
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org 460

A Schematic Technique Using Data type Preserving
Encryption to Boost Data Warehouse Security

 M.Sreedhar Reddy 1 Prof.M.Rajitha Reddy 2 Prof R.Viswanath3 Prof.G.V.Chalam4 Prof.Rajya Laxmi 5

Prof.Md.Arif Rizwan

1

Dept of CSE SSIETW,Hyderabad,AP.India

2

Dept of CSE ,SSIETW,Hyderabad, AP.India

3&6

Dept of CSE ,REC,Hyderabad, AP.India

4

Dept of commerce&BA, A N University, Guntur , AP.India

5

GITAM, VIZAG. AP.India
Dept of IT

Abstract
An ingenious data warehouse habitually contains information which must be painstaking enormously
sensitive and proprietary. Protection of this information, as important as it is, is too often thorny by the
presence of assorted computing environments, managerial issues, difficulties in controlling data
distribution, and slipshod attitudes towards information security. We present a method of in progression
fortification based on an encryption scheme which preserves the data type of the plaintext resource. We
suppose that this method is particularly companionable for multifaceted data warehouse environments

Key words: Query, prevention, detection, encryption, decryption, datawarehouse, datamining
.
1. Introduction
Nowadays numerous IT security professionals it
sounds as if believe that their restraint has three
goals: confidentiality, integrity, and availability.
This paper explores a different loom to the
problem of IT security goals. Guided by the
desire to anchor IT security in the most familiar
features of ordinary human life, the approach is
two pronged.
In terms of “security”; continues by analyzing
them; and, based upon this analysis, proposes a
basic definition of “Information Technology
security.”
Data warehouse technology has, in modern
years, provides its corporate executives and
business planners with extraordinarily powerful
decision support tools. Data warehouses can tell
us which products to manufacture, where to
locate factories and how to gain market share.
They can be used to answer questions which
weren’t even contemplated when the data
warehouse was built. Most remarkable of all—
these feats can be accomplished using data
extracted from existing operational systems.
It has become gradually more perceptible
however, that the data warehouse is an alluring

goal for snoopers. To envisage that you are a
annoyed employee, or industrial surveillance
representative who manages to gain access to an
organization’s computer system. Now, would we
likely to find out?

• Data grouped into subject data areas so
that you can quickly find the items of
interest.

• Accurate and complete information
that has been painstakingly reviewed
for correctness.

• Time-indexed data so trends can be
easily identified.

• Summarized information with the
ability to drill down for details.

Conceptually, the data warehouse process
consists of three simple steps:
1) Extract data from the operational system,
2) Load the extracted data into data warehouse
tables, and
3) Query the data warehouse to obtain decision
support information.
Data is at risk during each of these phases.
Several factors render data warehouses
particularly susceptible to attack:
1) Extracted data is frequently transmitted of
over insecure communication lines.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org 461

2) Extracted data is stored on a variety of
computer systems and removable media which
may have only minimal security.
3) The extraction process produces intermediate
files and load files which contain sensitive
information, but may not be well-protected.
4) Maintaining proper security attributes for the
data warehouse tables is extremely time
consuming in the face of constant organizational
change.
5) Users often retrieve data from the data
warehouse and create a “data mart,” leading to
widely distributed copies of sensitive data.
6) Sound security practice is often undermined
because the data warehouse development effort
is a “high visibility” project with a tight
schedule.
Furthermore that research into the unique aspects
of data warehouse security is still in the early
stages, additional vulnerabilities will certainly be
identified in the future
2. Problem Statement
When to develop a cryptographic approach to
data warehouse security which could be practical
in the complex, heterogeneous environments
encountered in the business world, we
recognized certain decisive objectives:
1) The approach should work with any
combination of commonly used relational
databases. (This rules out requiring binary data
storage or other database-dependent features.)
2) It must function on multiple hardware
platforms and operating systems.
3) It must appropriately encrypt and decrypt data
on machines with different character sets (e.g.,
ASCII and EBCDIC).
4) The strength of the encryption algorithm
should be comparable to widely used, state of the
art technology.
5) To add encryption to an existing database
should require no changes to the structure of the
database. (Neither should any application
changes be required to access non-encrypted
fields.)
6) Encryption should occur as early as possible
in the extraction process and decryption should
occur at the last possible moment.
7) It could not be dependent on a particular
programming language.
8) It should be “fail safe.” (Any likely failure
mode should be such that that access to the data
is denied.).These requirements, based on our
business requirements, constituted a formidable
challenge. During the course of our research,
however, it became apparent that the tractability
of the problem could be improved significantly if

we could find a way to preserve the original data
type across the encryption and decryption
transformations.
3. Proposed Solution
Cipher text bears roughly the same resemblance
to plaintext as a hamburger does to a T-bone
steak. A social security number, encrypted using
the DES encryption algorithm, not only does not
resemble a social security number but will likely
not contain any numbers at all. A database field
which was defined to hold a nine-character social
security number would not be able to store the
DES-encrypted version of the data.
A Visual Basic program would not read it. A
graphical interface would not display it. There
would be nothing that you could do with the
encrypted social security number unless you had
made extensive provisions for changes in data
format throughout your application and physical
database design.
3.1Basic Data type Preservation
Our method reduces the need for changes to
database structures and applications by
preserving the data type of the encrypted field.
Data type preservation simply means that each
cipher text field is as valid as the plaintext field it
replaces. The key to our approach is defining an
appropriate alphabet of valid characters and
performing all operations within the constraints
of the defined alphabet. Each different data type
requires a judicious choice of alphabet. An
alphabet consisting of numeric digits
(“0123456789”) could be used to encrypt most
number data, such as social security numbers
(e.g. 234-415-6978).(The dashes, not included
the chosen alphabet, are copied unchanged to the
corresponding positions in the cipher text
output.)
Other alphabets, such as all printable ASCII
characters, all characters shared by ASCII and
EBCDIC, or all hexadecimal digits can be used
to encode a variety of common data types.
3.2The Approach
The first processing step involves replacing each
plaintext character in the string by an integer that
represents its position, or index, within the
chosen alphabet. This number is between zero
and one less than the total number of characters
in the alphabet. If a plaintext character is not in
the valid alphabet, it is copied to the output and
removed from the string to be encrypted.
Example:
Plain text=” crazy”
Alphabet=”abcdefghijklmnopqrstuvwxyz”

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org 462

Step1: Assign Index values
Index values=7,4,11,14,11

Step2: Add position sensitive offsets
Offsets=10,4,18,25,8
New index values=12,9,6,9,17

Step3: Shuffle the index value string
Shuffled values=3,18,17,10,9

Step4: Convert Back to desired data type
Cipher text-“crazy”

Figure 1 includes a worked example of the basic
algorithm.:
 After the alphabet index values have
been assigned, we add a varying integer
“offset”to each. We use modular addition to
ensure that we generate only valid characters
(i.e.characters which are contained in the
alphabet).Remember that “modular” addition
means adding two numbers and then determining
the remainder after division by a constant
“modulus” value. In the example above the
alphabet size is 26 so, for example, 18 + 11 (mod
26) = 3. The actual offset values are generated
based on a portion of the key being used to
encrypt the data. This step ensures that long
series of identical characters (such as 20 blanks
at the end of a character field) will not encrypt
identically. After adding the offsets, the entire
string is shuffled. The shuffling method varies
according to a permutation-invariant property of
the index values, such as a sum or exclusive-or,
of all values.2
 The shuffling step helps to ensure that
plaintexts with common prefixes or suffixes do
not produce cipher text with common prefixes or
suffixes. Once the encoding process is complete,
each index value is mapped to the appropriate
character in the alphabet. To recover the
plaintext from the cipher text, one replaces the
cipher text characters by their alphabet index
values, “unshuffles” the string, regenerates the
offset values, subtracts modularly on an integer-
by-integer basis and substitutes the appropriate
alphabet character.
Two enhancements to the above algorithms may
be used to deal with certain data specific
situations:

• First, in order to ensure that the encoded
values of two single character strings
with adjacent characters are not
sequential (for example, we would not
want “b” to encrypt as “y” whenever
“a” encrypts as “x”), the alphabet itself
can be shuffled based on a portion of
the encryption key.

• Second, in order to inhibit guesses
based on encrypted character

permutations, we can “ripple” the data
from left to right and from right to left.
This is done by hashing the key into a
“starter-digit” and adding adjacent
values pair wise. For example, the
string of index values “1, 2, 3” might be
rippled into “23, 5, 40” as follows
(assuming a 55 character alphabet):

starter value = 72 (obtained by hashing the
encryption key)
Adding left to right:
72 + 1 (mod 55) = 18
16 + 4 (mod 55) = 20
20 + 3 (mod 55) = 23
Adding right to left:
23 + 72 (mod 55) = 40
20 + 40 (mod 55) = 5
18 + 5 (mod 55) = 23
Applying this same method to the permutation
“3, 2, 1,” on the other hand, ripples it to “27, 7,
40” and the fact that the two strings contain the
same characters is disguised.
2 A variety of techniques could be used to
generated the offsets and shuffling
pattern,including the use of pseudo-random
number generators.
3.3Enhanced Encryption
While the encoding scheme presented above is
sufficient to deter casual attacks,more substantial
protection is required to protect sensitive data in
the data warehouse. The approach described
above can be combined with well-known
encryption algorithms, such as DES or IDEA, to
significantly increase the attacker’s burden. The
basic idea is to use an established algorithm of
known strength to produce the “offset” values.
The DES algorithm takes as input a 64-bit input
block and a 64-bit key (56 key bits and 8 parity
bits) and uses these two values to produce a 64-
bit output. The cipher text output can be
decrypted using the same key. For all practical
purposes, the only way to break the scheme is by
an exhaustive search of the key space.
DES, like any block cipher, can be operated as a
stream cipher in “cipher-feedback” mode. We
use this mode to encrypt one index value at a
time. At the end of each encryption pass, we also
shift the plaintext data into the DES input
register. This process is illustrated as follows:
Let the alphabet index values of the n character,
plaintext input string be represented
 By i1 i2 i3 i4 i5 … in

H (K) = a

 Let the 64-bit DES
initial value required by cipher-feedback mode
be constructed based on a portion of the
encryption key

1 a2 a3 a4 a5 a6 a7 a8 = A

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org 463

 Where each subscripted “a” value represents
an 8-bit number (“0” to “255”). Let the output of
the DES algorithm, using a key of “k” and an
input of “A,” be represented by
E k (a1 a2 a3 a4 a5 a6 a7 a8) =b1 b2 b3 b4 b5 b6
b7 b8
The first transformed index value is the modular
sum z1 = b

.

8+ i1

 At this point, a new DES input value, A, is
constructed as A

 (mod l). Where “l” represents
the alphabet length.

2 = b2 b3 b4 b5 b6 b7 b8 i1

 E

 and a
new DES output is obtained

k (b2 b3 b4 b5 b6 b7 b8 i1) =c1 c2 c3 c4 c5 c6
c7 c8
 The second transformed index value is the
modular sum z

.

2 = c8 + i2
Note that the use of an addition operator is
required, instead of the usual exclusive-or
operator, is required to ensure that the data type
is preserved.

(mod l).

After n such steps, during each of which a single
input index value is transformed, we have an
encrypted index-value string
Z = z1 z2 z3 z4 z5 … z
 We claim that recovering the string,

n

 i1 i2 i3 i4 i5 … in , from the transformed string,
z1 z2 z3 z4 z5 … zn

Setup responsibilities:

 , without knowledge of the
key, K, is as difficult as breaking the DES
algorithm itself. When using cipher-feedback
mode, DES decryption, per se, is never invoked.
Reversing the transformation is done by
subtracting the low order DES output from the
transformed index value. Below is a summary of
the algorithm.

1) Select an encryption key with enough bits for
the encryption algorithm key, encryption
algorithm initial value and any basic processing
stages.
2) Select a suitable alphabet to support the data
type of the data to be encrypted.
3) Shuffle the alphabet according to a scheme
based on the key. For each encrypted field:
4) Scan the input buffer for characters which are
not included in the chosen alphabet.
Move all invalid characters unchanged to their
corresponding positions in the cipher text output
buffer.
5) Move the index values of all valid characters
to adjacent positions in a work buffer.
6) Add position-sensitive offsets according to a
key-dependent scheme.
7) Scuffle the work buffer positions according to
a data-dependent scheme.

8) “Ripple” the work buffer by calculating a key-
based starter number and modularly adding pair
wise from left to right then from right to left.
9) Set the cipher-feedback initial value using the
chosen key.
10) Calculate the modular sum of the first work
buffer position and the lowest order
DES output byte. Store this value in a second
work buffer.
11) Obtain a new DES initial value by moving
the DES output to the input, shifted one byte to
the left, and shifting the work buffer value into
the lowest order position.
12) Repeat steps 9 through 11 using successive
work buffer index values until all of the data is
transformed.
13) Replace the transformed index values by
their corresponding character equivalents and
store them in the open cipher text positions.
Decryption is accomplished by performing the
inverse of each transformation in the reverse
order.
4. Implementation Issues and Usage
Constraints
Perhaps the most important caveat for anyone
who wishes to implement our proposed
encryption scheme is to guard against possible
misinterpretation of encrypted data.
Scrambled text fields such as names and
addresses are not likely to be mistaken for real
information, but numeric fields may contain
quite plausible values. A legitimate user who,
through some administrative oversight, is
erroneously presented with encrypted data may
not recognize it as such and make bad decisions
as a result. One approach to this shortcoming
may be to include code in the query tool to fill in
encrypted fields with a default value whenever
the user has not been authenticated. Another
approach may be simply to restrict the
application of the technique to text fields. A
revenue field may be quite useless without the
corresponding product data or sales region
information.
Another restriction on the use of this technique is
that decryption must be performed before
aggregate functions, such as minimum,
maximum, sum, and average, are applied. This is
not a serious inconvenience in the data
warehousing environment because precompiled
summary tables are usually available.
One must also bear in mind that this encryption
scheme is consistent in that the same plaintext
always results in the same cipher text. This has
both positive and negative implications. On the
positive side, the consistency of the encrypted

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org 464

data allows for relational joins and blind keys
(described later). On the other hand, consistent
encryption exposes the data to the possibility of a
statistical attack. If an attacker knows the relative
frequency of specific data items, such as medical
tests, he can deduce the corresponding encrypted
values. This kind of attack can be stymied by
using a value from another field (the table’s
primary key, for example) to modify the
encryption key. This would, of course, preclude
the use of this data in relational join predicates.
5. Co-existence with Other Security
Controls
We do not propose data type-preserving
encryption as the ultimate solution to all data
warehouse security concerns. It is presented,
rather, as one of several mechanisms to be
employed in a more comprehensive security
strategy. Specifically, we see our technique as a
containment device which limits potential
damage in the event of a successful bypass of
other security controls. In general, there are at
least five categories of security controls:
Prevention- Preventative measures include
anything which can be done to prevent an attack
or to keep it from succeeding. This includes
strengthening vulnerabilities and providing
disincentives to the attacker.
Detection- Detective measures include anything
which alerts the support staff to the fact that an
attack is in progress or has been recently
attempted.
Containment-. Containment measures include
anything which can serve to limit the damage of
a successful attack.
Recovery- Recovery measures include anything
which is done to restore normal operation and
user access after an unscheduled interruption.
Investigation- Investigative measures include
anything which is done to identify a malefactor
and collect evidence which will be used in a
disciplinary process or criminal prosecution.
A good data warehouse security plan will include
multiple countermeasures for each identified
threat ideally, at least one from each of these
categories.
6. Applications to Other Areas
In addition to data warehouse security, there may
be several other areas in which this technique
may prove useful, such as providing an
additional check on data integrity.
By adding a check character to the beginning of
each plaintext field any alteration would be
immediately obvious during the decryption
process. The decryption routine could be

modified to perform this check and return an
error code is tampering is suspected.
Another possible application is in the use of
blind keys. In certain situations, one needs to
know that two quantities are equal without
actually knowing the quantities themselves.
One may wish to match bank account numbers
from multiple sources, for example, in credit
check applications but not use the actual
numbers themselves because of the potential for
fraudulent activity.
It may also be possible to control access to
commercially available data through the use of
this technique. A master database could be
distributed to subscribers with individually
licensed components encrypted using different
keys. Access to the individual components could
be made available by distributing keys following
payment of the proper license fees.
Acknowledgement: I really thankful our
Chairman Madam Smt.R.Usharani,Director Sri
R.RajiRedyy and my kids Mr.M.Crazy and Kum
M.Lucky who encouraged lot directly or
indirectly to present this research paper
References
[1] H. Akaike. On entropy maximization principle.
Applications of Statistics, pages 27{41, 1977.
[2] M. R. Anderberg. Cluster Analysis for Application.
Academic Press, 1973.
[3] P. S. Bradley, U. Fayyad, and C. Reina. Scaling
clustering algorithms to large databases. In Proc. 4th
International Conf. on Knowledge Discovery and
Data Mining (KDD-98). AAAI Press, August 1998.
[4] I. P. Felligi and A. B. Sunter. A theory for record
linkage. Journal of the American Statistical Society,
64:1183{1210, 1969.

[5] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An
algorithm for finding best matches in logarithmic
expected time. ACM Tras. Math. Software,
3(3):209{226, 1977.
[6] C. L. Giles, K. D. Bollacker, and S. Lawrence.
CiteSeer: An automatic citation indexing system. In
Digital Libraries 98 { Third ACM Conference on
Digital Libraries, 1998.
[7] M. Hernandez and S. Stolfo. The merge/purge
problem for large databases. In Proceedings of the
1995 ACM SIGMOD, May 1995.
[8] H. Hirsh. Integrating mulitple sources of
information in text classi_cation using whril. In
Snowbird Learning Conference, April 2000.
[9] J. Hylton. Identifying and merging related
bibliographic records. MIT LCS Masters Thesis, 1996.
[10] B. Kilss and W. Alvey, editors. Record Linkage
Techniques|1985, 1985. Statistics of Income Division,
Internal Revenue Service Publication 1299-2-96.
Available from http://www.fcsm.gov/.
[11] A. McCallum, K. Nigam, J. Rennie, and K.
Seymore.Automating the construction of internet

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org 465

portals with machine learning. Information Retrieval,
2000. To appear.
[12] A. K. McCallum. Bow: A toolkit for statistical
language modeling, text retrieval, classi_cation and
clustering. http://www.cs.cmu.edu/_mccallum/bow,
1996.
[13] A. Monge and C. Elkan. The _eld-matching
problem: algorithm and applications. In Proceedings
of the Second International Conference on Knowledge
Discovery and Data Mining, August 1996.
[14] A. Monge and C. Elkan. An e_cient
domain-independent algorithm for detecting
approximately duplicate database records. In The
proceedings of the SIGMOD 1997 workshop on data
mining and knowledge discovery, May 1997.
[15] A. Moore. Very fast EM-based mixture model
clustering using multiresolution kd-trees. In Advances
in Neural Information Processing Systems 11, 1999.
[16] H. B. Newcombe, J. M. Kennedy, S. J. Axford,
and A. P. James. Automatic linkage of vital records.
Science, 130:954{959, 1959.
[17] S. Omohundro. Five balltree construction
algorithms.Technical report 89-063, International
Computer Science Institute, Berkeley, California,
1989.
[18] K. Rose. Deterministic annealing for clustering,
compression, classi_cation, regression, and related
optimization problems. Proceedings of the IEEE,
86(11):2210{2239, 1998.
[19] G. Salton and C. Buckley. Term weighting
approaches in automatic text retrieval. Information
Processing and Management, 24(5):513{523, 1988.
[20] M. Sankaran, S. Suresh, M. Wong, and D.
Nesamoney.Method for incremental aggregation of
dynamically increasing database data sets. U.S. Patent
5,794,246,1998.
[21] D. Sanko_ and J. B. Kruskal. Macromolecules:
The Theory and Practice of Sequence Comparison.
Addison-Wesley, 1983.
[22] J. W. Tukey and J. O. Pedersen. Method and
apparatus for information access employing
overlapping clusters. U.S. Patent 5,787,422, 1998.
[23] T. Zhang, R. Ramakrishnan, and M. Livny.
BIRCH:An e_cient data clustering method for very
large databases. In Proceedings of the 1996 ACM
SIGMOD International Conference on Management of
Data, pages 103{114, 1996.

