
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

402

Improving Performance on WWW using Intelligent Predictive
Caching for Web Proxy Servers

J. B. Patil1 and B. V. Pawar2

 1 Department of Computer Engineering, R. C. Patel Institute of Technology
Shirpur, Maharashtra 425405, India

2

Abstract

Web proxy caching is used to improve the performance of the
Web infrastructure. It aims to reduce network traffic, server load,
and user perceived retrieval delays. The heart of a caching system
is its page replacement policy, which needs to make good
replacement decisions when its cache is full and a new document
needs to be stored. The latest and most popular replacement
policies like GDSF and GDSF# use the file size, access
frequency, and age in the decision process. The effectiveness of
any replacement policy can be evaluated using two metrics: hit
ratio (HR) and byte hit ratio (BHR). There is always a trade-off
between HR and BHR [1]. In this paper, using three different
Web proxy server logs, we use trace driven analysis to evaluate
the effects of different replacement policies on the performance
of a Web proxy server. We propose a modification of GDSF#
policy, IPGDSF#. Our simulation results show that our proposed
replacement policy IPGDSF# performs better than several
policies proposed in the literature in terms of hit rate as well as
byte hit rate.

Keywords: Web caching, Replacement Policy, Hit Ratio, Byte
Hit Ratio, Trace-driven Simulation.

1. Introduction

The enormous popularity of the World Wide Web has
caused a tremendous increase in network traffic due to http
requests. This has given rise to problems like user-
perceived latency, Web server overload, and backbone link
congestion. Web caching is one of the ways to alleviate
these problems [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Web
caches can be deployed throughout the Internet, from
browser caches, through proxy caches and backbone
caches, through reverse proxy caches, to the Web server
caches. In our work, we use trace-driven simulation for
evaluating the performance of different caching policies
for Web proxy servers.

One might argue that the ever decreasing prices of RAM
and disks renders the optimization or fine tuning of cache
replacement policies a “moot point”. Such a conclusion is
ill guided for several reasons. First, recent studies have
shown that Web cache hit ratio (HR) and byte hit ratio
(BHR) grow in a log-like fashion as a function of cache
size [5, 26, 27, 28]. Thus, a better algorithm that increases
hit ratios by several percentage points would be equivalent
to a several-fold increase in cache size. Second, the growth
rate of Web content is much higher than the rate with
which memory sizes for Web caches are likely to grow.
The only way to bridge this widening gap is through
efficient cache management. Finally, the benefit of even a
slight improvement in cache performance may have an
appreciable effect on network traffic, especially when such
gains are compounded through a hierarchy of caches [6].

Cao and Irani have surveyed ten different policies and
proposed a new algorithm, Greedy-Dual-Size (GDS) in [5].
The GDS algorithm uses document size, cost, and age in
the replacement decision, and shows better performance
compared to previous caching algorithms. In [4] and [12],
frequency was incorporated in GDS, resulting in Greedy-
Dual-Frequency-Size (GDSF) and Greedy-Dual-Frequency
(GDF). While GDSF is attributed to having best hit ratio
(HR), it is having a modest byte hit ratio (BHR).
Conversely, GDF yields a best HR at the cost of worst
BHR [12].

We have proposed a new algorithm called Greedy-Dual-
Frequency-Size#, (GDSF#), which allows augmenting or
weakening the impact of size or frequency or both on HR
and BHR [13, 14, 15, 16, 17].

 Department of Computer Science, North Maharashtra University
Jalgaon, Maharashtra 425001, India

In this paper, we propose an extension to our algorithm
GDSF#, called Intelligent Predictive Greedy-Dual-

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

403

Frequency-Size#, (IPGDSF#). We compare IPGDSF# with
algorithms like LRU, GDSF, and GDSF#. Our simulation
study shows that IPGDSF# outperforms all other
algorithms under consideration in terms of hit rate (HR) as
well as byte hit rate (BHR).

The remainder of this paper is organized as follows.
Section 2 introduces IPGDSF#, a new algorithm for Web
cache replacement. Section 3 describes the simulation
model for the experiment. Section 4 describes the
experimental design of our simulation while Section 5
presents the simulation results. We present our conclusions
in Section 6.

2. IPGDSF# Algorithm

We extract future frequency from the Web proxy server
logs. Then it is used to extend our GDSF# policy. Our idea
is similar to the work of Bonchi et al. [18, 19] and Yang et
al. [20]. While the Web caching algorithm in [18, 19] was
designed to extend the LRU policy, Yang et al. [20]
extended GDSF policy. We will be extending our policy
GDSF# [13, 14, 15, 16, 17].

As pointed out early in caching research [21], the power of
caching is in accurately predicting the usage of objects in
the near future. In earlier works, estimates for future
accesses were mostly built on measures such as access
frequency, object size and cost. Such measures cannot be
used to accurately predict for objects that are likely to be
popular but have not yet been popular at any given instant
in time. For example, as Web users traverse Web space,
there are documents that will become popular soon due to
Web document topology, although these documents are not
yet accessed often in the current time instant [20]. Our
approach is based on predictive Web caching model
described by Yang et al. [20]. However, there are many
noteworthy differences. Firstly, we use simple statistical
techniques to find future frequency while Yang et al. use
sequential association rules to predict the future Web
access behavior. Secondly, for simplicity we do not try to
identify user sessions. We assume that a popular document,
which is used by one user, is likely to be used by many
other users, which normally is the case for popular
documents. We demonstrate the applicability of the
method empirically through increased hit rates and byte hit
rates.

Similar to the approach by Bonchi et al. [18, 19], our
algorithm is an intelligent one as it can adapt to changes in
usage patterns as reflected by future frequency. This is
because the parameter future frequency, which is used in
assigning weight (key value) to the document while storing

in the cache, can be computed periodically in order to keep
track of the recent past. This characteristic of adapting to
the flow of requests in the historical data makes our policy
intelligent. We call this innovative caching algorithm as
Intelligent Predictive GDSF#, (IPGDSF#).

In GDSF#, the key value of document i is computed as
follows [13, 14, 15, 16, 17]:

where λ and δ are rational numbers, L is the inflation factor,
ci is the estimated cost of the document i, fi is the access
frequency of the document i, and si is the document size.

We now consider how to find future frequency, ffi for
document i from the Web logs. We mine the preprocessed
Web log files. We extract the unique documents from the
logs. Then we arrange these documents in the temporal
order. Now for each unique document, we extract the
number of future occurrences of that document. We call
this parameter as future frequency, ff.

With this parameter, we can now extend GDSF# by
calculating Hi, the key value of document i as follows:

Here we add fi and ffi together, which implies that the key
value of a document i is determined not only by its past
occurrence frequency fi, but also by its future frequency ffi.
By considering both the past occurrence frequency and
future frequency, we can enhance the priority i.e. the key
value of those objects that may not have been accessed
frequently enough in the past, but will be in the near future
according to the future frequency. The more likely it
occurs in the future, the greater the key value will be. This
will promote objects that are potentially popular objects in
the near future even though they are not yet popular in the
past. Thus, we look ahead in time in the request stream and
adjust the replacement policy.

Finally, we make the policy intelligent by periodically
updating future frequency when some condition becomes
false, e.g. at fixed time intervals or when there is a
degradation in the cache performance.

Now we present the IPGDSF# algorithm as shown in Fig.1:

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

404

Initialize L = 0
Find future frequency ffi
loop forever {

do {
Process each request document in turn:
let current requested document be i
if i is already in cache

else
while there is not enough room in cache for i {

let L = min(Hi), for all i in cache
evict i such that Hi = L

}
load i into cache

} while (condition)

update (future frequency)
}

Fig. 1 IPGDSF# algorithm.

3. Simulation Model for the Experiment

In case of proxy servers, all requests are assumed to be
directed to the proxy server. When the proxy receives a
request from a client, it checks its cache to see if it has a
copy of the requested object. If there is a copy of the
requested object in its cache, the object is returned to the
client signifying a cache hit, otherwise the proxy records a
cache miss. The original Web server is contacted and on
getting the object, stores the copy in its cache for future
use, and returns a copy to the requesting user. If the cache
is already full when a document needs to be stored, then a
replacement policy is invoked to decide which document
(or documents) is to be removed.

Our model also assumes file-level caching. Only complete
documents are cached; when a file is added to the cache,
the whole file is added, and when a file is removed from
the cache, the entire file is removed.

For simplicity, our simulation model completely ignores
the issues of cache consistency (i.e., making sure that the
cache has the most up-to-date version of the document,
compared to the master copy version at the original Web
server, which may change at any time).

Lastly, caching can only work with static files, dynamic
files that have become more and more popular within the
past few years, cannot be cached.

3.1 Workload Traces

For Web proxy servers, we have used: Boston University
Computer Science Department client traces collected in
1995; BU272 and BU-B19 [26] and one trace collected in
1998; BU98 [30] [31].

4. Experimental Design

This section describes the design of the performance study
of cache replacement policies. The discussion begins with
the factors and levels used for the simulation. Next, we
present the performance metrics used to evaluate the
performance of each replacement policy used in the study.

4.1 Factors and Levels

There are two main factors used in the in the trace-driven
simulation experiments: cache size and cache replacement
policy. This section describes each of these factors and the
associated levels.

Cache Size

The first factor in this study is the size of the cache. For the
proxy logs, we have used ten levels from 1 MB to 1024
MB except in case of BU-B19 trace, we have a upper
bound of 4096 MB. Similar cache sizes are used by many
researchers [9, 22, 23, 24]. The upper bounds represent the
Total Unique Mbytes in the trace, which is essentially
equivalent to having an infinite size cache [29]. An infinite
cache is one that is so large that no file in the given trace,
once brought into the cache, need ever be evicted [23, 25].
It allows us to determine the maximum achievable cache
hit ratio and byte hit ratio, and to determine the
performance of a smaller cache size to be compared to that
of an infinite cache.

Replacement Policy

We show the simulation results of LRU, GDSF, GDSF#,
and IPGDSF# for the Web proxy traces for hit rate, and
byte hit rate. For the last three algorithms, we consider the
cost function as one. In GDSF# and IPGDSF#, we use the
best combination of λ = 2 and δ = 0.9 in the equation for
Hi. Since we have already demonstrated that GDSF# is the
champion of all the algorithms in terms of both hit rate and
byte hit rate [13, 14, 15, 16, 17], we have not chosen other
algorithms for the comparison. LRU is chosen as a
baseline algorithm.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

405

4.2 Performance Metrics

The performance metrics used to evaluate the various
replacement policies used in this simulation are Hit Rate
and Byte Hit Rate.

Hit Rate (HR) Hit rate (HR) is the ratio of the number of
requests met in the cache to the total number of requests.

Byte Hit Rate (BHR) Byte hit rate (BHR) is concerned
with how many bytes are saved. This is the ratio of the
number of bytes satisfied from the cache to the total bytes
requested.

5. Simulation Results

In this section, we present and discuss simulation results
for BU272, BU-B19, and BU98 Web proxy servers.

5.1 Simulation Results for BU272

Fig. 2 gives the comparison of IPGDSF# with other
algorithms.

Fig. 2 Comparison of IPGDSF# with other algorithms using BU272 trace

From Figure 2, it can be seen that IPGDSF# outperforms
all other algorithms in terms of hit rate as well as byte hit
rate for the BU272 data. In case of hit rate, for a cache size
of 16MB, there is a performance gain of 6.59% (from
30.62% to 37.21%) over LRU, 0.58% (from 36.63% to
37.21%) over GDSF and 0.99% (from 36.22% to 37.21%)
over GDSF#.

In case of byte hit rate, for a cache size of 16MB, there is a
performance gain of 4.62% (from 18.64% to 23.26%) over
LRU, 6.16% (from 17.10% to 23.26%) over GDSF and
4.73% (from 18.53% to 23.26%) over GDSF#. The graphs,
as expected, converge as the cache size grows.

5.2 Simulation Results for BU-B19

Figure 3 gives the comparison of IPGDSF# with other
algorithms.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

406

Fig. 3 Comparison of IPGDSF# with other algorithms using BU-B19
trace

Similarly, from Figure 3, it can be seen that IPGDSF#
outperforms all other algorithms in terms of hit rate as well
as byte hit rate for the BU-B19 data. In case of hit rate, for
a cache size of 64MB, there is a performance gain of
14.6% (from 49.06% to 63.66%) over LRU, 1.6% (from
62.06% to 63.66%) over GDSF, and 1.95% (from 61.71%
to 63.66%) over GDSF#.

In case of byte hit rate, for a cache size of 64MB, there is a
performance gain of 5.74% (from 31.15% to 36.89%) over
LRU, 5.64% (from 31.25% to 36.89%) over GDSF, and

3.97% (from 32.92% to 36.89%) over GDSF#. The
graphs, as expected, converge as the cache size grows.

5.3 Simulation Results for BU98

Figure 4 gives the comparison of IPGDSF# with other
algorithms.

Fig. 4 Comparison of IPGDSF# with other algorithms using BU98 trace

Similarly, from Figure 4, it can be seen that IPGDSF#
outperforms all other algorithms in terms of hit rate as well
as byte hit rate for the BU98 data. In case of hit rate, for a
cache size of 32MB, there is a performance gain of 7.86%
(from 27.84% to 35.7%) over LRU, 2.13% (from 33.57%

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

407

to 35.7%) over GDSF, and 2.06% (from 33.64% to 35.7%)
over GDSF#.

In case of byte hit rate, for a cache size of 32MB, there is a
performance gain of 3.53% (from 30.49% to 34.02%) over
LRU, 3.57% (from 30.45% to 34.02%) over GDSF, and
2.6% (from 31.42% to 34.02%) over GDSF#. The graphs,
as expected, converge as the cache size grows.

6. Conclusions

In this paper, we have proposed an Intelligent Predictive
Web caching algorithm, IPGDSF#, capable of adapting its
behavior based on access statistics. This algorithm is based
on the GDSF# algorithm, which we proposed in [13, 14,
15, 16, 17]. IPGDSF# considers future frequency in
calculating the key value of the document, i.e. we look
ahead in time in the request stream and adjust the
replacement policy. The future frequency is mined from
Web server logs using the simple statistical techniques. We
make the policy intelligent by periodically updating future
frequency when some condition becomes false.

We compare IPGDSF# with cache replacement policies
like LRU, GDSF, and GDSF# for Web proxies, using a
trace-driven simulation approach. We conduct several
experiments using three Web proxy traces. We use metrics
like Hit Ratio (HR) and Byte Hit Ratio (BHR) to measure
and compare performance of these algorithms.

Our study shows that IPGDSF# outperforms all other
algorithms in terms of hit rate as well as byte hit rate.
GDSF# has improved performance in case of both HR and
BHR. Now IPGDSF# has further improved both the
metrics. Thus, we find that our approach gives much better
performance than the other algorithms, in the quantitative
measures such as hit ratios and byte hit ratios of accessed
documents. We believe that use of future frequency
coupled with the adaptiveness is indeed the reason that
makes our approach preferable to any other caching
algorithm.

References

[1] M. Arlitt, R. Friedrich, & T. Jin, “Workload Characterization
of Web Proxy Cache Replacement Policies”, In ACM
SIGMETRICS Performance Evaluation Review, August 1999.

[2] M. Abrams, C. R. Standridge, G. Abdulla, S. Williams, & E.
A. Fox, “Caching Proxies: Limitations and Potentials”, In
Proceedings of the Fourth International World Wide Web
Conference, Pages 119-133, Boston, MA, December 1995.

[3] M. Arlitt & C. Williamson, “Trace Driven Simulation of
Document Caching Strategies for Internet Web Servers”,
Simulation Journal, Volume 68, Number 1, Pages 23-33, January
1977.

[4] L. Cherkasova, “Improving WWW Proxies Performance with
Greedy-Dual-Size-Frequency Caching Policy”, In HP Technical
Report HPL-98-69(R.1), November 1998.

[5] P. Cao & S. Irani, “Cost-Aware WWW Proxy Caching
Algorithms”, In Proceedings of the USENIX Symposium on
Internet Technology and Systems, Pages 193-206, December
1997.

[6] S. Jin & A. Bestavros, “GreedyDual*: Web Caching
Algorithms Exploiting the Two Sources of Temporal Locality in
Web Request Streams”, In Proceedings of the Fifth International
Web Caching and Content Delivery Workshop, 2000.

[7] S. Podlipnig & L. Boszormenyi, “A Survey of Web Cache
Replacement Strategies”, ACM Computing Surveys, Volume 35,
Number 4, Pages 374-398, December 2003.

[8] L. Rizzo, & L. Vicisano, “Replacement Policies for a Proxy
Cache”, IEEE/ACM Transactions on Networking, Volume 8,
Number 2, Pages 158-170, April 2000.

[9] A. Vakali, “LRU-based Algorithms for Web Cache
Replacement”, In International Conference on Electronic
Commerce and Web Technologies, Lecture Notes in Computer
Science, Volume 1875, Pages 409-418, Springer-Verlag, Berlin,
Germany, 2000.

[10] R. P. Wooster & M. Abrams., “Proxy Caching that
Estimates Page Load Delays”, In Proceedings of the Sixth
International World Wide Web Conference, Pages 325-334,
Santa Clara, CA, April 1997.

[11] S. Williams, M. Abrams, C. R. Standridge, G. Abdulla, & E.
A. Fox, “Removal Policies in Network Caches for World-Wide-
Web Documents”, In Proceedings of ACM SIGCOMM, Pages
293-305, Stanford, CA, 1996, Revised March 1997.

[12] M. F., Arlitt, L. Cherkasova, J. Dilley, R. J. Friedrich, & T.
Y Jin, “Evaluating Content Management Techniques for Web
Proxy Caches”, ACM SIGMETRICS Performance Evaluation
Review, Volume 27, Number 4, Pages 3-11, March 2000.

[13] J. B. Patil and B. V. Pawar, “GDSF#, A Better Algorithm
that Optimizes Both Hit Rate and Byte Hit Rate in Internet Web
Servers”, International Journal of Computer Science and
Applications, ISSN: 0972-9038, Volume 5, Number 4, Pages 1-
10, 2008.

[14] J. B. Patil and B. V. Pawar, “Trace Driven Simulation of
GDSF# and Existing Caching Algorithms for Internet Web
Servers”, Journal of Computer Science, Volume 2, Issue 3, Page
573, March-April 2008.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

408

[15] J. B. Patil and B. V. Pawar, “GDSF#, A Better Algorithm
that Optimizes Both Hit Rate and Byte Hit Rate in Internet Web
Servers”, BRI’S Journal of Advances in Science and
Technology, ISSN: 0971-9563, Volume 10, No. (I&II), Pages
66-77, June, December 2007.

[16] J. B. Patil and B. V. Pawar, “GDSF#, A Better Web
Caching Algorithm”, In Proceedings of International Conference
on Advances in Computer Vision and Information Technology
(ACVIT-2007), Co-sponsored by IEEE Bombay Section, Pages
1593-1600, Aurangabad, India, November 28-30, 2007.

[17] J. B. Patil and B. V. Pawar, “Trace Driven Simulation of
GDSF# and Existing Caching Algorithms for Web Proxy
Servers”, In Proceedings of The 6th WSEAS International
Conference on DATA NETWORKS, COMMUNICATIONS and
COMPUTERS (DNCOCO 2007), Trinidad and Tobago,
November 5-7, 2007, Pages 378-384, ISBN: 978-960-6766-11-4,
ISSN: 1790-5117.

[18] F. Bonchi, F. Giannotti, C. Gozzi, G. Manco, M. Nanni, D.
Pedreschi, C. Renso, and S. Ruggieri, “Web Log Data
Warehousing and Mining for Intelligent Web Caching,” Data and
Knowledge Engineering, Volume 39, Number 2, Pages 165-189,
2001.

[19] F. Bonchi, F. Giannotti, G. Manco, M. Nanni, D. Pedreschi,
C. Renso, and S. Ruggieri, “Web Log Data Warehousing and
Mining for Intelligent Web Caching,” In Proceedings of
International Conference on Information Technology: Coding
and Computing (ITCC’01 Pages 0599- , 2001.

[20] Q. Yang, and H.H. Zhang, “Web-Log Mining for Predictive
Web Caching”, IEEE Transactions on Knowledge and Data
Engineering, Volume 15, Number 4, Pages 1050-1053,
July/August 2003.

[21] L.A. Belady, “A Study of Replacement Algorithms for
Virtual Storage Computers,” IBM Systems Journal, Volume 5,
Number 2, Pages 78-101, 1966.

[22] M. Arlitt, R. Friedrich, & T. Jin, “Performance Evaluation
of Web Proxy Cache in a Cable Modem Environment”, HP
Technical Report, HPL-98-97(R.1), Palo Alto, 1998.

[23] M. Busari, “Simulation Evaluation of Web Caching
Hierarchies”, MS Thesis, Dept of Computer Science, Uni of
Saskatchewan, Canada, 2000.

[24] R. Ayani, Y. M. Teo, & P. Chen, “Cost-based Proxy
Caching”, In Proceedings of International Symposium on
Distributed Computing & Applications to Business, Engineering
& Science, Wuxi, China, December 2002.

[25] M. Busari & C. Williamson, “On the Sensitivity of Web
Proxy Cache Performance to Workload Characteristics”, In
Proceedings of IEEE Infocom, Anchorage, Alaska, April 2001,
1225-1234.

[26] C. R. Cunha, A. Bestavros, & M. E. Crovella,
“Characteristics of WWW Client-based Traces”, Technical
Report, BU-CS-95-010, Computer Science Department, Boston
University, 1995.

[27] V. Almeida, A. Bestavros, M. Crovella, & A., de Oliveria,
“Characterizing Reference Locality in the WWW”, In
Proceedings of PDIS’96: The IEEE Conference on Parallel and
Distributed Information Systems, Miami, 1996.

[28] L. Breslau, P. Cao, L. Fan, G. Philips, & S. Shenker, “Web
Caching and Zipf-like Distributions: Evidence and Implications”,
In Proceedings of Conference on Computer Communications
(IEEE Infocom), New York, 1999, 126-134.

[29] H. Bahn, S. H. Noh, S. L. Min, & K Koh, “Using Full
Reference History for Efficient Document Replacement in Web
Caches”, In Proceedings of Second USENIX Symposium on
Internet Technologies and Systems, Boulder, Colorado, USA,
October 1999.

[30] A. Bradley, “BU Computer Science 1998 Proxy Trace”,
Technical Report, Computer Science Department, Boston
University, 1999.

[31] P. Barford, A. Bestavros, A. Bradley, & M. Crovella,
“Changes in Web Client Access Patterns Characteristics and
Caching Implications”, World Wide Web, 2(1-2), 1999.

J. B. Patil did his M. Tech. in Computer Science and Data
Processing from Indian Institute of Technology, Kharagpur in 1993
and Ph. D. in Computer Engineering from North Maharashtra
University, Jalgaon in 2008. He is currently working as a Principal
and Professor in Computer Engineering at R. C. Patel Institute of
Technology, Shirpur, India. He is a Member of Member of
Institute of Engineers, India and also Life Member of Indian
Society for Technical Education and Computer Society of India.

B. V. Pawar did his B. E. in Production Engineering from VJTI,
Mumbai in 1986, his M. Sc. In Computer Science from University
of Mumbai in 1988, and his Ph. D. in Computer Science from
North Maharashtra University, Jalgaon in 2000. He is currently
working as Professor and Head of Department of Computer
Science, North Maharashtra University, Jalgaon. His current
research interests include Natural Language Processing, Web
Technologies, Information Retrieval, Web Mining, etc.

	5.2 Simulation Results for BU-B19
	5.3 Simulation Results for BU98
	6. Conclusions

