
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

8

Modular Design of Call Control Layer in Telephony Software

Ilija Basicevic

University of Novi Sad, Faculty of Technical Sciences
Novi Sad, 21000, Serbia

Abstract
An important property of a telephony system is the call control
model on which it is based. It is noted that many call control
models in the past, especially those in PSTN/ISDN networks
follow centralized model. For such a model, typical is significant
coupling of modules belonging to different services with the
basic call control module which is aware of all active telephony
features in the system. Although sometimes based on distributed
model, VoIP call control models still manifest some of the listed
problems of their predecessors. In this paper we present a fully
distributed model which exhibits minimal coupling of modules
belonging to different services and a simple basic call control
module. The model is based on taxonomies of call control
services which are presented in the paper. Also, the
implementation of several typical services is described.
Keywords: Call Control, telephony services, Voice over IP,
VoIP session transfer, VoIP session redirection

1. Introduction
Call control model can be described as a formal

representation (and design) of a distributed software
system for telephony communications. Typically, there is a
network consisting of infrastructure and endpoints. This
network can be represented as a graph. Infrastructure
nodes are responsible for routing. Endpoint nodes are
nodes that have only one adjacent node and are usually
responsible for end users' access to services of telephony
network. Call control model specifies the design and
mutual interaction of software modules that are responsible
for call processing.

The aim of this paper is twofold. One is to present the
specific call control model that is developed here. An
important issue with respect to that is the issue of modular
development of telephone features. For rather long time,
designers have strived to developed fully modular features,
decoupled from the code of the so called "basic call
control" and other features. The other aim of this paper is
to focus on the feature management module, which is an
important part of the call control layer.
Section 2 describes related work, section 3 presents two
taxonomies of call processing features that are elaborated
in this paper, and the manner in which some of the features

are implemented. Section 4 presents the implementation of
a feature that belongs to the class of network based
services. Section 5 contains concluding remarks.

2. Related Work
There has been a lot of research in the area of feature

management and call control models. Influential call
control models that are used in circuit switched telephony
have been published by Telecommunication
Standardization Sector of the International
Telecommunications Union (ITU-T). We mention here
Q.71 [1] model used in PSTN/ISDN networks and
Intelligent Network (IN) model [2]. In Q.71 model, each
new feature that is introduced to the call processing system
leaves its "fingerprint" in the basic call control module.
The IN is the first model in software industry that features
systematic definition and operational adoption of service
orientation [3]. The IN architectural stack clearly identifies
several well defined layers of service with distinct
responsibilities and roles. The next step in the
telecommunications industry has been the development of
object oriented application programming interfaces (API).
We mention here Parlay, the 3GPP Open Service
Architecture and Java APIs for Integrated Networks
(JAIN). A simplified version of Parlay/OSA has been later
extended with support for Web-services, and XML [4]
resulting in Parlay X [5], which is a de-facto standard
Web-services API today.

Distributed Feature Composition [6] has been an
attempt to develop a highly distributed and decoupled
model. The advent of Voice over IP (VoIP) telephony
brought H.323[7] and Session Initiation Protocol (SIP) [8]
models. There has been continuous work on improvement
of those models as in WSIP[9] and in compositional
control of IP[10]. SIP protocol is based on two-step and
three-step transactions, while in compositional control an
idempotent signaling protocol based on unilateral
descriptions is proposed. WSIP is an integration of two
concepts, SIP and Web Services. The idea behind WSIP is
separation of service integration signaling. Thus we have a
three tier stack of service integration, signaling and media

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

9

transmission. In more recent papers, call control is
researched as a part of collaborative streaming applications
[11]. IP Multimedia Subsystem (IMS), which is based on
combination of IN concepts and application of Internet
protocols, most importantly SIP and Diameter[12],
appeared in 2004. As of today, IMS is considered a global
standard for unified service control platform converging
fixed, mobile, and cable IP networks [13].

Although telephony end points of today are way
simpler than switches of PSTN/ISDN/IN networks, the
most important aspects of feature management problem are
present in both types of systems.

3. Two Taxonomies of Call Processing
Features

The concept presented in this paper is implemented in
the framework [14], but for convenience of readers, some
details required for understanding the paper are repeated
here. EndUser class models the end user of telephony
endpoint, and contains the typical telephony endpoint
interface. SignalingDevice is a class that interfaces the
underlying telephony protocol stack (SIP, for example).
Feature class is the parent of all classes that model
telephony features (e.g. Session, CallWaiting,
SessionRedirect etc.). Session class models the basic call
feature with first party call control interface. P3Session
also models the basic call feature but with the third party
call control interface. The important methods of Session
are: Invite, AcceptSession, Disconnect, ModifySession,
and the callbacks for messages from the remote peer:
OnAccepted, OnDisconnect, OnModifySession. The Invite
message from the remote peer is handled in the EndUser
object - at this moment the local Session object does not
exist. FeatureMng is the feature manager class which
dispatches received messages to feature modules. It is the
responsibility of this class to determine which active
features, and in which order will process the received
message. EndPoint models the session terminal available
to end users for utilizing network services. RoutingPoint is
the infrastructure node responsible for routing of messages.
RoutingPointExt is the infrastructure mode extended with
the software modules of network side applications.

We have introduced simple taxonomy of features,
based on analyses of standards and implementation results.
Each feature is either primitive, derivative or composite.
Basic service session has two classes, one with the
interface for first and the other with the interface for third
party call control. Basic session with the interface for first
party call control is considered primitive feature and the
root of this taxonomy. Derivative features are session
transfer, session redirect, session waiting, etc. Composite
features are basic session with interface for third party call
control and conference.

The relationship between composite and primitive
feature is similar to "has" relationship (aggregation) in
Unified Modeling Language (UML).

Figure 1: Session redirect MSC

Each feature's intelligence knows about itself and its
primitive elements' features. Each feature registers at the
feature manager for notification about call state changes. In
notification, manager follows the rule that active primitive
features are notified before derivative and composite ones.
For example basic call (Session) is notified about session
change before call waiting feature. For sessions, this rule
reduces to the following: the basic call is the first feature to
be notified about any session state changes.

Certain derivative features have read access to basic
call state. This is used for checking preconditions of
certain session control operations. No feature has full (read
and write) access to another feature data. Feature manager
fully recognizes only primitive features. All derivative and
composite features are considered by feature manager only
as instances of the generic class Feature. Regarding
unwanted feature interaction, it is assumed that end user
will not simultaneously activate features that result in
unwanted feature interaction. Although this is a very
simplifying hypothesis, we consider unwanted feature
interaction to be out the scope of this paper.

Typical feature communicates the EndUser object (for
receiving end user commands), the SignalingDevice object
(for sending signaling messages to remote peers), the
feature manager (for receiving commands from remote
peers), but there is a category of derivative features that
communicate the EndUser only for the reasons of feature
activation and configuration. During operation phase there
is no interaction with local end user in such features. Those
features manipulate the call automatically, without the
local user explicitly taking part in the call control. Example
is call redirection.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

10

Figure 2: Chain processing of received messages (send buffer)

There is another taxonomy of telephony features,
depending on the programming model. In the first class
there are features that are realized as peer-to-peer
(symmetrical) modules. Such a feature is basic call. Both
sides in the session communication are the same. In the
second class there are features that are realized using
client-server model (asymmetrical). An example is session
redirection feature, see Fig. 1. There is SessionRedirect
class implementing server side that receives INVITE
message (sent by Session object) and responds with
REDIRECT message, and there is SessionRedirectClt class
that receives REDIRECT message, closes the first session
(Session object that sent the INVITE) and opens a new one
by sending INVITE message to address referred to in
REDIRECT message. The SessionRedirectClt class
implements the client side of the feature. While
SessionRedirect extends the Session class,
SessionRedirectClt inherits the Feature class. An important
aspect of operation of this feature is the chain processing
of received messages. At the redirect server side, end user
module is the first to process received INVITE. In case
end user has already been engaged in a call, BYE message
with a reason that the end user is already in call will be
sent. The next in chain is session redirect server, which
processes the BYE message, removes it from the send
buffer and replaces it with REDIRECT message. The chain
processing is presented in Fig 2. It can be presented with
the following pseudo code.
while (sendbuffer not empty){

msg = get_message(sendbuffer)
//message is deleted from sendbuffer, iterator
//moves to next

if(relevant_to_operation_of_the_feature(msg))
 process (msg)

}

Processing of the message typically includes placing a
different message in the send buffer. When the last feature
in the chain finishes processing, messages in the send
buffer are actually sent over the network to remote peer.
The order of features in the chain is the result of the order
in which they were activated. This order is very important
for the feature interaction, but as noted earlier, we assume
that it is the responsibility of the system’s end user.

In order to sustain a relatively small number of basic
message types, we have introduced the following message
information field to messages: source feature type. Thus
we can use the same message type (ACCEPT) for
confirming session establishment and session transfer, or
for example the same message type (BYE) for session tear
down both in first party and third party call control. In
those cases, ACCEPT will carry either Session’ or
SessionTransfer’ identificator as source feature type and
BYE will carry either Session’ or P3Session’ identificator
in that message information field. Another reason for
introducing this message information field is the chain
processing of received messages, thus each feature knows
which feature reacted before it in the chain, and placed a
message in the send buffer. For example, if BYE is from
SessionTransferClt, SessionRedirect feature will ignore it.
But it will react to BYE which was placed into the send
buffer by Session feature.

Figure 3: Session Transfer MSC

Another client-server based feature is transfer. There
is SessionTransferClt class that implements the client side.
This class contains the TransferSession method. When the
user asks for transfer, EndUser object invokes the
TransferSession method of SessionTransferClt object. In
the next step, the SessionTransferClt's method sends
TRANSFER message to SessionTransfer object at the
remote peer. Two transfer feature objects are positioned at
two sides of an active session. Upon receiving the message,
SessionTransfer object instantiates another Session object,
and invokes its Invite method. An INVITE is sent to the
target point of transfer operation, see Fig. 3 We have
assumed here that the target responds with ACCEPT. This
message is processed by two feature modules: Session and
SessionTransfer. As we already noted FeatureManager first
dispatches the message to Session (as a primitive feature)
and then to SessionTransfer (as a derivative feature).

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

11

SessionTransfer object disconnects the session to transfer
client by sending BYE (it invokes Disconnect method of
Session object after it gets the handle of the session object
from feature manager). Immediately afterwards it confirms
the successful transfer by sending ACCEPT to
SessionTransferClt object at the remote side.

The example of session redirection feature (and
session transfer) shows the value of modular approach.
This feature can be implemented without the
SessionRedirectClt class by placing its logic in Session
class. (Also the transfer feature can be completely realized
in Session class without introducing SessionTransfer and
SessionTransferClt). In that way, the Session class grows
more and more complex. It becomes the module that
"knows everything" about call processing. The
consequence is that call control layer becomes much more
error prone. In contrast, modular development allows for
gradual increase of functionality. The call control layer is
easier to test and debug. The feature interactions are
controlled in a more straight forward manner.

The third party call interface of basic session, realized
in P3Session class, provides the following operations:
Establish, and Terminate. The Establish method, that
establishes basic session between two remote points is
based on transfer and monitoring features. Monitoring is
based on publish/subscribe event notification mechanism.

4. Network based services

The services mentioned in the Section 3 are end point
based. There is no service specific processing in
infrastructure points. In this section we will give an
example of implementation of network based service. Line
hunt is another ISDN supplementary service. It belongs to
the group of network side services. In the framework such
services are usually implemented by inheriting
RoutingPointExt class. Thus a new class RoutingPointExt1
has been implemented. This class contains a linked list of
hunt mappings. The mapping contains session layer
address that is mapped, and network layer address and port
it is mapped to. Since in line hunt one session layer address
is mapped to a group of network layer addresses, the
logical relationship of one line hunt mapping is realized as
a group of list elements, all containing the same value of
session layer address field.

The dynamics of the line hunt operation is realized in
the following manner. The routing of the protocol message
is intercepted. Typically, the router thread of
SignallingDevice class passes the received message to the
RouteProtMessage of RoutingPoint class, which then
inspects the routing table and forwards the message
according to the appropriate route in the table.

In case of the line hunt operation, router thread passes
the received message to RoutingPointExt1 class. In case of
INVITE and ACCEPT messages, the routing for line hunt
is different from aforementioned general routing
procedure. The processing of INVITE sets the flag of line
hunt for that session layer address to active. A copy of
INVITE message is sent to all addresses the target address
of INVITE is mapped to. The first received ACCEPT from
one of those addresses sets the flag to false, also a BYE is
sent to all the other addresses that INVITE has been sent
to.

5. Conclusions
During the decades long evolution of telephony

software, there have been several approaches to design of
call control layer. However, the majority of them featured
a strongly centralized approach where basic call control
module with inclusion of new features becomes a "know
all" module. The legacy of PSTN/ISDN networks of fixed
telephony has been the Q.71 model. With the appearance
of the IN network, ITU-T invested in an approach where
service plane and basic call control plane would be
strongly separated. This paper presents strongly modular
design of call control layer where inclusion of new features
is possible without modification of existing ones,
especially having in mind the basic call control module.
Telephony features in this model are implemented as
asymmetrical, client server modules, while basic call
control module is implemented as symmetrical, peer-to-
peer module. Implementations of session transfer and
session redirect telephony features described in the paper
show this separation between processing in the basic call
control and other features. The implementation of line hunt
service is given as an example of network based service.

References
[1] ITU-T Q.71 - ISDN Circuit Mode Switched Bearer Services,
(1993) International Telecommunication Union
[2] ITU-T Recommendation Q.1200, Q-Series Intelligent
Network Recommendation Structure, (1993) International
Telecommunication Union
[3] Tiziana Margaria, (2007), Service is in the Eyes of Beholder,
Computer Magazine, vol 40, No 11, DOI:10.1109/MC.2007.398
[4] Extensible Markup Language (XML) 1.0 (Fifth Edition),
W3C Recommendation, 26 November 2008
[5] ETSI OSA PArlay x 3.0 Specifications, European
Telecommunications Standards Institute and The Parlay Group,
2007
[6] Jackson M., Zave P., (1998), Distributed Feature
Composition: A Virtual Architecture for Telecommunications
Services, IEEE Transactions On Software Engineering, vol. 24,
no. 10

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

12

[7] Rosenberg J., Schulzrinne H., Camarillo G., Johnston A.,
Peterson J. Sparks R., Handley M. Schooler E., (2002), Session
Initiation Protocol, RFC 3261, Internet Engineering Task Force
[8] ITU-T H.323, Visual Telephone Systems and Equipment for
Local Area Networks Which Provide A Non-Guaranteed Quality
Of Service, (1996), International Telecommunication Union
[9] Liu F., Chou W., Li L., Li J., (2004), WSIP - Web Service
SIP Endpoint for Converged Multimedia/Multimodal
communication over IP, IEEE International Conference on Web
services (ICWS 04), pp.690
[10] Zave P., Cheung E., (2006), Compositional Control of IP
Media, International Conference On Emerging Networking
Experiments And Technologies, Lisboa, Portugal
[11] Kahmann V., Brandt J., Wolf L., (2006), Collaborative
Streaming and Dynamic Scenarios, Communications of ACM,
vol 49, no 11.
[12] Calhoun P., Loughney J., Guttman E., Zorn G., Arkko J.,
(2003), Diameter Base Protocol, RFC 3588, Internet
Engineering Task Force
[13] Magedanz T., Blum N., Dutkowski S., (2007), Evolution of
SOA concepts in Telecommunications, Computer Magazine, vol
40, No 11, 2007, DOI:10.1109/MC.2007.384
[14] Basicevic I., (2009), Object-Oriented Framework for
Development of Telephony Applications, Fourth International
Conference on Digital Telecommunications, Colmar, France

Ilija Basicevic received his BSc, MSc, and PhD degrees from the
University of Novi Sad in 1998, 2001 and 2009 respectively.
Currently, he is assistant professor at the same university. His
research interests are communication systems and computer
security. He has published more than 30 papers. Ilija is member of
ACM and IEEE.

	Introduction
	Related Work
	Two Taxonomies of Call Processing Features
	Network based services
	Conclusions

