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Abstract 
Currently there is an increased interest in Educational Data 
Mining due to the compelling need for quality in higher 
education and the need to know student behavioural pattern to 
cater individual needs. The performance prediction of student 
kind model is quite familiar and mostly it is associated with 
academic performance. Our proposed framework Multi 
Dimensional Student Assessment (MUSTAS) has unique feature 
to measure the student’s performance through multidimensional 
attributes. Each dimension and its associated factors are carefully 
designed to predict the student’s behaviour. We propose the 
Hybrid CHAID algorithm , a combination of CHAID and Latent 
Class Modeling (LCM) as the best matched technique for our 
MUSTAS framework in educational data mining. 
Keywords:  Data Mining, Educational Data Mining, CHAID 
Prediction Model, Latent Class Model. 

1. Introduction 

Educational system as of now, especially in India is 
going through a radical transformation due to the efforts 
taken by UGC and HRD ministry. The reason behind this 
is that, quality of education is not met in higher educational 
Institutions. Due to this many Institutes want to be centre 
of excellence by going through accreditation process, such 
as ISO etc., to enhance their quality of education. 

Many affiliated institutions want to become 
autonomous and in due course to become unitary 
university; thereby enabling them to have more freedom in 
syllabus and course selection. This also gives them 
flexibility to have tie ups with foreign Universities. The 
private institutions are on an increase now to cater to the 
growing population of youth in countries like India where 
population growth is high. The parents on the other hand 
are now looking for quality education so as to enable their 
child to be placed in good Multi-National Companies.  

The private institutions are now having no choice of 
selection of students in the entry level due to enormous 
new institutions coming up every year in higher education. 
This contributes to the low calibre of students in the entry 
level and making the faculty to take enormous efforts to 
cater to these students. The faculty with station seniority is 
also on a decline in private institutions due to change over 
for higher salary or migrating to Government or other 
lucrative jobs. On the present scenario the institution has 
no choice but to have quality in education for attracting 
students. Therefore to meet the quality needs of the 
institution, the staffs have to know the behaviour pattern of 
the students in shorter time, so as to give coaching in 
accordance to their specific need. 

The student needs were earlier known by knowing the 
students personally or through some response mechanism 
like feedback. Later statistical methods were used to 
analyse these behaviour. Now with the advent of data 
mining techniques and tools, this process of finding 
patterns in the behaviour of students can be taken to a next 
higher level. The tools and algorithms used exclusively for 
educational purpose in data mining is categorised as 
Educational Data Mining (EDM).  

2. EDM for Higher Education 
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Data mining is finding hidden patterns in a large 
collection of data. Data Mining can be used in educational 
field to enhance our understanding of learning process to 
focus on identifying, extracting and evaluating variables 
related to the learning process of students as described by 
Alaa el-Halees [2]. Mining in educational environment is 
called Educational Data Mining. Han and Kamber [15] 
describes data mining software that allow the users to 
analyze data from different dimensions, categorize it and  
summarize the relationships which are identified during the 
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mining process. New methods can be used to discover 
knowledge from educational databases. Student data can 
be used to analyze trends and behaviors toward their 
education [2]. Lack of deep and adequate knowledge in 
higher educational system may prevent management to 
achieve quality objectives, data mining methodology can 
help bridging this knowledge gaps in higher education 
system. 

Traditional classroom environments are being widely 
used. Here face to face contact is established between the 
teacher and the student. Johnson.S, Arago Shaik and 
Palma-Rivas [18] says that educations are of different 
types as public, private, elementary, primary, adult, higher, 
tertiary and academic education. Most of these types uses 
passive learning and ignore individual differences. They 
also sometimes do not cater to the need of students. Here 
the teachers monitor the student learning process by 
analyzing the paper records and on observation. 
 
3. Related Studies in EDM 
 

Educational data mining has emerged as an 
independent research area in recent years, culminating in 
2008 with the establishment of the annual International 
Conference on Educational Data Mining, and the Journal 
of Educational Data Mining. Romero and Ventura [30] 
provides a comprehensive study of EDM from 1995 to 
2005. It describes the need for analyzing the student data 
which can be used by students, educators and 
administrators.  

Galit [11] developed a system to warn weak students. 
Han and Kamber [15] discovered relationship among data. 
Henrik [16] found hidden relationships. Walters and 
Soyibo [21] discovered relationship between academic 
performance and nature of their schools. Z.N. Khan [36] 
found Girls with high socio-economic status were 
relatively higher achievers in science stream and boys with 
low socio-economic status were relatively higher achievers 
in general. Hijazi and Naqvi, [33] using regression found 
factors like mother’s education and student’s family 
income were highly correlated with the student academic 
performance. A.L Kristjansson, Sigfusdottir and Allegrante 
[1] found that Body Mass Index (BMI) affects higher 
academic achievement. Moriana et al. [17] used Analysis 
of variance (ANOVA) and it was observed that group 
involved in activities outside the school yielded better 
academic performance. Al-Radaideh, et al. [29] prescribed 
Decision Tree model had better prediction than other 
models. Cortez and Silva [25] found Decision Tree and 
Neural Networks in some areas give same accuracy. Gong, 
Rai, Beck and Heffernan [12] found Impact of self 
decipline on learning co-related with higher incoming 
knowledge and fewer mistakes but the actual impact of 
learning was only marginal. Perera et al. [28] got the Big 5 

theory for teamwork as a driving theory to search for 
successful patterns of interaction within student teams. 
Madhyastha and Tanimoto [21] investigated the 
relationship between consistency and student performance 
with the aim to provide guidelines for scaffolding 
instruction. Beck and Mostow [6]; Pechenizkiy et al. [27] 
discovered which types of pedagogical support are most 
effective, either overall or for different groups of students 
or in different situations. McQuiggan et al. [24], found 
whether students are experiencing poor self-efficiency. 
Baker [3] identified students who are off-task. D'Mello et 
al. [8] studied on students who are bored or frustrated. 
Dekker et al. [7] Romero et al. [31]; Superby et al. [34] 
found factors that predict student failure or non-retention 
in college courses. Barnes [5] developed algorithms which 
automatically discover a QMatrix from data. Desmarais & 
Pu [9] and Pavlik et al [26] developed algorithms for 
finding partial order knowledge structure (POKS) models 
that explain the interrelationships of knowledge in a 
domain. Walters and Soyibo [35] conducted a study to 
determine Jamaican high school students and found 
positive significant relationship between academic 
performance of the student and the nature of the school. 
Ryan S.J.D. et al. [32] explore that prediction and 
discovery model are increasing while relationship mining 
are not used much. 

 
4. CHAID Prediction Model 
 
 Chi-squared Automatic Interaction Detection 
(CHAID) analysis which was first proposed by Kass, 
1980[10] is one of post hoc predictive segmentation 
methods. The CHAID, using of decision tree algorithms, is 
an exploratory method for segmenting a population into 
two or more exclusive and exhaustive subgroups by 
maximizing the significance of the chi-square, based on 
categories of the best predictor of the dependent variable. 
Segments obtained from CHAID analysis are different 
from cluster type models because the CHAID method, 
which is derived to be predictive of a criterion variable, is 
defined by combinations of predictor variables as 
described by Magidson, [22]. CHAID technique depends 
on interactions among the independent variables, finding 
those that explain the greatest differences within the 
dependent variable. Thus, a CHAID decision tree 
demonstrates how the predictors are differently formed and 
predicts a dependent variable that shows nominal and 
continuous scaling. Educators can identify the key 
influencers or significant drivers in certain students using 
CHAID analysis, which results in a tree like diagram 
commonly called a decision tree. Decision trees have 
several advantages as explained by Bakken [4]. The type 
of representation makes the resulting classification model 
easy to use. Moreover, decision trees are suited for 
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exploratory knowledge discovery because they are non-
parametric and make no assumptions about the underlying 
probability distribution. Decision trees are also efficient to 
higher-order interactions. They are relatively quickly 
constructed for large datasets compared to other 
classification models as presented by Magidson and 
Vermunt, [23]                                
 
5. Latent Class Modeling- LCM 
 
 Latent class (LC) modeling was initially introduced 
by Lazarsfeld and Henry [19] as a way of formulating 
latent attitudinal variables from dichotomous survey items. 
In contrast to factor analysis, which posts continuous latent 
variables, LC models assume that the latent variable is 
categorical, and areas of application are more wide-ranging. 
The methodology was formalized and extended to nominal 
variables by Goodman [13,14], who also developed the 
maximum likelihood (ML) algorithm that serves as the 
basis for many of today’s LC software programs. In recent 
years, LC models have been extended to include 
observable variables of mixed scale type (nominal, ordinal, 
continuous and counts), covariates, and to deal with sparse 
data, boundary solutions, and other problem areas. 
 
6. MUSTAS Framework 
 
 The Multidimensional Students Assessment 
(MUSTAS) framework is a novel model, which consist of 
demographic factors, academic performance of the student 
and dimensional factors. The dimensional factors has 
further sub divided into three dimensions respectively self 
assessment, institutional assessment and external 
assessment. The main objective of this framework is to 
identify the contribution of selected dimensions over 
academic performance of the student, which helps to 
teachers, parents and management about the student’s 
pattern. Understanding of the pattern may facilitate to 
redefine the education method, additional care on 
weakness, and promoting their abilities. The academic 
performance shows the present ability of the student and 
the demographic factors shows his personal lifestyle. 
Construction of this framework strongly believes each 
aspect considered for this framework is closely related to 
one another. 
 
 
 

 
 
 
 
 
 

Fig.1 Dimensions of MUSTAS 

 
 The dimensional factor helps to measure the 
student’s attitude. Self assessment is measured through five 
questions, which express their personal interest towards 
studies. Institutional assessment is specially designed for 
lecturers/faculty and institution’s support towards studies. 
The third dimension is external assessment, which is 
designed to measure an external attribute contribution 
towards their studies. 
 

 
                  

                             Fig.2  MUSTAS Framework 

 
7. Proposed Model 
 
 CHAID based Performance Prediction model in 
EDM was analysed by Ramaswamy, [20] and the results 
have proved to be accurate when compared to some other 
models in terms of accuracy in prediction. One limitation 
of CHAID is that segments are defined based on a single 
criterion variable. Given situations where multiple criteria 
exist, it is not clear how one should go about obtaining a 
single common segmentation. Using one dependent 
variable as the criterion may result in one set of segments, 
while use of an alternative dependent variable will likely 
yield a different set of segments. Moreover, the categories 
of a predictor may merge in different ways depending upon 
which dependent variable is used, again leading to 
different segments. 
 

 
Fig.3 Hybrid CHAID in Educational Data Mining 

 
 In addition, when multiple dependent variables do 
exist, they may be of different scale types (nominal, 
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ordinal, continuous, count, etc.). Using a 3-category 
response variable as an example Magidson [22] showed 
that CHAID segments resulting from treating the 
dependent variable as ordinal (using profitability scores for 
the categories) differed substantially from segments 
derived from the nominal algorithm which ignored the 
scores. The hybrid approach resolves the need to choose 
between different segmentations because indicators with 
differing scale types can be used in extended LCMs, 
yielding a single LC solution. An important advantage of 
this hybrid approach over approaches based on specific 
measures for node homogeneity rather than a model is that 
the LC model used here can handle dependent variables of 
different scale types. 
 
       The evaluation of student attitude is important to 
predict the academic performance on 3-dimensions (Self 
Assessment, Institutional Assessment and External 
Assessment). A LCM was fit to these data, using academic 
performance as an active covariate and the eight 
demographic factors as inactive covariates. This model 
may be viewed as a kind of unsupervised regression with 
12 dependent variables, plus the 11 attribute ratings. This 
LCM yielded 3 segments. The segments are Good, 
Average and Poor with respect to the attribute ratings and 
in their feedback as percentage. These percentages are 
displayed in the root node of the hybrid CHAID tree. The 
hybrid CHAID used the 3-category latent variable 
(segments) as the dependent variable and again utilized the 
8 demographics as the predictors.  
 
8. Conclusion  
 
         We believe the academic performances of the 
students are not always depending on their own effort. Our 
investigation shows that other factors have got significant 
influence over student’s performance. Hence, we introduce 
the hybrid CHAID with MUSTAS framework in education 
domain as multidimensional evaluation method to classify 
the pattern of student through classification tree. This 
proposal will improve the insights over existing methods. 
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