
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org 295

A Method for Designing an Operating System for Plug and
Play Bootstrap Loader USB Drive

 Dr. T. Jebarajan 1, K. Siva Sankar

2

 1

 Tamil Nadu, India.
 Principal, V.V Engg College

2

Tamil Nadu, India.
 Lecturer, Noorul Islam University.

Abstract
This paper lays out different issues and solutions in the design of
an operating system with an inbuilt kernel memory for data
storage and USB (Universal Serial Bus) drive with bootstrap
loader. This relates from the minimum features required for a
program to become the kernel and how this kernel should be
written into the boot sector of a hard disk drive depend upon the
machine architecture, so that it gets loaded into the computer
memory automatically and it restores the disk drive in to its
original state. It highlights how this operating system can be
made to support user specific authentication, keyboard,
networking, peripherals, file system access etc. Most of the
frequently used drivers are added to the kernel images. This also
lays out the specifications for a shell to issue system commands
and system utilities, interfacing FAT (File Allocation Table

Keywords- USB flash drive, plug and play, kernel memory, boot
loader, shell

) file
system for smooth boot of an operating system and how to
communicate with another similar system using hardware device.

1. INTRODUCTION

Any computer system can be considered to have
four basic components [1] [2] - users, application
programs, operating system and hardware. The hardware,
comprising of central processing unit, memory and input
output devices provides the basic computing resources.

The operating system provides a platform for
proper use of these resources [6] [7]. It can be considered
as a program that manages the computer hardware or as an
intermediary between a user of a computer and the
computer hardware. The application programs that run on
top of the operating system provide the users with
solutions they are looking for. This paper will explore the
design of a small operating system for and plug and play
USB device, which can be built using C and assembly
language. In addition to this some modules are configured
with this operating system.

2. BUILD ENVIRONMENT

In order to start building, a development box
running on Windows or Linux with a C editor, C compiler,

Nasm is required. It requires a target machine for the
operating system. It supports a range of object file formats,
including Linux and *BSD a.out, ELF, COFF, Mach-O,
Microsoft 16-bit OBJ, Win32 and Win64

. It will also
output plain binary files. Its syntax is designed to be simple
and easy to understand, similar to Intel's but less complex
for fast accessing. The design and bootstrap strategy will
vary with the underlying machine architecture. For this
design, consider the target machine as an Intel x86 based
hardware with minimum 1MB RAM, USB disk drive,
keyboard and monitor.

3. DESIGN OF SYSTEM

A Linux-based system is a modular Unix-like
operating system. It derives much of its basic design from
principles established in linux. Such a system uses a
monolithic kernel version 2.26, the Linux kernel, which
handles process control, networking, peripheral and file
system access. Device drivers are integrated directly with
the kernel

Separate projects that interface with the kernel
provide much of the system's higher-level functionality.
The user land is an important part of most Linux-based
systems, providing the most common implementation of
the C library, a popular shell, and many of the common
Unix tools which carry out many basic operating system
tasks. The graphical user interface (or GUI) used by most
Linux systems is built on top of an implementation of the
X Window System.

In order to design such a system it can divide it
into different logical modules [11], Boot Loader, Kernel,
FAT File System, Reverse Mapping, Initial Ramdisk, and
Packaging.

3.1 Boot Loader

Boot Loader program loads the kernel of the
operating system into the main memory for execution [1]
[4]. The Boot Loader must be of size 512 bytes and should
reside in the first sector of the disk drive. The conventional

http://en.wikipedia.org/wiki/Unix-like�
http://en.wikipedia.org/wiki/Monolithic_kernel�
http://en.wikipedia.org/wiki/Linux_kernel�
http://en.wikipedia.org/wiki/Peripheral�
http://en.wikipedia.org/wiki/File_system�
http://en.wikipedia.org/wiki/File_system�
http://en.wikipedia.org/wiki/File_system�
http://en.wikipedia.org/wiki/Device_drivers�
http://en.wikipedia.org/wiki/Userland_%28computing%29�
http://en.wikipedia.org/wiki/C_standard_library�
http://en.wikipedia.org/wiki/Shell_%28computing%29�
http://en.wikipedia.org/wiki/Unix_tool�
http://en.wikipedia.org/wiki/Graphical_user_interface�
http://en.wikipedia.org/wiki/X_Window_System�

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org 296

MBR code expects the MBR partition table scheme to have
been used, and scans the list of (primary) partition entries
in its embedded partition table to find the only one that is
marked with the active flag. It then loads and runs the
volume boot record for that partition.

 Fig.1. Boot Process comparison

The procedure of Boot Loader is as follows:

Check the boot signature 0AA55h at 510,511-th bytes of
the first sector of Boot Disk. If boot signature is present, it
loads the code present in the first sector (512bytes) to
memory address 07c00h. Next the code at 07c00h is
executed. This code then tries to find the available physical
memory and divides it into 64KB pages. After that, 2 KB
boot stack is allocated at (A0000-512) h and stack pointer
is setup. Then Space for IVT and BIOS routines are
reserved, and kernel is loaded at 00600h. The kernel that is
to be loaded can be an EXE, BIN or COM file. Search for
this kernel file will be conducted in the Root Directory
(19th

3.2 Kernel

 sector of the Boot Disk). On getting the file, it is
allocated properly with all needed segments and memory
pointers. If the kernel is in BIN or COM format it will have
a single segment with all DS, CS, ES, SS integrated. If the
kernel is in EXE format, it will have separate code, data,
extra and stack segments. In such cases the exe header will
be ripped off and proper relocation factors are added as
needed. After this, the loader loads the kernel into memory.

Kernel is a nothing but a program that resides in

the memory, takes in user inputs, process those user inputs
and give out a suitable response. Kernel can be EXE, BIN
or COM file. Though the tasks done by the kernel varies
with design [5], and many operating systems delegate
system functions to different layers or child programs, the
absolute minimal functions common to all other sub-
systems should be kept in the kernel. In this design, the
shell is the main component. This shell program should
perform the following functions.

User Authentication – The first routine in the shell
should be to authenticate the user. The username and
password entered by the user is checked against stored
username/password combinations in the system and if
found valid, the user is given a ‘prompt’ from where he can
issue system commands.

Command Interpreter - The user input parser is
nothing but the first component of the Command
Interpreter. Once the parser identifies a command as valid,
an action has to be taken corresponding to the command.
For example, if the command is copy, the shell may call
the File Manager subsystem to read the source file and then
issue another command to create and write the contents
just read as a new file. Similarly all the system commands
that the operating system supports can be implemented

IO Functions - Internal working of the Operating
System can be based on the basic display and keyboard
driver routines [2] [4]. These routines are implemented
using BIOS Interrupts [4]. For Keyboard, the routines for
reading a keystroke, converting it to number format,
checking for keystroke presence etc are included. For
Video, the routines for displaying a character, message,
error message, printing at specific location on the screen,
video settings, color settings etc are included. String
manipulation routines are also implemented for simplicity
of the high level operations.

Memory Location Routine
10h - Video Support Routines
12h - RAM size
15h - Delay Support Routines
16h - Keyboard Routines
19h - Reboot Functions
1Ah - CMOS Support Routines

That is to say, when a user presses a key, the
keyboard support routes at 16H kicks in, based on the
context, then appropriate action is taken. For example if
the user is in typing on the shell, the video support routines
at 10h will be called to display the character typed onto the
screen. Any program that implements the above functions
qualifies to be a kernel. Below is the pseudo code for the
simplest of all kernels. The only function done by this
operating system kernel is to display a message after

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org 297

booting and it is invoked by the script called initrd (initial
RAM disk).

int main()
{
char *vidmem = (char *) 0xb8000;
vidmem[0] = 'O';
vidmem[1] = 0x7;
vidmem[2] = 'S';
vidmem[3] = 0x7;
return 0;
}

 Note that char *vidmem = (char *) 0xb8000 is
the memory mapped location of video memory.

3.3 FAT File System

BIOS interrupts are available for low level disk
services like reading sectors from drive, writing sectors
into the drive, formatting a track etc [3]. The operating
system can invoke these bios services for disk activities
whenever it has to read/write into the disk drive [9]. But, in
order to do low-level reading and writing on a hard drive
with a FAT file system, it is required that the address
assigned to files/directories by the file allocation table is
converted to the absolute sector address understood by
BIOS. And for this conversion, a good understanding of
the underlying structure of FAT and FAT chaining is
required. Disk structure has got 4 logical parts: Boot
Sector, File Allocation Table (FAT), Directory and Data
space. Of these, the Boot Sector contains information about
how the disk is organized. That is, how many sides does it
contain, how many tracks are there on each side, how
many sectors are there per track, how many bytes are there
per sector, etc.

Fig.2. FAT files system architecture

The files and the directories are stored in the Data
Space. The Directory contains information about the files
like its attributes, name, size, etc. The FAT contains
information about where the files and directories are stored
in the data space. Fig.2 shows the four logical parts of a
1GB USB flash drive.The basic functions that should be
supported by the operating system on the file system
should be, List Files / Directories, Create Directory,
Change Directory, Create File, Display File contents, Copy
File, Rename File, Delete File, Modify File etc. It also
makes sense to provide users with an in-built editor which
can be used for creating and editing files structure.

FAT is more robust and it can relocate the root
folder and use the backup copy of the file allocation table
instead of the default copy. In addition, the boot record on
FAT USB drives is expanded to include a backup copy of
critical data structures. Therefore, FAT USB drives are less
susceptible to a single point of failure than existing other
file system specified drives.

3.4 Reverse Mapping

Reverse mapping, or RMAP, was implemented in
the kernel to solve memory problem. Reverse mapping
provides a mechanism for discovering which processes are
using a given physical page of memory. Instead of
traversing the page tables for every process, the memory
manager now has, for each physical page, a linked list
containing pointers to the page-table entries (PTEs) of
every process currently mapping that page. This linked list
is called a PTE chain. The PTE chain greatly increases the
speed of finding those processes that are mapping a page,
as shown in below

Fig. 3. Reverse mapping page description

 The most notable and obvious cost of reverse
mapping is that it incurs some memory overhead. Some
memory has to be used to keep track of all those reverse
mappings. Each entry in the PTE chain uses 4 bytes to

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org 298

store a pointer to the page-table entry and an additional 4
bytes to store the pointer to the next entry on the chain.
This memory must also come from low memory, which on
32-bit hardware is somewhat limited. Sometimes this can
be optimized down to a single entry instead of using a
linked list it should be compatible with one other.

4. IMPLEMENTATION

4.1 Initial Ramdisk

 The PC has only 256MB total RAM, maybe not even
any swap partition or swap file, how on earth does this
operating system avoid writing to the Flash drive during a
session. This is one of the key architectural points of this
approach. At boot up, pup_save.2fs is mounted read-only
from where it is on the Flash drive, and its contents are not
copied into RAM. Instead, a tmpfs (temporary file
system) in RAM holds all new and changed files [15].
This is still actually very fast, as all the "working files" are
in RAM. Periodically and at end of session, those "working
files" are written back to the pup_save.2fs file. This
approach has a much smaller initial ramdisk file, named
initrd.gz (instead of image.gz), only about 1.1MB, and
these accounts for a significantly faster boot time.

This operating system tackles the problem other way
round, by always booting up in ramdisk-only the first time
you boot on a PC, then at shutdown you are asked if you
want to create a personal storage file with different storage
option. This operating system mounts the persistent storage
file pup_save.sfs at the top level, that is, on root directory
("/"). The read only compressed file with all the Puppy
files, pup_xxx.sfs, mounts on root directory. The kernel is
configured with a 12288KB maximum ramdisk and this is
increased to 13824K for this approach, so the size should
be mentioned in boot parameter and can have built in
memory in the operating system. This design uses a tiny
initial ramdisk, initrd.gz that is only 0.9M compressed.
Installing extra applications, such as dotPups that install
into /root/my-applications, do not add to initrd.gz. The
initial ramdisk file remains fixed in size, and everything
under root directory ("/") goes into pup_save.2fs, the
squashfs file that gets attached later in the boot process.
The initial ramdisk file that loads into the fixed-size-limit
ramdisk. The boot sequence then creates a tmpfs ramdisk,
which is variable in size, and will use as much RAM and
swap space as available.

4.2. Architecture Overview

The way to understand the diagram is to view
each of those layers as a complete filesystem, that is, a

complete directory hierarchy from root directory ("/")
down. These layers are laid one on top of the other, which
is achieved by the unionfs filesystem. This file will be
visible at the top layer. If the "off-blue" layer has the same
file, it will not be visible, as it is overlaid by the same file
on a higher layer. Depending on this version of Linux you
are running, the method for creating the initial RAM disk
can vary. The initrd is constructed using the loop device.
The loop device is a device driver that allows you to mount
a file as a block device and then interpret the file system it
represents [18]. The loop device may not be present in this
kernel, but you can enable it through the kernel's
configuration tool by selecting Device Drivers > Block
Devices > Loopback Device Support. The small, but
necessary, set of applications are present in the ./bin
directory, including nash (not a shell, a script interpreter),
insmod for loading kernel modules, and lvm (logical
volume manager tools).

Fig. 4. Structure of Operating System

ramdisk This is the tmpfs filesystem running in
RAM, with new and updated files.

pup_save.2fs This is the persistent storage, where all your
data, settings, email, installed packages, etc.,
get saved permanently. The ".2fs" means
that the file contains a FAT or ext2
filesystem.

pup_xxx.sfs The built-in applications, window manager,
scripts, everything. The ".sfs" means the file
contains a squashfs compressed filesystem.
The "xxx" is the version number without the
dots.

_xxx.sfs These are additional squashfs files. The ""
can be anything. For example, devx_xxx.sfs
is the complete environment for compiling
C/C++ applications

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org 299

While running this operating system, the outlook
seen is one filesystem, which is the top layer. Thus you see
/usr/lib/libgdkxft.so and you don't care what layer it is
actually on. An exciting alternative to the squashfs
extensions is to use an existing installed Linux distro as the
bottom layer.

Fig. 5. Operating System Distro as the bottom layer

There are other variations, and it has a "state variable"
named PUPMODE that shows what state, the operating
system currently used. There is a file, etc/rc.d/PUPSTATE
that has the PUPMODE variable defined in the following
modes

 PUPMODE 5
 PUPMODE 12
 PUPMODE 13
 PUPMODE 2
 PUPMODE 77

4.3. PUPMODE 5

This is the configuration the very first time that
operating system is booted from USB Flash drive. The first
time that you plug in the USB and boot up, there is no
persistent storage, and the "union" consists of only two
layers, the top "working files" and the pup_xxx.sfs
squashfs filesystem that has all the operating system files
[18]. These two layers appear overlaid at root directory;
however they can be viewed individually, at their
respective mount points. So, we describe this approach but
not touching the hard drive at all. You can run applications,
configure, download, install packages, but it is all
happening in the tmpfs ramdisk, so not getting saved. The
way that we have been using pupmode is to create a
"pup100" file on the USB drive, which has a FAT file
system. This file is copied into RAM at boot up, if there is
enough RAM, thus avoiding writes to the Flash drive

during a session. Then the files are copied back at
shutdown.

Fig. 6. First time boot configuration of USB flash drive

The amount of space you have in the ramdisk
depends on how much RAM is in the PC. The really
interesting part is when you decide to end the session and
shutdown the PC. The shutdown script, which is actually
/etc/rc.d/rc.shutdown, will execute and will bring up a
dialog window asking you to save the session with
different allocation of memory size. Whatever directories
and files that have been created in the ramdisk can now be
saved [18]. The choice of storage location depends on
whether a partition is a Linux filesystem, or FAT
filesystem, a file called pup_save.2fs can be created in
USB flash drive and stored periodically every time.

4.4 PUPMODE 13

Configure an operating system to a USB Flash
drive, perhaps by using the operating system Universal
Installer program,you will have a bootable drive with the
files vmlinuz (the Linux kernel), initrd.gz (the initial
ramdisk), pup_xxx.sfs (squashfs filesystem with all the os
files) and syslinux.cfg (Syslinux config file). The situation
is just like booting from a live-CD on first boot of this
operating system and it will be in PUPMODE 5, as no
persistent storage has yet been created. On first shutdown,
as described in the PUPMODE 5 section above, you will
create a persistent storage called pup_save.2fs file [18]. On
the second boot, operating system will discover the
persistent storage and boots. In the case of the persistent
storage on Flash memory, which is the second layer,
operating system will save everything from the top layer to
the second layer every 30 minutes.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org 300

Fig. 7. Second time boot configuration of USB flash drive

From the "unionfs" point of view, the second
layer is mounted read-only, it is only the top layer that is
written to, however this design can able to "flush" the top
layer down to the next layer at periodic intervals [18]. This
has an option to select the user storage in and operating
system, according to this user can use two storage one in
operating system and another in normal disk drive. The
updating made in the operating system is stored in that
particular space allotted for it.

4.5 Flash technology

However, there is a downside to flash technology,
and that is it is not designed for unlimited writes. That is,
you can save onto it just so many times, and then it will
collapse [16].

Fig. 8. Layout of Operating System at second and later
boot ups from a USB device

Operating systems is especially designed to have no writes
to the Flash drive during a session, enormously extending
its life span. When operating system boots from USB, the
steps are much the same as for the live-CD. The kernel
vmlinuz is loaded into RAM, initrd.gz is uncompressed
and loaded into a ramdisk, the ram disk is responsible of
loading all the operating system modules. Take a look at
this fig.8 that boots the operating system from the USB
drive and the structure remains same for upcoming
extraction.

Operating system with no writes to flash device.
usr_cram.fs will find in the USB partition and will mount it
on /usr. If there is enough RAM, it will copy usr_cram.fs
into the ramdisk and then mount it on /usr. This will slow
down bootup slightly, but will improve running speed even
if the operating system does leave usr_cram.fs on the USB
drive and mounts it from there onto /usr, that is not a
problem as /usr is read-only [18]. There will be no writes
to /usr, so the lifetime of the Flash drive is not
compromised.

4.6 Packaging

Once it has the kernel with all required
functionalities ready, it requires writing it into a medium
like USB disk drives. Remember that the boot loader
always loads the executable in one specific sector of the
drive. So it is important that to place the program in correct
sector for the boot loader to find it and load it into memory
[19]. Tools like masm and debug allows writing the
executable program to specific sectors that specify.

5. CONCLUCSION

The design parameters of an operating system,
with minimal components are described by considering all
issues. This is of great thrust to completely design and
develop the underlying principles of an operating system
and boot strap loader in USB drive. And this understanding
of the working platform is critical to developing better
software that runs on it.

REFERENCES

[1] Silberschatz, Galvin, and Gagne, “Operating System
Concepts,” Wiley, Seventh Edition Wiley, 2006
[2] A S Tanenbaum, “Operating System Concepts,” 3rd ed.,
Oxford:Clarendon, 1992
[3] Dominic Giampaolo, “Practical File System Design with the
Be File System,” Morgan Kaufmann publishers, 1999
[4] William Stallings "Computer Organization and Architecture:
Designing for Performance", Prentice Hall, 2009

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org 301

[5] Butler W. Lampson, and Howard E. Sturgis "Reflections on
an operating system design", Communications of the ACM,
Volume 19, Issue 5, pp. 251-265 , 1976
[6] A. Messer, and T. Wilkinson, “Components for operating
system design”, Proceedings of the 5th International Workshop
on Object Orientation in Operating Systems, IEEE Press, 1996
[7] Christine Morin, “Design and Implementation of First
Advanced Version of LinuxSSI”, INRIA, Campus de Beaulieu,
France, 2008
[8] William Stallings, “Operating Systems: Internals and Design
Principles,” Prentice Hall, Fifth Edition, 2005
[9] Lex Stein, "Stupid File Systems Are Better", Proceedings
from the Eighth Workshop of Hot Topics in Operating Systems,
IEEE Press, 2005
[10] A Bruce Carlson, Paul B Crilly, and Janet Rutledge,
“Communications Systems,” Mc Graw Hill, 2001
[11] Craig Larman, Victor R. Basili, “Iterative and Incremental
Development: A Brief History”, IEEE Computer Society Press,
Volume 36, Issue 6, pp. 47-56, 2003
[12] Jesshope C, Shafarenko A, "Concurrency engineering",
Proceedings from IEEE Computer Systems Architecture
Conference,” IEEE Press, 2008

[13] Tanenbaum, A.S, Herder, J.N, Bos, H, “Can we make
operating systems reliable and secure?,” Computer, Volume 39,
Issue 5, pp 44-51, IEEE Press, 2006
[14] Geer, D “The OS Faces a Brave New World,” Computer,
Vol 42, Issue 10, pp 15-17, IEEE Press, 2009
[15] W. Tukey, “Bias and confidence in not-quite large samples,”
Annals of Mathematical Statistics, vol. 29, p. 614, 1958.
[16] B. Efron, “The jacknife, the bootstrap, and other resampling
plans,” in Proc. Conf. Rec. SIAM, Philadelphia, PA, 1982.
[17] Y. D’Asseler, C. J. Groiselle, H. C. Gifford, S.
Vandenberghe, R. Van De Walle, I. L. Lemahieu, and S. J. Glick,
“Evaluating human observer performance for list mode PET
using the bootstrap method,” IEEE Trans.Nucl. Sci., submitted
for publication.
[18]http://www.puppylinux.com/development/howpuppyworks.ht
ml
[19] C. J. Groiselle, Y. D’Asseler, H. C. Gifford, and S. J. Glick,
“Performance evaluation of the channelized Hotelling observer
using bootstrap list-mode PET studies,” in Proc. IEEE Medical
Imaging Conf., Portland, OR, 2003, pp. 2511–2515.

	4.2. Architecture Overview
	4.3. PUPMODE 5
	4.4 PUPMODE 13

