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Abstract-- For spectrally efficient transmission over
time-varying channels, the use of Adaptive Coding
and Modulation (AMC) in wireless OFDM systems
requires the estimation of radio channel at the
receiver. This paper focuses on the use of time
domain channel statistics, mainly concentrating on
two schemes: Linear Minimum Mean Square
Estimation (LMMSE) and Least Square Estimation
(LSE) and their variants. LMMSE performs better
than LSE but at the cost of computational
complexity. The performance of LSE can be
improved by increasing CIR samples and channel
taps. To avoid the matrix inversion lemma, the
channel matrix can be downsampled or regularized.
Theoretical analysis and computer simulations are
used for performance and complexity comparisons.

I. INTRODUCTION
Orthogonal  Frequency Division Multiplexing

(OFDM), a multicarrier modulation method, is
considered an essential technique for a variety of
high data rate communication systems like 4G
WiMAX and LTE-Advanced due to its efficient
management of ISI in frequency selective fading
channels. OFDM can also be used as a modulation
technique because of the simple equalizer design and
spectrum efficiency. The combination of OFDM with
Multi-Input  Multi-Output (MIMO) provides the
increased data rate and improved quality of service.
That is why MIMO-OFDM is adopted in B3G
(Beyond 3™ Generation) mobile communication
systems.
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Coherent OFDM, which has 3-4 dB performance
gain more than non-coherent OFDM, requires
channel state information (CSI) at the receiver and/or
transmitter.CSI only at the transmitter is usually
preferred to make the receiver design simple. Data
throughput of channel depends on the quality of the
channel estimator. For channel estimation there are
mainly two methods proposed as, first is decision
directed channel estimation and other one is pilot-
assisted channel estimation. In decision directed
method, the modulation is removed from subcarriers
using the previously demodulated symbol, thus all
subcarriers can be used for channel estimation. This
method requires a large amount of data and its
convergence rate is also very slow, that is why it is
not well suited for real time systems. In pilot assisted
method there are two modes, if all subcarriers have
known pilots then it is called block pilot mode while
in comb pilot mode only a few subcarriers carry
known pilots.

Channel can be estimated in time domain or
frequency domain. In frequency domain two
algorithms are proposed Least Square Estimation
(LSE) and Linear Minimum Mean Square Estimation
(LMMSE). LSE algorithm is relatively easy to
implement due to its less complexity and it also does
not require any channel apriority probability. To
achieve better performance LMMSE is proposed.
LMMSE is optimum in minimizing Mean Square
Error (MSE) as it uses addition information of
operating SNR and the channel statistics. But it
complexity is higher due to the channel correlation
and the matrix inversion lemma. There can be a
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compromise of complexity and performance by
taking the effect of the channel taps and channel
impulse response (CIR) samples. By assuming the
impulse response of finite length, these two
algorithms can be modified having less complexity.
In mobile wireless links the channel statistics are not
known, in these cases it is robust to consider the
uniform Power delay profile (PDP), which also
reduces complexity than LMMSE. The complexity of
LSE can be reduced by regularizing the Eigen values
of the matrix being inverted or by down-sampling the
channel vector.

The rest of the paper is organized as: Section
2 describes OFDM signal and channel model, in
Section 3, LMMSE, LSE and their different variants
are discussed, followed by the simulation results in
Section 4 and in the last section conclusions are
drawn.

II. OFDM SIGNAL AND CHANNEL MODEL

In OFDM, the transmitted bit stream is
divided into many different sub-streams and send
them over many orthogonal sub-channels. Suppose
the transmitted data at k-th subcarrier is d(k). Then
the multicarrier modulated signal will be

1 jemk
x(n) = Nz d(k)e v , n=012,..,N—1
k=0

Where N is total number of sub-carriers. Before
transmitting x(n), guard interval (GI) is inserted to
avoid Inter-symbol interference (ISI) and inter-carrier
interference (ICI). This signal is then passed through
a time-varying multipath channel whose impulse
response is characterized by

L-1
9t = ) @b )

i=

where L is total number of multi-paths and {a;} is a
complex Gaussian random variable of zero mean
having a power delay profile: Ce%i/Trms _ {1;}
represents time delay between different multi-paths,
whose maximum value is not supposed to exceed the
guard interval length.

After passing this fading channel and
removing GI, the received OFDM signal in frequency
domain will be

Y=HX+W
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W is the complex-valued additive Gaussian noise
having zero mean and g 2variance. H is the channel
frequency response, that is DFT of the channel
impulse response g(t, 7).

III. CHANNEL ESTIMATION ALGORITHMS

A. LMMSE Channel Estimation

In presence of channel noise, LMMSE
estimation of the uncorrelated Gaussian channel
vector g is given by [1]

g=Tyulyy
Where

T,

9y = FnyHXH

T,, = XFT, FPX" + oIy

I, is the auto-covariance matrix of y and I, is the
cross co-variance matrix between g and y. o2 is
variance of noise. For unique minimum MSE, these
co-variance matrices should be positive definite,

In frequency domain the channel estimate

Rinmse 1S given by
ﬁmmse =Fg= FQFHXHy

Where F is orthonormal DFT-matrix and @ is given
by [1]

Q = T,y [(FEX"XF) 102 + T,y (FEXHXF)™

B. Modified LMMSE Channel Estimation
For large N the calculation of Q matrix
implies high complexity. To reduce the size of Q, we
can take only first L taps having significant energy.
Using this approximation I, is reduced to L X L
matrix. So modified LMMSE estimation becomes [1]
?lmmse = TQ'THXHy

Where T have only first L columns of DFT matrix
and Q' is

Q' = Ty [(THXHXT) 62 + Ty | (THXHXT)
I"gg denotes the upper left L X L matrix of I;,.
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C. Low Complex LMMSE Channel Estimation

In LMMSE channel estimation, a matrix
inversion is needed as the input data X is changed
which results in high complexity. This complexity
can be reduced by averaging the transmitted data x
ie. E(XX¥) . If we assume same signal
constellation for all frequencies, then
E(XXH)™1 = E|i|2.

Xk
The simplified LMMSE estimation will be [2]
B

hmmse = rgg(rgg + SN_RI)_lx_ly

Where 8 depends upon the signal constellation.

D. Robust LMMSE Channel Estimation

In mobile wireless links, the channel
changes with time depending on the particular
environment. It is not possible to know the channel
PDP at the design time [3]. Identical MSE
performance can be obtained for all PDPs with same
maximum delay. So it is robust to design the channel
co-variance matrix with a uniform PDP [4].

E. LSE Channel Estimation

A prior knowledge of second order channel
statistics is required for LMMSE estimator, which is
not possible in many practical situations. We can
design an estimator filter which is a function of
available data only [5]. In LSE estimation, we use
only signal model, no probabilistic assumptions are
required.

LSE estimation of channel is given by

flls = FQISFHXHy

where
Qs = (FIXPXF)™!

hys can also be written as [1]
ﬁls = X_ly

F. Modified LSE Channel Estimation

Though no modification are needed
because of less complexity of LSE estimator but
performance can be improved by considering only
first L high energy channel taps. The modified LSE
estimator becomes
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flls = TQI,STHXH.V
where
Qs = (THXHXT)

G. Regularized LSE Channel Estimation

The problem of inversion of N X N matrix
can be solved by regularizing the Eigen values of the
matrix by adding a constant term to the diagonal
elements. In this case, the matrix Q,;; will be [6]

Qregis = (al + FHXHXF)™1

Where off-line constant a is chosen such that the
matrix Qreg s is least perturbed.

H. Down-Sampled Impulse Response LSE Channel
Estimation

The inversion of N X N matrix can be
simplified by decreasing the sampling frequency, but
ensuring the absence of aliasing. Only 2 out of 3
channel taps are used and the discarded taps are set to
Zero.

The down-sampled version of channel
vector g can be [6]

G=(90 91095 94 0 .. gr-)"
The channel transfer function can be written as

HPS = Fg
Which is equivalent to

HDS
r1 1 1 1 1
1wt w w1 9o
1 w? wo . w20 91

1w w’ . w3 93

T owt w2 . wA@D 94
1 we wls o wS@D :
1 g1
1 wN-1 301 W=D (-1

The estimated channel in this case will be

EDS — (FDS’HXHXFDS)_lFDS'HXHy
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IV. SIMULATION RESULTS

To demonstrate the effectiveness of the discussed
algorithms, Matlab Simulations are provided in this
section. All simulations have been performed for
OFDM signal in Rayleigh Fading Channel with
BPSK modulation scheme and FFT size is kept 64.
To illustrate the performance of the estimators, the
widely used Mean Square Error (MSE) has been used
as a function of SNR, Channel Taps and Channel
Impulse Response (CIR) samples. The complexity of
the estimators is compared in terms of computational
time.

a. Comparison of LMMSE Channel Estimators

The performance of LMMSE with its
variants i.e. Modified LMMSE with 10 taps, 40 taps,
Robust LMMSE and Low Complex LMMSE is
shown in Fig.1. The difference between LMMSE and
Modified LMMSE estimators is due to the fact that
some parts of the channel statistics are not taken into
account in the former estimators. For low SNR
values, the performance of LMMSE is better than
RILMMSE but for higher SNRs R.LMMSE
outperforms LMMSE. The performance of both
LMMSE and Low Complex LMMSE is same and the
difference lies in the complexity as the computational
time of Low Complex LMMSE is less than that of
LMMSE. The comparison of computational time of
LMMSE estimators is given in Table 1. Table 1
indicates that there is a wide gap of time between
LMMSE while matrix and
correlation matrix.

using covariance

—4+— R.MMSE

—8— 40-Taps MMSE
w H H —— 4-Taps MMSE
% 10 Q’_ """"""""" ERRRR —=— MMSE

SNR (dE)
Figure 1. MSE v/s SNR for LMMSE Estimators
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Figure 3. MSE v/s CIR Samples for LMMSE Estimator

TABLE 1 COMPUTATIONAL TIME FOR LMMSE

ESTIMATORS
Estimator 5000 10OFDM{ 1Bit
Simulatig (mSec| (mSec)
(se
LMMSE 208.278 0.651
Modified-10
Low Complex | 320.713 1.003
LMMSE
LMMSE 346.8 1.084
(Corr Mtx)
LMMSE 440.945 1.378
Modified-40
R.LMMSE 528.133 1.651
LMMSE 529.319 105.864 | 1.65
(Cov Mtx)

TABLE 2 TIME V/S CIR SAMPLES FOR LMMSE ESTIMATOR

CIR Samples Time (mSec)
30 1
40 1.25
50 1.5
60 1.75

MSE

SR
Figure 4. MSE v/s SNK v/s Channel Taps for Modified
LMMSE Estimator

Channel Taps
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TABLE 3 TIME V/S CHANNEL TAPS FOR MODIFIED LMMSE

ESTIMATOR
Channel Taps Time (mSec)
30 5
40 6
50 10
60 12

The performance of LMMSE estimator in
terms of CIR samples for different values of SNR is
shown in Fig.3. As we notice that after a certain
number of CIR samples we have the same MSE for
all values of SNR. The effect of increasing CIR
samples on time is shown in Table 2.

The effect of channel taps and SNR on MSE is
shown in Fig.4. By increasing channel taps up to 10,
there is a significant improvement in MSE but from
10 to 60, the MSE behavior remains same and after
60 we get further improvement. Since there is no
improvement in MSE by increasing channel taps
from 10 up to 60 as the disadvantage only comes in
form of more time of computation as shown in

Table 3.

b. Comparison of LSE Channel Estimators

Fig.5 shows the MSE verus SNR
for LSE, Modified LS, Regularized LS and
Downsampled LS estimators. Contrary to the
modification of LMMSE estimator, the modification
of LS estimator reduces MSE for a range of SNRs.
However the same approximation effect, as in the
modified LMMSE estimators, shows up at high
SNRs. For every SNR, there exists an estimator
which gives the smallest MSE. The effect of
regularized LS is same to LSE but at higher SNR the
performance  of regularized LS  degrades.
Downsampled LS is exaclty same to that of LSE,
advantage of former is only less complexity. The
effect of CIR samples on MSE of LS estimator is
shown in Fig.6. For CIR samples 0 to 10, there is a
rapid improvement in performance specially at low
SNRs, but by increasing samples further there is no
further improvement in terms of MSE but the cost
comes in more computational complexity that is
shown in Table 4. It is clear from Table 4 that by
increasing number of samples, there is a gradual
increment in computational time, that is a drawback
of increasing samples without improving
performance. The effect of CIR samples and SNR on
MSE is shown in Fig.7. The combined effect of
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channel taps and SNR on MSE is shown in Fig.8. For
specific channel taps, the effect of CIR samples on
MSE is demonstrated in Fig.9. By increasing samples
froml to 2, there is a dominant improvement in MSE
but beyond this value of samples the performance
satuarates. The effect of channel taps for certain
values of CIR samples on MSE is shown in Fig.10.

Ll
[fa] e P ———
= -{ —=— Modified-40 LS
1073 L. —&— Modified-4 LS .
H——1L3 ¥
-] —%— Reqgularized LS
-1 —— Downsampled LS |- i
1o i i H
5 10 15 20 25
SNR (dB)
Figure 5. MSE v/s SNR for LS Estimators
w10
T T T I I I
: : H —=— SMNR =5 dB
281 cTTTyTTTTT T —+— SNR =15 dB ||
—— SNR =25 dB
ol e ARt EEE EE PR PP PEEP R PEEEEEEEE P LEEITREE
w 1.5
£

10 20 30 a0 &0 B0
CIR Samples

Figure 6. MSE v/s CIR Samples for LS Estimator

TABLE 4 TIME V/S CIR SAMPLES FOR LS ESTIMATOR

CIR Samples Time (mSec)
30 0.5
40 1
50 1.25
60 1.5
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SR CIR Sarmples

Figure 7. MSE v/s SNR v/s CIR Samples for LS Estimator

0.08

0.06

0.0z

SHR Channel Taps

Figure 8. MSE v/s SNR v/s Channel Taps for Modified LS
Estimator

The  different  downsampling rate  versus
corresponding MSE is shown in Fig.ll. By
increasing the downsampling rate, the performance is
degraded while there is no significant effect on
complexity.
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Figure 9. MSE v/s CIR Samples for Modified LS Estimator
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Figure 10. MSE v/s Channel Taps for Modified LS Estimator
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Figure 11. MSE v/s SNR for Downsampled LS Estimators
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c- Comparison of LSE and LMMSE Channel
Estimators

The performance comparison between LSE
and LMMSE estimator is shown in Fig.12. When the
channel has less number of CIR samples, then
LMMSE is better to use than LSE due to less MSE,
not in terms of time. But as CIR samples increases,
for lower SNR values LMMSE is better in terms of
MSE than LSE but for higher SNR values later one is
better to use. But if we increase CIR samples further,
then after certain number of CIR samples, LSE
outperforms LMMSE for whole range of SNR
values. The computation of both LSE and LMMSE
with the increasing number of CIR samples is shown
in Table 5. It is evident from Table 5 that LSE takes
always less time than LMMSE, as it does not account
for the channel statistics.

TABLE 5 TIME V/S CIR SAMPLES FOR LMMSE AND LS

ESTIMATOR
CIR Samples Time (mSec)
LS LMMSE
30 0.5 1
40 1 1.25
50 1.25 1.5
60 1.5 1.75

MSE

—=— MMSE GIR-11
—&— LS CIR-11
——se— MMSE CIR-2
o LS CIR 2 3
—#%— MMSE CIR-22
—+— L5 CIR-22

5 10 15 20 25
SNR (dB)

Figure 12. MSE v/s SNR for LMMSE and LS Estimators with
different CIR Samples
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V. CONCLUSIONS

In this paper we present LMMSE and LSE
channel estimators based on CIR samples and
channel taps and evaluated their comparison in terms
of performance and complexity. The performance of
LMMSE is better than LSE as it assumes the channel
statistics which results in high complexity.The
performance can be improved by increasing either
CIR samples or channel taps but after a certain limit
there is no prominent impact on performance while
the complexity goes on increasing. . As we go on
increasing CIR samples, after a certain value LSE
degrades LMMSE both in performance and
copmplexity. We also noticed that the channel taps
have no effect on the performance of LSE estimator
for different SNR values. So if we use a channel filter
of more length then we can improve the channel
estimator performance even without having a prior
channel information.
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