for the texture regions. (2) Building a tree 
of keypoints (regions) step performed hierarchical k-means 
clustering on all regions of all textures in the training set.  A 
tree of keypoints is then constructed from the  hierarchical k-
means clustering. (3) Texture modeling step builds multi-SVM 
classifiers with a one-against-all tournament approach to 
classifying texture images. The tree matching kernel is used 
in the SVMs and utilizes the tree of keypoints to determine 
the similarity between two textures.  Figure 1 shows a sketch 
of the process for the proposed approach. 
 
The organization of this paper is as follows. Related works 
are reviewed in section 2; the proposed approach is 
described in section 3; experiments and results, designed 
to evaluate the effectiveness of the proposed approach, are 
presented in section 4 and finally conclusions are given in 
section 5. 
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Fig 1. The framework for the proposed approach. 
 

 
2. Related Works 
  
In this section, some related works on texture classification 
are reviewed. Lazebnik et al. [29] proposed a sparse 
texture representation using local affine regions for 
recognizing textured surfaces under a wide range of 
transformations, including viewpoint changes and image 
nonrigid deformations. Features descriptors of each texture 
are clustered using standard k-means to form the texture 
signature {(m1, u1), (m2, u2),…(mk,uk)}, where k is the 
number of clusters, mi is the center of the ith cluster, and ui 
is the weight of the cluster. They used Earth Mover’s 
Distance (EMD) to measure the similarity between two 
signatures. During the classification stage, nearest-
neighbor classification with EMD was used to classify 
texture images.  Mellor et al. [23] described a method 
based on invariant combinations of linear filters. Unlike 
Lazebnik’s methods, they proposed a novel family of 
filters, which provides scale invariance, resulting in a 
texture description invariant to local changes in orientation, 
contrast and scale and robust to local skew. The χ2

For texture analysis, region formation is the first essential task. 
To form regions in a texture, we propose the recently 
developed Speeded-Up Robust Features (SURF) [14], [10], to 
use as the local descriptor. SURF has already been used in a 
few real world applications [2], [13], [15]. SURF is very well 
suited for tasks in object detection, object recognition and 
image retrieval [13]. SURF possesses more discriminative 
power than other features such as SIFT [9] and it can be 
computed more efficiently and yields a lower dimensional 

 
similarity measure is used on histograms derived from 
their filter responses.  Recently, Qin et al. [22] presented a 
novel approach to classify texture collections using an 
unsupervised approach. Given image database, they 
extracted a set of invariant descriptors from each image 
and the descriptors of all the images were clustered to 
form keypoints. A texture image can be represented by a 
bag-of-keypoints. Probabilistic Latent Semantic Indexing 
(PLSI) and Non-negative Matrix Factorization (NMF) 
were used for the unsupervised texture classification.  
 
Several local features for texture representation were 
proposed in [9], [14], [16], [20], [30]. The local features 
are distinctive, invariant to many kinds of geometric and  

 
 
photometric transformation. They are suitable for image 
classification and have been used in many applications, e.g. 
object recognition [1], [3], scene recognition [31], robot 
localization [2], and texture classification [25], [26], [29], [30].  
A review of other local features can be seen in [16].  
 
The main drawbacks of the local feature methods are that 
different local feature methods can produce different 
numbers of feature vectors and generate no obvious 
structural information about the vectors, for example, no 
ordering among the vectors is produced. Thus, to overcome 
these problems, similar feature vectors can be clustered to 
create a designated number of representative feature vectors.  
For example, Boughorbel et al. [28] proposed that the centroids 
of the computed clusters represented virtual features for 
images. Csurka et al. [12] used a similar clustering 
technique to construct bags of keypoints. Each bag is 
represented by a bin of a histogram. Hence, features of two 
images can be compared through the matching of their 
feature histograms.   

3. Proposed Approach 

3.1 Region Formation 
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feature descriptor resulting in faster matching [2]. SURF can 
be computed as follows. 

3.1.1 Interesting Point Detection 
 
To compute SURF, interesting points must be detected. 
The detection is performed using the Hessian-matrix 
approximation. Given a point x = (x, y) in an image I, the 
Hessian matrix H(x, σ) in x at scale σ is defined as 
follows: 

                         (1) 

 
Where Lxx(x,σ) is the convolution of the Gaussian second 

order derivative    with the image I in point x, 
and similarly for Lxy(x,σ) and Lyy(x,σ). 

SURF approximates the second order Gaussians derivatives 
with box filters. Image convolutions with these box filters can 
be computed rapidly by using integral images. The location and 
the scale of the interesting points are selected by relying on the 
determinant of the Hessian matrix. Interesting points are 
localized in scale and image space by applying a non-
maximum suppression in a 3x3x3 neighborhood. Then, the 
local maxima found of the approximated Hessian matrix 
determinant are interpolated in the scale and image space. For 
more details, please refer to [14]. 
 
3.1.2 Constructing Region Descriptors 
 
This stage consists of two steps. First, SURF constructs a 
circular region around the detected interesting points in 
order to assign a unique orientation to the former. The 
orientation is computed using Haar wavelets responses in 
both x and y directions. The Haar wavelets can be quickly 
computed via integral images. The dominant orientation is 
estimated and included as the interesting point information. 
Next, SURF descriptors are constructed by extracting square 
regions around these interesting points. These are oriented in 
the directions assigned in the previous step. The windows are 
split up in 4x4 sub-regions in order to retain some spatial 
information. In each sub-region, Haar wavelets responses in 
horizontal and vertical directions (dx and dy) are summed up 
over each sub-region. Moreover, the absolute values |dx| and 
|dy| are summed in order to obtain information about the 
polarity of the image intensity changes. Therefore, the 
underlying intensity pattern of each sub-region is described by 
a vector V = [∑dx , ∑dy, ∑|dx|, ∑|dy

 
 
 
 
 
 
 

| ]. The resulting descriptor 
vector for all 4x4 sub-regions is of length 64, giving the 
standard SURF descriptor, SURF-64. An important 
characteristic of SURF is its fast extraction process due to 
the fast integral process of images and the fast non-
maximum suppression algorithm. Figure 2 shows the 
output of the SURF regions on two sample images. 

3.2 Clustering Regions  

After the SURF regions of all the training texture images have 
been identified, the SURF regions are clustered to form a 
hierarchical tree. This stage is a one-time process performed 
before building the SVMs. The similar hierarchical tree 
structures have been proposed to handle descriptor 
matching, for instance, searching the tree for images [21]  
kd-tree [9] and metric trees [5], [8].  
 
Many computer vision algorithms, including our proposed 
algorithm, require searching as the closest data point of a 
given data on a high-dimensional space [24]. The nearest 
neighbor search has been used to find the closest point. 
However, the performance of the search varies depending 
on properties of the datasets, such as dimensionality, 
correlation, clustering characteristics, and size. A better 
approach is to use metric tree based index methods, 
proposed by [8] for a fast nearest neighbor search in very 
large databases. This method is based on searching for the 
closest leaf node in a hierarchical k-means tree starting 
from the root down to the leaf. 
 

 
 
 
 
 
 
 

 
Fig. 2 Outputs of the SURF regions on two sample texture images.       
Left: original images, right: regions found by SURF descriptors. 

The hierarchical k-mean clustering starts with a k-means 
process (the k-means process is described by Algorithm1) 
on all SURF regions of all texture images in the training 
dataset. Next, the same k-means process is recursively 
applied to each cluster derived from the previous 
clustering, i.e. recursively splitting each cluster into k 
subclusters. The recursion is stopped when the number of 
SURF regions in a cluster is smaller than k.  The 
hierarchical clustering forms a corresponding tree where 
each leaf corresponds to each of the SURF regions, 
representing the keypoints of all the texture images in the 
training dataset. Each node in the tree is represented by the 
node index, the centroid and the radius (maximum distance 
from the centroid) of its corresponding cluster.  The 
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centroid and the radius of a node will be used mainly to 
determine whether the nearest leaf node for a given data is 
located inside the subtree rooted at the node.   
 
The main advantage of a k-means algorithm is its 
computational simplicity, which is convenient for large 
data sets. Its time complexity is O(NkId) when clustering 
N data points of d dimensions with k centers and I 
iterations. However, the centers of clusters for k-means 
algorithms are often initialized randomly, which may 
result in different clustering solution from run to run. 
Several methods [5] were proposed to overcome this 
problem. One simple technique that we adopt to address 
this problem is to perform k-means for multiple runs and 
select the solution from the run that yields the minimum 
sum of squared errors (SSE). The second problem with the 
k-means algorithm is that empty clusters can be obtained if 
no SURF regions are allocated to a cluster during the 
assignment step. If this happens, the empty cluster will be 
given a new centroid selected randomly from the members 
of the cluster that has the highest SSE. This will split the 
cluster and reduce the overall SSE of the clustering. 
 
 
Algorithm1:  k-means process used in this paper. 
1: Define the number of clusters k  
2: Define the number of runs m  
3: For i=1 to m. 
4:    Select k SURF regions randomly as initial centroids. 
5:    While (centroids do change) 
6:         Form k clusters by assigning each SURF region to  
            its closest centroid. 
7:         Recompute the centroid of each cluster. 
8:   End 
9:  Record the k cluster centroids for the ith

 
 

 

 

 run 
10: End 
11: Select the set of k clusters of the run with minimum        
      SSE.  
 
 
The computational cost for building the tree structure 
using hierarchical k-means clustering on a given training 
set is O(LNkId), where L is the number of levels in the 
tree. The building time can be reduced significantly by 
limiting the number of iterations in the k-means clustering 
stage instead of running it until its convergence is reached 
[24]. Moreover, the branching factor k can affect the 
precision of finding the closest data in the tree as well as 
the building time of the tree. A higher branching factor has 
proven to give better precision but also a higher building 
time [24]. Therefore, there is a tradeoff between the 
precision and the building time. Figure 3 shows an 
example hierarchical k-means tree built from 3 texture 
images (with total of 19 SURF regions). 
 
 

 

 

Fig. 3 Three levels of a hierarchical tree with branch factor = 3 populated 
to represent 3 training images with 19 SURF regions. 

3.3 Tree Matching Kernel 

After all the SURF regions of all the training texture 
images have been clustered yielding a tree of keypoints T. 
A tree of keypoints for any texture image can be 
constructed by performing hierarchical search (from root 
to a leaf of T) to identify which clusters of nodes at each 
level of T that each SURF region of the texture image 
belongs to i.e. determining the cluster with the closest 
centroid. All nodes of T, that any SURF region of the 
image belongs to, form the tree of keypoints of the image. 
Clearly, the tree of keypoints  must be a subgraph of T.   
Let T1 and T2 be the trees-of-keypoints of any two texture 
images. To determine the similarity between the two 
images, the tree matching kernel score of T1 and T2 will be 
determined instead. The tree matching kernel score, 
inspired by Grauman et al. [ ], [19], can be defined as the 
sum of the weighted number of SURF matches found at all 
common nodes of the two trees. The number of SURF 
matches found at a common node is defined to be the 
minimum between the numbers of SURF regions 
belonging to the two images and located within the cluster 
of the node minus the numbers of SURF matches already 
counted by all of their child nodes. The sum of these 
weighted counts yields the approximate tree matching 
kernel score.   
 
Let cij(T1) be  the number of SURF regions in T1 located 
inside the cluster of the jth node of  level i, cij(T2)  be  the 
number of SURF regions in T2 located inside the cluster of 
the jth

Where k is the number of sub-clusters for each cluster, m is the 
highest number of the levels of two trees, w

 node of  level i. The tree matching kernel score is 
computed as follows: 
 

 

 

 

ij is the weight 
associated with the jth node at level i of T, pij is the weight 
associated with the parent node of the jth node at level i of T. The 
subtraction part weighted by pij corresponds to the weighted 

 level i=0 
 

i=1 
 
i=2 
 
i=3 
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number of SURF matches that need to be subtracted from the 
count of the node’s parent. The weight of the jth node at level i of 
T are set to be equal to exp (-2*d ij) where dij is the radius of the 
cluster of the node. This is according to the fact that the SURF 
matches found at a lower level (larger i) with a smaller value of 
radius should contribute more significantly to the similarity score 
than those of the higher levels with higher radius values. This 
weighting scheme meets the condition required in [18], [19] and 
makes the kernel, defined by the equation (2), a Mercer kernel 
(i.e., a symmetric positive definite kernel), which can be used 
with kernel based methods such as the Support Vector Machine 
(SVM). The matching scores are normalized by the number of 
SURFs of the two images in order not to favor larger images. 
Note that the sum in the equation (2) starts with the index i = m-1 
because there will be no SURF region matches at the leaf level    
i = m.  The time required to compute a tree matching kernel score 
between two trees-of-keypoints is O(NL). A tree matching kernel 
score between a testing texture image and a training texture 
image representing a kernel vector can be determined in the same 
way as described above. 

3.4 Texture Classification with SVMs 

Several approaches have been proposed to generalize the 
binary SVM classifier to solve problems where multi-
classes apply. To apply SVM for multi-class 
classifications, two main approaches have been suggested. 
The first approach is called “one against one”. In this 
approach, a series of binary classifiers is applied to each 
pair of classes, and the most commonly computed class is 
assigned to the  given object. This method requires      
m(m-1)/2 classifiers to be built. The second approach, 
which requires less classifiers to be built, is called “one 
against rest”.  This approach requires m binary classifiers 
where  the ith classifier is built as the samples in the ith

Test

 
class are treated as positive examples and the rest as 
negative examples. In the recognition phase, a testing 
texture is presented to all m classifiers and is labeled 
according to the highest decision value among the m 
classifiers.  Because of simplicity, the one-against-rest 
approach was adopt to build the multi-class SVM classifier 
in the experiments [7]. 
 
4. Experiments 
 
Experiments were carried out on textures images from 
Brodatz [35] and UIUCTex [31] database. The 
experiments are similar to those in [29]. Two performance 
measures [22] are used to evaluate our approach, as 
follows. 
The confusion matrix (CM): 
 

                               (3) 

 
j is the set of testing images which belong to class j, 

and f(Ia) is the class label which obtains the highest 

classifier score from the multi-class classifier for a given 
image Ia

The second dataset from UIUCTex consists of 40    
examples for each of the 25 texture types. The database is 
publicly available at 

. 
 

The mean classification rate (CR): 

                                         (4) 

 
All experiments are carried on a PC Intel Core 2 Quad 
CPU Q6600, with a clock rate of 2.4 GHz and 4.0 GB of 
RAM. The classifiers are implemented using Visual C++ 
2003 and Matlab (R2008a). 

4.1 Datasets 

The first dataset from Brodatz is a collection of texture 
images that features significant inter-class variability, but 
no geometric transformations between members of the 
same class. The dataset consists of 111 images. Following 
the same procedure as [29], we form classes by partitioning 
each image into nine non-overlapping fragments, for a 
total of 999 images. Fragment resolution is 215 × 215 
pixels. The training set of Brodatz consists of randomly 
selected 333 images (3 images/class) and the other 666 
images (6 images/class) are used for testing. 

http://www-cvr.ai.uiuc.edu/ponce_grp. The 
resolution of each sample is 640×480 pixels. This database 
includes surfaces whose texture is mainly due to albedo 
variations (e.g., wood and marble), 3D shape (e.g., gravel 
and fur), as well as a mixture of both (e.g., carpet and 
brick). Significant viewpoint changes and scale differences 
are present within each class, and illumination conditions 
are uncontrolled [29]. The training set of UIUCTex 
contains 250 images (10 images/class) and the rest of the 
750 images (30 images/class) are used for testing.  
 
Figure 4 and 5 show several example texture images from 
the two datasets. 
 
 
 
 
 
 
  
            

  
D10    D17          D30 

Fig. 4 Examples of three classes of textures from Brodatz dataset. 
 
 
 
 
 
 

http://www-cvr.ai.uiuc.edu/ponce_grp�
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         T13 
Fig. 5 Examples of three classes of textures from UIUCTex database. 

4.2 Region Formation  

About 220,493 SURF regions were extracted from the 
Brodatz training images. The average number of SURF 
regions extracted per image is about 663. Also, about 
268,646 SURF regions were extracted from UIUCTex 
training images. The average number of SURF regions 
extracted per image is about 1,075.  

4.3 Clustering SURF Regions to build a tree of 
keypoints 

At this stage, a hierarchical tree of 64-dimensional SURF 
regions for each of the two datasets was built using 
hierarchical k-mean tree algorithm. The branching factor 
of 10 is used for the k-mean tree construction. Up to ten 
iterations of k-means were run and the tree building 
process can take a few hours. The tree, built from the 
Brodatz training set, contains 327,567 nodes (220,493 leaf 
nodes and 107,074 internal nodes) with d = 64, the  
number of levels = 10 and k = 10, while the tree, built 
from UIUCTex training set, contains 395,866 nodes 
(268,646 leaf nodes and 127,220 internal nodes) with d = 
64, the number levels = 8 and k = 10.  
 
4.4 SVM Classification 
 
After the tree of keypoints was built, multi-class SVM 
classifiers were built using one-against-rest scheme. The 
regularization constant C was set at 1, 10, 100, 1000, and 
10000. Each C was evaluated using 5-fold cross validation 
method on the training set only. The SVM classifiers with 
the parameter C=10 gave the best classification rates.  
 
Once the training of SVM classifiers had been completed, 
the test samples were fed into the classifiers and the 
predicted class IDs of the test samples were compared with 
the true labels. The results are reported in terms of the 
mean classification rates. 
 

4.5 Results 
  
In the first experiment, all 111 textures in the Brodatz 
dataset were used. According to Xu et al. [11], the 111 
textures can be grouped into 3 types based on the degree of 
regularity or type of structure of the textures. The first type 
consists of six textures which have degrees of 
regularity more than 5 (highly regular type). The second 
type consists of fifty five textures which have degrees of 
regularity between 4 and 5 (regular type). Finally, the third 
type consists of fifty textures which have a degree of 
regularity between 3 and 4 (irregular type). The results of 
the experiments performed on the three types of the 
textures are summarized in Table 1.  It can be seen that the 
textures of the highly regular type achieve  a classification 
rate of 100 percent, the textures of regular type achieve a 
mean classification rate of 90.91 percent, and the textures of 
irregular type achieve a mean classification rate of 87.85 
percent. The mean classification rate for all textures is 
90.84 percent. The results are better than those of the three 
previous works, see Table 3 for the comparisons. Figure 6 
shows three textures that were classified incorrectly 
because the training and testing examples are highly non-
homogeneous. 
 
 
 
 
 
 
 

             D42                                 D57                                      D44 
         Fig.6 Examples of misclassified textures from Brodatz dataset. 
 
In the second experiment, a set of experiments were 
conducted on the UIUCTex dataset with an increasing 
number of classes. The numbers of classes used in the set 
of experiments are 3, 8 and 25, the same as [22].   The 
results from the experiments are summarized in Table 2.  
For the experiments performed on the three classes of T23-
T25 and the eight classes of T18-T25, Qin et al. [22] 
method achieved the best performance.  However, as the 
number of classes increases to 25, the classification task 
becomes more challenging. The proposed methods 
achieved the mean classification rate of 93.60 percent for 
the case of 25 classes, which is better than the previous 
works of [22], [29].  
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Table 1 : The mean classification rate results of the Brodatz dataset 

Categories Proposed 
Method 

D6, D20, D33, D51, D52, D101  100.00 
(6 classes - highly regular type)  

D2, D3, D4, D5, D10, D14, D16, D17, D19, 90.91 
D21, D23, D24, D27, D32, D34, D35, D36,  
D37, D38, D39, D41, D42, D43, D45, D46,  
D49, D50, D53, D54, D55, D56, D59, D63,  
D64, D65, D66, D68, D72, D75, D79, D81,  
D83, D84, D85, D86, D92, D94, D96, D98,  
D100, D102, D103, D105, D106, D110  
(55 classes - regular type) 
  

D1, D7, D8, D9, D11, D12, D13, D15, D18 87.85 
D22, D25, D26, D28, D29, D30, D31, D40,  
D44, D47, D48, D57, D58, D60, D61, D62,  
D67, D69, D70, D71, D73, D74, D76, D77,  
D78, D80, D82, D87, D88, D89, D90, D91,  
D93, D95, D97, D99, D104, D107, D108,  
D109, D111  
(50 classes - irregular type) 
  

D1 - D111  (111 classes – all types) 90.84 

Table 2 : The mean classification rate results of the UIUCTex dataset 

Categories Lazebnik 
[29] 

Qin  
[22] 

Proposed 

T23 – T25 95.89 100 94.44 
(3 classes are fabric texture)    

T18 – T25 93.70 98.40 93.75 
(8 classes are fabric, wall     
paper, fur and two carpets)    

T1-T25(25 classes) 92.61 83.00 93.60 
 
The proposed approach has shown to give high 
classification rates on both datasets comprising of scale, 
rotation, deformation and viewpoint changes hence it has 
proven to be robust to these environment and imaging 
conditions.  The experiment results also show that the 
kernel-based learning method can yield better texture 
classification rates than those of the nearest-neighbor 
classification method with EMD [29]. Furthermore, they 
show that the texture representations based on the 
distribution of the local features like SURF are more 
effective than the combinations of linear filters [23] for 
texture classifications. 

Table 3 : The mean classification rates of the four different methods for 
the two texture databases. 

Methods Brodatz 
3 trainings per class 

UIUCTex 
10 trainings per class 

Lazebnik et al. [29] 88.15 92.61 

Mellor et al.[23] 89.71 92.84 
Qin et al. [22] 64.46 83.00 

Proposed 90.84 93.60 

5. Conclusions 

In this paper, a novel texture classification method is 
proposed. The method uses SURF descriptors to represent 
the key points of a texture. All the key points of all 
training texture images are then clustered by a hierarchical 
k-means algorithm yielding a tree structure called a tree of 
keypoints. The tree is built to facilitate the evaluation of 
the tree matching kernel used by multi-class SVMs to 
classify a given texture. Results from experiments 
conducted on textures from two databases, Brodatz and 
UIUCTex, have shown that SURF descriptors are invariant 
to many kinds of geometric and photometric 
transformation such as scale, rotation, deformation and 
viewpoint changes, and can be used effectively with the 
tree matching kernel to achieve high classification rates on 
multi-class SVMs. 
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