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Optimization of LSE and LMMSE Channel 
Estimation Algorithms based on CIR Samples 

and Channel Taps 
 
 
 
 
 
 
 
 
 
Abstract-- For spectrally efficient transmission over 
time-varying channels, the use of Adaptive Coding 
and Modulation (AMC) in wireless OFDM systems 
requires the estimation of radio channel at the 
receiver. This paper focuses on the use of time 
domain channel statistics, mainly concentrating on 
two schemes: Linear Minimum Mean Square 
Estimation (LMMSE) and Least Square Estimation 
(LSE) and their variants. LMMSE performs better 
than LSE but at the cost of computational 
complexity. The performance of LSE can be 
improved by increasing CIR samples and channel 
taps. To avoid the matrix inversion lemma, the 
channel matrix can be downsampled or regularized. 
Theoretical analysis and computer simulations are 
used for performance and complexity comparisons.  

  
I. INTRODUCTION 

Orthogonal Frequency Division Multiplexing 
(OFDM), a multicarrier modulation method, is 
considered an essential technique for a variety of 
high data rate communication systems like 4G 
WiMAX and LTE-Advanced due to its efficient 
management of ISI in frequency selective fading 
channels. OFDM can also be used as a modulation 
technique because of the simple equalizer design and 
spectrum efficiency. The combination of OFDM with 
Multi-Input Multi-Output (MIMO) provides the 
increased data rate and improved quality of service. 
That is why MIMO-OFDM is adopted in B3G 
(Beyond 3rd Generation) mobile communication 
systems. 
  

 
 
 
 
 
 
 
 
Coherent OFDM, which has 3-4 dB performance 
gain more than non-coherent OFDM, requires 
channel state information (CSI) at the receiver and/or 
transmitter.CSI only at the transmitter is usually 
preferred to make the receiver design simple. Data 
throughput of channel depends on the quality of the 
channel estimator. For channel estimation there are 
mainly two methods proposed as, first is decision 
directed channel estimation and other one is pilot-
assisted channel estimation. In decision directed 
method, the modulation is removed from subcarriers 
using the previously demodulated symbol, thus all 
subcarriers can be used for channel estimation. This 
method requires a large amount of data and its 
convergence rate is also very slow, that is why it is 
not well suited for real time systems. In pilot assisted 
method there are two modes, if all subcarriers have 
known pilots then it is called block pilot mode while 
in comb pilot mode only a few subcarriers carry 
known pilots.  
 Channel can be estimated in time domain or 
frequency domain. In frequency domain two 
algorithms are proposed Least Square Estimation 
(LSE) and Linear Minimum Mean Square Estimation 
(LMMSE). LSE algorithm is relatively easy to 
implement due to its less complexity and it also does 
not require any channel apriority probability. To 
achieve better performance LMMSE is proposed. 
LMMSE is optimum in minimizing Mean Square 
Error (MSE) as it uses addition information of 
operating SNR and the channel statistics. But it 
complexity is higher due to the channel correlation 
and the matrix inversion lemma. There can be a 
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compromise of complexity and performance by 
taking the effect of the channel taps and channel 
impulse response (CIR) samples. By assuming the 
impulse response of finite length, these two 
algorithms can be modified having less complexity. 
In mobile wireless links the channel statistics are not 
known, in these cases it is robust to consider the 
uniform Power delay profile (PDP), which also 
reduces complexity than LMMSE. The complexity of 
LSE can be reduced by regularizing the Eigen values 
of the matrix being inverted or by down-sampling the 
channel vector.  
 The rest of the paper is organized as: Section 
2 describes OFDM signal and channel model, in 
Section 3, LMMSE, LSE and their different variants 
are discussed, followed by the simulation results in 
Section 4 and in the last section conclusions are 
drawn. 
 
II. OFDM SIGNAL AND CHANNEL MODEL 

 In OFDM, the transmitted bit stream is 
divided into many different sub-streams and send 
them over many orthogonal sub-channels. Suppose 
the transmitted data at ݇-th subcarrier is ݀ሺ݇ሻ. Then 
the multicarrier modulated signal will be 

ሺ݊ሻݔ ൌ  
1
ܰ

 ݀ሺ݇ሻ
ேିଵ

ୀ

݁
ଶగ

ே  ,    ݊ ൌ 0,1,2, … , ܰ െ 1 

   
Where N is total number of sub-carriers. Before 
transmitting x(n), guard interval (GI) is inserted to 
avoid Inter-symbol interference (ISI) and inter-carrier 
interference (ICI). This signal is then passed through 
a time-varying multipath channel whose impulse 
response is characterized by 
 

       ݃ሺݐ, ߬ሻ ൌ   ݐሺߜߙ െ ߬ሻ
ିଵ

ୀ
 

  
where L is total number of multi-paths and {ߙ} is a 
complex Gaussian random variable of zero mean 

having a power delay profile: ݁ܥఛ/ఛೝೞ . {߬} 
represents time delay between different multi-paths, 
whose maximum value is not supposed to exceed the 
guard interval length.  
 After passing this fading channel and 
removing GI, the received OFDM signal in frequency 
domain will be 

ܻ ൌ ܺܪ  ܹ 

 ܹ  is the complex-valued additive Gaussian noise 
having zero mean and ߪଶvariance. ܪ is the channel 
frequency response, that is DFT of the channel 
impulse response ݃ሺݐ, ߬ሻ.  

 
III.  CHANNEL ESTIMATION ALGORITHMS 
 

A. LMMSE Channel Estimation 
 In presence of channel noise, LMMSE 
estimation of the uncorrelated Gaussian channel 
vector ݃ is given by [1] 
 

     ො݃ ൌ  ડ௬ડ௬௬
ିଵݕ 

Where  
ડ௬ ൌ  ડܨுܺு 

 
ડ௬௬ ൌ ுܺுܨડܨܺ   ߪ

ଶܫே 

 
  ડ௬௬ is the auto-covariance matrix of ݕ and ડ௬ is the 

cross co-variance matrix between ݃ and ߪ .ݕ
ଶ  is 

variance of noise. For unique minimum MSE, these 
co-variance matrices should be positive definite, 
 In frequency domain the channel estimate 
݄

௦ is given by 
 

݄
௦ ൌ ܨ ො݃ ൌ  ݕுܺுܨܳܨ

 
Where ܨ is orthonormal DFT-matrix and ܳ is given 
by [1] 
 

ܳ ൌ  ડൣሺܨுܺுܺܨሻିଵߪ
ଶ  ડ൧

ିଵ
ሺܨுܺுܺܨሻିଵ 

 

B.  Modified LMMSE Channel Estimation 
 For large N the calculation of ܳ matrix 
implies high complexity. To reduce the size of ܳ, we 
can take only first L taps having significant energy. 
Using this approximation ડ is reduced to L ൈ L  

matrix. So modified LMMSE estimation becomes [1] 

 ݄ ௦ ൌ ܶܳ′ܶுܺுݕ 
  
Where ܶ have only first L columns of DFT matrix 
and ܳ′ is 
 

ܳ′ ൌ  ડ′
ൣሺܶுܺுܺܶሻିଵߪ

ଶ  ડ′൧
ିଵ

ሺܶுܺுܺܶሻିଵ 

 
ડ′

 denotes the upper left L ൈ L matrix of ડ. 
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C. Low Complex LMMSE Channel Estimation 
 In LMMSE channel estimation, a matrix 
inversion is needed as the input data X is changed 
which results in high complexity. This complexity 
can be reduced by averaging the transmitted data x 
i.e. ܧሺܺܺுሻିଵ. If we assume same signal 
constellation for all frequencies, then   

ሺܺܺுሻିଵܧ ൌ ܧ  ቚ
ଵ

௫ೖ
ቚ

ଶ
.  

The simplified LMMSE estimation will be [2] 

݄
௦ ൌ  ડሺડ  

ߚ
ܴܵܰ

 ݕሻିଵܺିଵܫ

 Where ߚ depends upon the signal constellation. 
 

D. Robust LMMSE Channel Estimation 
 In mobile wireless links, the channel 
changes with time depending on the particular 
environment. It is not possible to know the channel 
PDP at the design time [3]. Identical MSE 
performance can be obtained for all PDPs with same 
maximum delay. So it is robust to design the channel 
co-variance matrix with a uniform PDP [4]. 
  

E. LSE Channel Estimation 
 A prior knowledge of second order channel 
statistics is required for LMMSE estimator, which is 
not possible in many practical situations. We can 
design an estimator filter which is a function of 
available data only [5]. In LSE estimation, we use 
only signal model, no probabilistic assumptions are 
required. 
 LSE estimation of channel is given by 
     

݄
௦ ൌ  ݕுܺுܨ௦ܳܨ

 
where  

ܳ௦ ൌ ሺܨுܺுܺܨሻିଵ 
 
݄

௦ can also be written as [1] 
 

݄
௦ ൌ ܺିଵݕ 

 

F. Modified LSE Channel Estimation 
  Though no modification are needed 
because of less complexity of LSE estimator but 
performance can be improved by considering only 
first L high energy channel taps. The modified LSE 
estimator becomes 

݄
௦ ൌ ܶܳ௦

′ ܶுܺுݕ 
where  

ܳ௦
′ ൌ  ሺܶுܺுܺܶሻିଵ 

 

G. Regularized LSE Channel Estimation 
 The problem of inversion of  ܰ ൈ ܰ matrix 
can be solved by regularizing the Eigen values of the 
matrix by adding a constant term to the diagonal 
elements. In this case, the matrix ܳ௦ will be [6] 
 

ܳ,௦ ൌ ሺܫߙ   ሻିଵܨுܺுܺܨ 

 
Where off-line constant ߙ is chosen such that the 
matrix ܳ,௦ is least perturbed. 

 

H. Down-Sampled Impulse Response LSE Channel 
Estimation 

 The inversion of ܰ ൈ ܰ matrix can be 
simplified by decreasing the sampling frequency, but 
ensuring the absence of aliasing. Only 2 out of 3 
channel taps are used and the discarded taps are set to 
zero. 
 The down-sampled version of channel 
vector ݃ can be [6] 
 

ҧ݃ ൌ ሺ݃  ݃ଵ  0  ݃ଷ  ݃ସ  0  …  ݃ିଵሻࢀ 
 
The channel transfer function can be written as 
  

ௌܪ ൌ ܨ ҧ݃ 
Which is equivalent to  
 
 ௌܪ
 

ൌ  

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
1 1 1 1 1
1 ଵݓ ଷݓ … ሺିଵሻݓ

1 ଶݓ ݓ … ଶሺିଵሻݓ

1 ଷݓ ଽݓ … ଷሺିଵሻݓ

1 ସݓ ଵଶݓ … ସሺିଵሻݓ

1 ହݓ ଵହݓ … ହሺିଵሻݓ

1 … … … …
1 ேିଵݓ ଷሺேିଵሻݓ … ےሺேିଵሻሺିଵሻݓ

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ۍ

݃

ଵ݃
݃ଷ
݃ସ
ڭ

݃ିଵے
ۑ
ۑ
ۑ
ۑ
ې

 

  
The estimated channel in this case will be 

 
݄

ௌ ൌ ሺܨௌ,ுܺுܺܨௌሻିଵܨௌ,ுܺுݕ 
 
 
 



IJCSI Interna
ISSN (Online
www.IJCSI.o

 
 

IV
To demon
algorithms
section. A
OFDM si
BPSK mod
To illustra
widely use
as a funct
Impulse R
the estimat
time. 
 
a. Compa

Th
variants i.e
Robust LM
shown in F
Modified L
some parts
account in
values, the
R.LMMSE
outperform
LMMSE a
difference 
time of Lo
LMMSE. 
LMMSE e
indicates t
LMMSE 
correlation
 

Figu

 
 

ational Journal of C
e): 1694-0814 
org  

V.  SIMULAT
nstrate the eff
s, Matlab Simu
All simulations

gnal in Rayl
dulation schem

ate the perform
ed Mean Squar
tion of SNR, 
esponse (CIR)
tors is compare

arison of LMM
he performan
e. Modified LM
MMSE and L
Fig.1. The diffe
LMMSE estim
s of the channe
n the former 
e performance
E but for 
ms LMMSE. 
and Low Comp
lies in the com

ow Complex L
The compariso
estimators is 
that there is a

while using
n matrix. 

ure 1.  MSE v/s SN

Computer Science 

TION RESULT
fectiveness of 
ulations are pr
s have been 
eigh Fading 

me and FFT si
mance of the e
re Error (MSE)
Channel Taps

) samples. The 
ed in terms of 

MSE Channel E
nce of LMM
MMSE with 10
Low Complex
erence between

mators is due t
el statistics are

estimators. F
e of LMMSE 
higher SNR
The perform

plex LMMSE i
mplexity as the 
LMMSE is les
on of computa
given in Tab

a wide gap of 
g covariance 

NR for LMMSE E

Issues, Vol. 8, Iss

TS 
the discussed

rovided in this
performed for
Channel with
ize is kept 64
estimators, the
) has been used
s and Channel
complexity of

f computational

Estimators 
MSE with its
0 taps, 40 taps
x LMMSE is
n LMMSE and
to the fact that
 not taken into
For low SNR
is better than

Rs R.LMMSE
mance of both

s same and the
computational

ss than that of
ational time of
le 1. Table 1

f time between
matrix and

stimators 

sue 1, January 201

d 
s 
r 
h 
. 
e 
d 
l 
f 
l 

s 
, 
s 
d 
t 
o 
R 
n 
E 
h 
e 
l 
f 
f 
1 
n 
d 

 

 
 
       

 
F

 
 
TABL

 

TABLE

Figure
         

1 

          

Figure 3.  MSE v/s

LE 1 COMPUTAT
ESTIMATO

Estimator 

LMMSE 
Modified-10 
Low Complex 
LMMSE 
LMMSE 
(Corr Mtx) 
LMMSE 
Modified-40 
R.LMMSE 
 
LMMSE 
(Cov Mtx) 

E 2  TIME V/S CIR

CIR Sam
30
40
50
60

 

e 4.  MSE v/s SNR
       LMMSE  Est

s CIR Samples for

TIONAL TIME FO
RS                     

5000 
Simulatio
         (sec

1 OFD
      (m

208.278 

320.713 

346.8 

440.945 

528.133 

529.319 105.86

 
R SAMPLES FOR

mples 

 

R v/s Channel Taps
timator 

 

r LMMSE Estimat

OR LMMSE 

DM S
mSec)

  1 Bit 
(mSec) 

 0.651 

 1.003 

 1.084 

 1.378 

 1.651 

64 1.65 

R LMMSE ESTIM

Time (mSec) 
1 

1.25 
1.5 
1.75 

s for Modified  

440 

 

 

tor 

MATOR 

 



IJCSI Interna
ISSN (Online
www.IJCSI.o

TABLE 3  TIM

C

 
Th

terms of C
shown in 
number of
all values 
samples on
The effect
shown in F
there is a 
10 to 60, t
60 we get
improveme
from 10 up
form of mo
Table 3. 
 
b.   Compa
  
for LSE, 
Downsamp
modificatio
of LS estim
However t
modified 
SNRs. Fo
which giv
regularized
performanc
Downsamp
advantage 
effect of C
shown in F
rapid impr
SNRs, but
further imp
comes in 
shown in 
increasing 
increment 
of incre
performanc
MSE is s

ational Journal of C
e): 1694-0814 
org  

ME V/S CHANNEL
ESTIM

Channel Taps 
30 
40 
50 
60 

he performanc
CIR samples fo

Fig.3. As we
f CIR samples 

of SNR. Th
n time is shown
t of channel 
Fig.4. By incre
significant imp
the MSE beha
t further impr
ent in MSE 
p to 60 as the 
ore time of com

arison of LSE C
Fig.5 s

Modified L
pled LS est
on of LMMSE
mator reduces
the same appr
LMMSE estim
r every SNR
ves the smal
d LS is same to
ce of reg
pled LS is ex

of former is 
CIR samples o
Fig.6. For CIR
rovement in p
t by increasing
provement in 
more compu

Table 4. It is 
number of s

in computatio
easing samp
ce. The effect 
hown in Fig.

Computer Science 

 
L TAPS FOR MO
MATOR 

Tim

ce of LMMSE
or different val
e notice that a

we have the s
he effect of in
n in Table 2. 
taps and SNR

easing channel
provement in M
avior remains s
rovement. Sinc
by increasing
disadvantage 

mputation as sh

Channel Estima
shows the MS
LS, Regulari
timators. Con
E estimator, th
 MSE for a ra
roximation eff
mators, show

R, there exists
llest MSE. T
o LSE but at h
gularized L

xaclty same to
only less co

on MSE of L
R samples 0 to
erformance sp

g samples furth
terms of MSE

utational comp
clear from Ta

samples, there
onal time, that 
ples without
of CIR sample
7. The combi

Issues, Vol. 8, Iss

ODIFIED LMMSE 

me (mSec) 
5 
6 
10 
12 

E estimator in
lues of SNR is
after a certain
same MSE for
ncreasing CIR

R on MSE is
l taps up to 10
MSE but from
same and after
ce there is no
 channel taps
only comes in

hown in  

ators 
SE verus SNR
zed LS and

ntrary to the
he modification
ange of SNRs
fect, as in the
s up at high

s an estimator
The effect of
higher SNR the
S degrades

o that of LSE
mplexity. The

LS estimator is
o 10, there is a
pecially at low
her there is no
E but the cost
plexity that is
able 4 that by

e is a gradual
is a drawback

t improving
es and SNR on
ined effect of

sue 1, January 201

n 
s 
n 
r 

R 

s 
, 

m 
r 
o 
s 
n 

R 
d 
e 
n 
. 
e 
h 
r 
f 
e 
. 
, 
e 
s 
a 

w 
o 
t 
s 
y 
l 
k 
g 
n 
f 

chann
speci
MSE
from
but b
satua
value
 
       

       

 
 
 

TAB

    
 

1 

nel taps and SN
ific channel ta

E is demonstrat
m1 to 2, there is

beyond this v
arates. The ef
es of CIR samp

                      

Figure 5.  M

                      

Figure 6.  MSE

BLE 4   TIME V/S

CIR Sam
30 
40 
50 
60 

NR on MSE is
aps, the effect 
ted in Fig.9. By
s a dominant im

value of sampl
ffect of chann
ples on MSE is

                   

MSE v/s SNR for L
 

                    

 
E v/s CIR Samples 

S CIR SAMPLES 

ples T

s shown in Fig.
of CIR samp

y increasing sa
mprovement in
les the perform
nel taps for c
s shown in Fig.

LS Estimators 

for LS Estimator

FOR LS ESTIMA

Time (mSec) 
0.5 
1 

1.25 
1.5 

441 

 

.8. For 
les on 

amples 
n MSE 
mance 
certain 
.10.  

 

 

ATOR 



IJCSI Interna
ISSN (Online
www.IJCSI.o

                 

Figure 7. 

 
 
 
                 

Figure 8. 

 
 
The dif
correspond
increasing 
degraded 
complexity
 

ational Journal of C
e): 1694-0814 
org  

                       

 MSE v/s SNR v/

                       

 MSE v/s SNR v/
Es

fferent dow
ding MSE i
the downsamp
while there i

y.  

Computer Science 

          

 
s CIR Samples for

         

 
s Channel Taps fo
stimator 

wnsampling 
s shown in

pling rate, the p
is no signific

Issues, Vol. 8, Iss

r LS Estimator 

or Modified LS 

rate versus
 Fig.11. By
performance is
cant effect on

sue 1, January 201

 

 

s 
y 
  

n 

       

Fig

 
 
 
       

Fig

 
       

Fi

 

 

1 

                      

gure 9.  MSE v/s C

                       

gure 10.  MSE v/s C

                      

igure 11.  MSE v/s

                   

 
CIR Samples for M

                  

 
Channel Taps for M

    

s SNR for Downsa

Modified LS Estim

Modified LS Estim

ampled LS Estima

442 

 

 

mator 

 

mator  

 
tors 



IJCSI Interna
ISSN (Online
www.IJCSI.o

c- Comp
Estima

 Th
and LMMS
channel h
LMMSE i
not in term
for lower 
MSE than 
better to us
then after 
outperform
values. Th
with the in
in Table 5
always less
for the cha

TABLE 5  

CIR S

3

4
5

6

 
 
    

Figure 12.  

 
 
 
 
 
 
 

ational Journal of C
e): 1694-0814 
org  

arison of LSE 
ators 
he performanc
SE estimator is

has less numb
s better to use

ms of time. Bu
SNR values L
LSE but for hi
se. But if we in

certain num
ms LMMSE 
he computation
ncreasing numb
. It is evident 
s time than LM

annel statistics. 

TIME V/S CIR SA
ESTI

Samples 

LS 

30 0.5 

40 1 
50 1.25

60 1.5 

                       

MSE v/s SNR for
different

Computer Science 

and LMMSE C

ce comparison
s shown in Fig
ber of CIR 

e than LSE due
ut as CIR sam

LMMSE is bett
igher SNR valu
ncrease CIR sa

mber of CIR 
for whole ra

n of both LSE
ber of CIR sam
from Table 5 t

MMSE, as it do
 

 
AMPLES FOR LM
IMATOR 

Time (mSec

LMM

1

1.2
 1.

1.7

         

 
r LMMSE and LS 
t CIR Samples 

 

Issues, Vol. 8, Iss

Channel 

n between LSE
g.12. When the
samples, then
e to less MSE

mples increases
ter in terms of
ues later one is
amples further
samples, LSE

ange of SNR
E and LMMSE
mples is shown
that LSE takes

oes not account

MMSE AND LS 

c) 

MSE 

1 

25 
.5 

75 

Estimators with 

sue 1, January 201

E 
e 
n 
, 
, 
f 
s 
, 

E 
R 
E 
n 
s 
t 

 

 

chann
chann
of pe
LMM
statis
perfo
CIR 
there
the c
incre
degra
copm
have 
for d
of m
estim
chann
   

[1] J
O
P

[2] E
O
d
p

[3] S
m
t
N
p

[4] Y
c
f
p

[5] D
A
M
H

[6] A
r
I
P

1 

V.
In this pap

nel estimator
nel taps and ev
erformance and
MSE is better t
stics which r
ormance can b
samples or ch

e is no promin
complexity go
easing CIR sam
ades LMMSE

mplexity. We a
no effect on t

different SNR v
more length th
mator performa
nel information

J.J. van der Beek, 
O.Borgesson, “On
Proc. VTC’95, pp.
Edfors, M. Sandel
O.Borgesson, “OF
decomposition,”IE
pp. 931-939, July 
Srivastava, C. K. 
mmse channel es
timing synchroniz
Networking Confe
pp.711–716 Vol.2
Y. Li, L. J. Cim
channel estimation
fading channels,”I
pp. 902-915, July 
Dimitris G. Man
Adaptive Signal 
Modeling, Adaptiv
House, Boston Lon
Ancora. A, Bona. 
response LS chann
International Conf
Processing, 2007.I

CONCLUSIO
per we presen

rs based on 
valuated their 
d complexity. 
than LSE as it 
results in hi
be improved b

hannel taps but
nent impact on
es on increasi
mples, after a
E both in 
also noticed th
the performan

values. So if we
hen we can im
ance even with
n. 

REFERENCES

O. Edfors, M. San
n channel estimat
. 815-819. 
ll, J. J. van der Be
FDM channel esti
EEE Trans. Co
1998. 
Ho, P. H. W. Fu

stimation in ofdm
zation,” in Wirele
ference, 2004. WC
, 2004. 

mini, Jr., and N. R
n for  OFDM syste
IEEE Trans. Comm
1998. 

nolakis, Vinay K
Processing,Spec

ve Filtering and 
ndon   
C, Slock, D.T.M,”
nel estimation for  
ference on Acousti
ICASSP 2007.Vol

ONS 
nt LMMSE and

CIR samples
comparison in
The performan
assumes the ch
igh complexit
by increasing 
t after a certain
n performance 
ing. . As we 
a certain value

performance 
hat the channe
ce of LSE esti
e use a channe
mprove the ch
hout having a

 
ndell, S.K. Wilson
tion in OFDM sy

eek, S. K. Wilson
mation by singula
omm., vol. 46,

ung, and S. Sun, “
m systems with p
ess Communicatio
CNC.2004 IEEE, 

R. Sollenberger, “
ems with rapid dis
m., vol. 46, 

K. Ingle. Statistic
tral Estimation, 
Array Processing

” Down sampled im
LTE OFDMA”, I

ics, Speech and Si
l.3, pp.293-296, 20

443 

 

d LSE 
s and 

n terms 
nce of 
hannel 
ty.The 
either 

n limit 
while 
go on 
e LSE 
 and 
el taps 
imator 

el filter 
hannel 
a prior 

n, and P.     
ystems,” 

, and P. 
ar value 
, no.7,              

“Robust 
practical 
ons and 

vol. 2, 

“Robust 
spersive 

no. 7, 

cal and 
Signal 

g,Artech 

mpulse 
EEE 
gnal 

007  


